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Accurately identifying apple diseases is essential to control their spread and

support the industry. Timely and precise detection is crucial for managing the

spread of diseases, thereby improving the production and quality of apples.

However, the development of algorithms for analyzing complex leaf images

remains a significant challenge. Therefore, in this study, a lightweight deep

learning model is designed from scratch to identify the apple leaf condition. The

developed framework comprises two stages. First, the designed 37-layer model

was employed to assess the condition of apple leaves (healthy or diseased).

Second, transfer learning was used for further subclassification of the disease

class (e.g., rust, complex, scab, and frogeye leaf spots). The trained lightweight

model was reused because the model trained with correlated images facilitated

transfer learning for further classification of the disease class. A dataset available

online was used to validate the proposed two-stage framework, resulting in a

classification rate of 98.25% for apple leaf condition identification and an accuracy

of 98.60% for apple leaf disease diagnosis. Furthermore, the results confirm that

the proposed model is lightweight and involves relatively fewer learnable

parameters in comparison with other pre-trained deep learning models.
KEYWORDS

deep learning, apple leaf condition identification, apple leaf disease detection,
lightweight model, crop monitoring
1 Introduction

Ensuring constant and steady agricultural production is crucial for satisfying the

demands of the growing global population. Agricultural production and quality vary

globally owing to various factors, such as climatic changes, naturally available resources,

geographical position, and the presence of infections and diseases (Mahato et al., 2022).
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Additionally, plant diseases contribute to insufficient human food

supply and may severely impact natural ecosystems (Singh et al.,

2023; Lahlali et al., 2024). Although technological advancements

have mitigated the catastrophic effects of plant diseases, this

remains a significant issue.

With a history of 2,000 years of human cultivation, apples are one

of the most popular and extensively cultivated fruits globally (Cheng

and Li, 2023). Apples are rich in vitamins and minerals, which

provide a high nutritional value that is essential for a healthy diet

(Korban, 2023; Tsoupras et al., 2023) (Larsson et al., 2013). have

reported that the adequate consumption of apples may reduce the

risk of stroke. However, apple production faces various challenges

because of diseases that can significantly affect both yield and quality.

Apple trees are vulnerable to a multitude of diseases that significantly

compromise their quality and yield. These include fungal infections,

viruses, nematodes, and bacteria, which can substantially reduce the

nutritional and therapeutic value of apples. At present, disease

identification significantly relies on human vision, requiring the

expertise of local agriculturalists (Dutot et al., 2013). In addition to

being cumbersome, visual inspection by farmers is susceptible to

errors because of subjective perceptions and visual fatigue, rendering

it challenging to achieve high precision during disease identification.

This can cause significant losses in apple production and quality.

Diseases such as rust, complexes, scabs, and frogeye leaf spots hinder

apple production, inducing significant setbacks in the agricultural

sector. Rust reduces fruit size and places trees at risk of harm during

winters. Cedar-apple rust affects leaves and fruits, whereas frogeye

leaf spots, caused by a fungal pathogen, lead to fruit infections. The

scab, caused by Venturia inaequalis, is particularly damaging; it

begins as yellow spots on leaves and deforms the fruit subsequently

(Hirst, 1997). Therefore, the timely and accurate diagnosis and

treatment of apple diseases are essential to ensure a productive and

healthy harvest. Over the last few years, advancements in machine

learning and deep learning technologies have significantly enhanced

the detection of leaf diseases (Kamilaris and Prenafeta-Boldú, 2018;

Pardede et al., 2018), facilitating efficient real-time disease detection.

Recognizing plant diseases is fundamentally an image-

processing problem that involves accurate capturing of disease

features, comparing them with other disease types, and classifying

them. Conventional machine learning approaches employ image

processing methods and classifiers, wherein RGB values and disease

spot textures are extracted using grayscale values. The commonly

used classifiers include Naive Bayes, support vector machines, and

k-means clustering (Mokhtar et al., 2015; Ma et al., 2018; Deng

et al., 2019; Tian et al., 2019). Conventional machine learning

methods can achieve reasonable detection rates for diseases with

specific characteristics (Singh et al., 2016). However, these

approaches are constrained by their inadequacy in identifying

nonlinear data and the challenges associated with feature

extraction, resulting in inadequate generalizability.

By contrast, deep learning methods have reported promising

results for plant disease detection (Fuentes et al., 2017; Liu et al.,

2018). Deep learning models have demonstrated significantly

accurate results in plant disease detection compared with

conventional learning models. The automatic extraction of local
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features from neighboring pixels in deep learning models enables

them to demonstrate high disease detection rates (Jiang et al., 2019).

proposed a VGG-INCEP model for multiclassification problems.

They used an apple leaf disease dataset to detect five different apple

diseases and achieved an accuracy of 97.14%. In another study (Li and

Rai, 2020), used pre-trained models, such as ResNet-18 and ResNet-

34, for apple disease detection; the models achieved high accuracies of

99% and 97%, respectively, owing to their complex architectures.

Although these models exhibit exceptional results, they are

impractical for real-time use. In a recent study (Yao et al., 2024),

introduced a multi-prediction model to identify plant diseases. The

framework included a convolutional neural network (CNN)

evaluated using a plant village, plant leaves, and PlantDoc datasets;

their model exhibits a high detection rate of 96.51%. In another recent

study (Andrushia et al., 2024), proposed a capsule network for

classifying Vitis vinifera leaves, achieving an accuracy of 98.7%.

Recently, transformer-based architectures have revolutionized the

field of agricultural image analysis, enabling accurate and efficient

detection of apple leaf diseases. Several studies have demonstrated the

effectiveness of transformer-based architectures in capturing

contextual relationships and long-range dependencies, which are

crucial for identifying subtle disease symptoms (Lv and Su, 2024; Si

et al., 2024; Ullah et al., 2024). Despite their advantages, deep learning

models, including transformer-based models, face significant

challenges such as complex architectures, leading to increased

computational requirements and substantial training time to

achieve optimal results.

To address the aforementioned challenges, we developed a

novel deep learning architecture and framework, referred to as

AppleLeafNet, for apple disease identification and detection. In the

first step, a deep learning classification architecture was designed

from scratch to identify the condition of the apple leaf (healthy or

diseased). After identifying the condition of the leaf, the same deep

learning model was reused considering its frozen weight (transfer

learning concept) for subclassifying the diseased leaf into rust,

complex, scab, and frogeye leaf spot. The use of frozen weights on

correlated images facilitated the subclassification process. A dataset

available online was used to validate the proposed deep learning

model and framework.
2 Materials and methods

This section presents the details of the materials used and the

methods employed in this study, including the proposed model and

framework. The data augmentation process, implemented to

address class imbalance issues in the dataset used, is also described.
2.1 Proposed framework for apple leaf
disease detection

We propose a deep-learning-based framework for identifying

and detecting the types of actual diseases that affect apple leaves.

The proposed approach was divided into two stages. In Stage I, the
frontiersin.org
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deep learning architecture was designed from scratch to identify the

condition of the apple leaf (healthy or diseased). In Stage II, the

diseased leaves were further categorized into rust, complex, scab,

and frogeye leaf spots by reusing the trained Stage I model. Figure 1

depicts the complete framework of the proposed approach. The

details of the deep learning model are provided in the

subsequent section.
2.2 Deep learning model designed
from scratch

In this study, we developed a deep learning model for apple leaf

disease identification. The proposed model was designed to

outperform other state-of-the-art models by using the fewest

layers possible for a specific dataset. The proposed model was

built using 37 layers, which included the input, convolutional,

rectified linear unit (ReLU), pooling, batch normalization,

concatenation, fully connected, dropout, softmax, and

classification layers. Figure 2 and Table 1 present the

specifications and features of the proposed deep learning model.

2.2.1 Input layer
The model uses the input image to extract the features from the

subsequent layers. The developed structure was designed to process

input images with dimensions of 227 × 227 × 3. Each image in the

dataset was adjusted to fit these dimensions; this relates only to the

input image dimensions and contains no learning parameters, as

listed in Table 1.

2.2.2 Convolutional layer
The layers of the model learn weight matrices for filters and

kernels, with the number and size of filters determining the

adjustable parameters. For instance, in a layer with dimensions
Frontiers in Plant Science 03
(x, y, d) and a filter size k with dimensions (a, b), the parameters of

the convolutional layer are (a * b * d) + 1) * k), where 1 is included

for the bias in each filter. In this study, the presented network

included eight convolutional layers with a filter size of 3 × 3,

resulting in 1,061,600 learnable parameters across the layers.

2.2.3 Pooling layer
This layer reduces the number of input parameters to decrease

computation costs and enhance efficiency. The developed model

includes max- and average-pooling layers; the max-pooling layer

selects the most prominent features, whereas the average-pooling

layer computes the average value based on the feature map using

stride and padding settings. This layer lowers the input dimensions

but does not contain learnable parameters.

2.2.4 Dropout layer
This layer randomly deactivates neurons during training,

prevents overfitting, and enhances the model generalization.

2.2.5 Fully connected layer
This layer establishes dense connections, thereby extracting

high-level characteristics to develop the classification model.

2.2.6 Softmax
Softmax uses an activation function to transform logarithms

into class probabilities, ensuring that the sum of the probabilities for

all classes is equal to one.

2.2.7 Classification output
This layer employs cross-entropy loss for model training,

explicitly using the “crossentropyex” of MATLAB. The gap

between the actual and predicted class probabilities can be

quantified using cross-entropy.
FIGURE 1

Framework used for apple leaf disease identification and detection
based on the designed deep learning model.
FIGURE 2

Architecture of the developed deep learning model for apple leaf
disease identification.
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TABLE 1 Detailed information on the developed deep learning model for identifying the conditions of apple leaves.

Layer No. Name Type Activations No. of Learnable Parameters

1 ‘imageinput’ Image Input [227,227,3,1] 0

2 ‘conv’ 2-D Convolution [227,227,32,1] 896

3 ‘relu’ ReLU [227,227,32,1] 0

4 ‘maxpool’ 2-D Max Pooling [113,113,32,1] 0

5 ‘batchnorm’ Batch Normalization [113,113,32,1] 64

6 ‘conv_1’ 2-D Convolution [113,113,32,1] 9,248

7 ‘relu_1’ ReLU [113,113,32,1] 0

8 ‘maxpool_1’ 2-D Max Pooling [56,56,32,1] 0

9 ‘batchnorm_1’ Batch Normalization [56,56,32,1] 64

10 ‘conv_2’ 2-D Convolution [56,56,64,1] 18,496

11 ‘relu_2’ ReLU [56,56,64,1] 0

12 ‘maxpool_2’ 2-D Max Pooling [27,27,64,1] 0

13 ‘conv_3’ 2-D Convolution [27,27,64,1] 36,928

14 ‘relu_3’ ReLU [27,27,64,1] 0

15 ‘conv_4’ 2-D Convolution [27,27,64,1] 36,928

16 ‘relu_4’ ReLU [27,27,64,1] 0

17 ‘concat’ Concatenation [27,54,64,1] 0

18 ‘maxpool_3’ 2-D Max Pooling [13,26,64,1] 0

19 ‘batchnorm_2’ Batch Normalization [13,26,64,1] 128

20 ‘conv_5’ 2-D Convolution [13,26,128,1] 73,856

21 ‘relu_5’ ReLU [13,26,128,1] 0

22 ‘maxpool_4’ 2-D Max Pooling [6,12,128,1] 0

23 ‘conv_6’ 2-D Convolution [6,12,256,1] 295,168

24 ‘relu_6’ ReLU [6,12,256,1] 0

25 ‘batchnorm_3’ Batch Normalization [6,12,256,1] 512

26 ‘conv_7’ 2-D Convolution [6,12,256,1] 590,080

27 ‘relu_7’ ReLU [6,12,256,1] 0

28 ‘gapool’ 2-D Global Average Pooling [1,1,256,1] 0

29 ‘batchnorm_4’ Batch Normalization [1,1,256,1] 512

30 ‘fc’ Fully Connected [1,1,1024,1] 263,168

31 ‘sigmoid’ Sigmoid [1,1,1024,1] 0

32 ‘batchnorm_5’ Batch Normalization [1,1,1024,1] 2,048

33 ‘flatten’ Flatten [1024,1] 0

34 ‘dropout’ Dropout [1024,1] 0

35 ‘fc_1’ Fully Connected [2,1] 2,050

36 ‘softmax’ Softmax [2,1] 0

37 ‘classoutput’ Classification Output [2,1] 0
F
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The network developed from scratch for disease identification

contained only 1,330,146 learnable parameters, as listed in Table 1.
2.3 Transfer learning

Transfer learning is a machine learning method that uses

existing trained models to accelerate learning for another task.

Essentially, the network created for one task is reused as the initial

point of another network for a different task. This approach is

particularly valuable when limited datasets are available. The

fundamental idea of this approach is to utilize the characteristics

acquired from tasks with ample data to enhance the efficiency of

tasks with limited data. This is based on the understanding

that tasks involve common elements that can be reused to

enhance efficiency.

In Stage II of the framework, transfer learning was employed

based on the deep learning model developed in Stage I by

incorporating the frozen weights of the apple disease

identification model (trained for Stage I). The network was

retrained by substituting the final three layers for actual disease

detection (e.g., rust, complex, scab, and frogeye leaf spots), as

indicated in Figure 1.
2.4 Dataset and preprocessing

The dataset used in this study is publicly available at Kaggle

“Plant Pathology 2021 - FGVC8” (https://www.kaggle.com/

competitions/plant-pathology-2021-fgvc8/data, accessed on
Frontiers in Plant Science 05
August 20, 2024). The dataset contains 18,632 images captured

using a Canon Rebel T5i DSLR (Canon Inc., Japan) and is mobile at

different angles, illumination, noise, and non-homogeneous

backgrounds, depicting various disease levels. According to the

input of the developed model, all images were uniformly cropped to

227 × 227 pixels. A zero-center approach was used for

normalization during preprocessing. We selected five leaf spot

categories, namely, healthy, rust, complex, scab, and frogeye leaf

spots, based on their sufficient image representation (Figure 3).

Insufficient data is a major challenge in implementing deep

learning models. Increasing the number of images in the dataset can

help models learn robust features and reduce the risk of overfitting.

The dataset used in this study was imbalanced, with the scab class

containing the maximum images and the complex class comprising

the least number of images. We addressed this imbalance by using

techniques such as flipping, random rotation, contrast adjustment,

brightness modification, translation, and zoom to enhance the

dataset. These augmentations increased the size of the dataset and

improved image quality. The dataset was divided into two groups,

as summarized in Table 2.
3 Results

MATLAB 2023a was used for all simulations and analyses on a

personal computer with the following specifications: Core i7, 12th

Generation, 32 GB RAM, NVIDIA GeForce RTX 3050, 1 TB SSD,

and 64-bit Windows 11 operating system. The dataset was

randomly divided into 80/20 ratios for model training and

testing. The images used for the model testing were not part of
FIGURE 3

Sample of the plant pathology 2021 - FGVC8 dataset used for various conditions of leaves.
frontiersin.org

https://www.kaggle.com/competitions/plant-pathology-2021-fgvc8/data
https://www.kaggle.com/competitions/plant-pathology-2021-fgvc8/data
https://doi.org/10.3389/fpls.2024.1502314
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2024.1502314
the training set. The initial parameters included 100 epochs, a

momentum of 0.9, a mini-batch size of 32, and a learning rate of

0.001. The stochastic gradient descent with momentum (SGDM)

solver was used for training and testing. The following metrics were

used to evaluate the performance of the various models:

Precision =
True positives

True positives + False positives

Recall =
True positives

True positives + False negatives

Specificity =
True negatives

True negatives + False positives

F1� score = 2� Precision� Recall
Precision + Recall

Accuracy =
Total no :  of correctly classified observation

Total no :  of observation

First, the original dataset (without augmentation) was used to verify

the performance of the proposed model on a five-class apple leaf

classification problem. Initially, an ablation study was performed to

select the layers for the lightweight deep learning model. Table 3 lists the

results of the ablation study. The 37-layer model was selected as the

proposed lightweight deep learning model because it yielded higher

accuracy. Other state-of-the-art models, ranging from simple to complex

architectures, such as ResNet-50, GoogLeNet, Inception-v3,
Frontiers in Plant Science 06
EfficientNet-b0, MobileNet-v2, and DenseNet-201, were also trained to

compare their performances. Table 4 presents the results of the

comparative analysis.

The data presented in Table 4 indicate that the DenseNet-20

produced the highest classification accuracy of 94%, with a training

time of approximately 45 h. Conversely, the proposed model yielded

a reasonable classification rate of 91.02%, with only 1 h of training

time. The proposed model exhibited an acceptable precision rate

(Table 2) and accurately classified 875 of the 925 healthy apple leaf

images. Furthermore, the proposed model used the least number of

learnable parameters (1.3 million) in comparison with other models.

Therefore, the proposed framework was used to further validate the

identification and disease detection rate, as discussed in Section 2.1.

After identifying the condition of an apple leaf (healthy or diseased),

the original type of disease was detected using the proposed

framework. The data were augmented to balance the dataset

(Table 2); Figures 4 and 5 illustrate the corresponding results.

According to the results presented in Figure 4A, the proposed

methodology increased the condition identification rate of apple

leaves. Only 17 of 1200 leaves were misclassified in the healthy class,

and 1175 of 1200 leaves were accurately classified in the diseased

class, increasing the accuracy to 98.25%. Furthermore, in the

detection of complex diseases in leaves (Figure 4B), 24 false

negatives and 30 false positives suggested misclassification to

some extent; however, the error was relatively low compared with

true positives. In the case of frogeye leaf spots, 14 false positives and

4 false negatives indicated adequate performance with minimal

misclassification. In the case of scab detection, 11 false positives and
TABLE 3 Results of the ablation study performed for the selection of layers.

Parameters

Developed lightweight deep learning models

36-layer
(no parallel
branch)

33-Layer
(1 parallel
branch)

37-Layer
(1 parallel
branch)

41-Layer
(1 parallel
branch)

42-Layer
(2 parallel
branch)

Training Loss 1.39 × 10-04 4.42 × 10-02 6.30 × 10-03 1.17 ×10-03 7.72 × 10-02

Training Accuracy (%) 100 100 100 100 100

Validation Loss 0.51710 0.51105 0.4818 0.58545 0.51386

Validation
Accuracy (%)

90.15 89.12 91.02 89.83 89.84

Training Time 65 min 30 s 59 min 3 s 61 min 38 s 63 min 38 s 76 min 57 s
TABLE 2 Details of the apple leaf dataset.

Category Subcategory Original Images Augmented Images for Stage I Augmented Images for Stage II

Healthy Healthy 4624 6000

Diseased

Rust 1860

6000

6000

Complex 1602 6000

Scab 4826 6000

Frogeye Leaf Spots 3181 6000
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TABLE 4 Comparison of various models for apple leaf disease detection.

Network
True
Class

Predicted Class
Precision Recall Specificity

F1-
score

Accuracy
(%)

Training
Time

Learnable
(M)

Complex Frogels* Healthy Rust Scab

GoogLeNet

Complex 231 41 1 37 10 0.82 0.72 0.98 0.77

93.1
142 min
11 s

5.9

Frogels* 20 604 4 2 6 0.92 0.95 0.98 0.93

Healthy 1 2 897 1 24 0.96 0.97 0.98 0.97

Rust 15 3 1 353 0 0.90 0.95 0.99 0.92

Scab 16 7 30 1 911 0.96 0.94 0.98 0.95

ResNet-50

Complex 238 34 4 22 22 0.83 0.74 0.98 0.78

93.57
554 min

1 s
23.5

Frogels* 28 600 4 1 3 0.92 0.94 0.98 0.93

Healthy 0 2 908 1 14 0.95 0.98 0.98 0.97

Rust 13 4 2 352 1 0.94 0.95 0.99 0.94

Scab 9 9 34 0 913 0.96 0.95 0.98 0.95

Inception-v3

Complex 212 54 0 34 20 0.84 0.66 0.99 0.74

92.64
490 min

1 s
21.8

Frogels* 21 597 4 6 8 0.90 0.94 0.97 0.92

Healthy 1 3 900 0 21 0.96 0.97 0.98 0.97

Rust 11 3 2 353 3 0.90 0.95 0.99 0.92

Scab 8 9 29 0 919 0.95 0.95 0.98 0.95

EfficientNet-b0

Complex 252 37 0 10 8 0.80 0.82 0.98 0.81

93.8
653 min
21 s

4

Frogels* 25 585 0 3 8 0.91 0.94 0.98 0.93

Healthy 1 5 907 0 29 0.98 0.96 0.99 0.97

Rust 20 1 0 356 1 0.96 0.94 0.99 0.94

Scab 19 8 18 3 919 0.95 0.95 0.98 0.95

MobileNet-v2

Complex 246 20 0 16 9 0.77 0.86 0.97 0.81

93.9
230 min
32 s

2.2

Frogels* 32 606 3 5 8 0.95 0.93 0.98 0.94

Healthy 0 7 904 1 32 0.98 0.96 0.99 0.97

Rust 30 0 0 350 0 0.94 0.92 0.99 0.93

Scab 12 3 18 0 916 0.95 0.96 0.98 0.96

DenseNet-201

Complex 239 15 0 17 8 0.75 0.86 0.97 0.80

94.0
2700 min

27 s
18.1

Frogels* 26 613 2 10 6 0.96 0.93 0.99 0.95

Healthy 2 3 915 1 37 0.99 0.96 0.99 0.97

Rust 29 1 0 343 0 0.92 0.92 0.99 0.92

Scab 24 4 8 1 914 0.95 096 0.98 0.95

Proposed

Complex 229 43 7 31 10 0.85 0.72 0.99 0.78

91.02
61 min
17 s

1.3

Frogels* 19 586 11 3 17 0.91 0.92 0.98 0.91

Healthy 1 3 875 0 46 0.92 0.95 0.97 0.93

Rust 16 9 0 343 4 0.91 0.92 0.99 0.92

Scab 4 6 59 0 896 0.92 0.93 0.97 0.92
F
rontiers in Plant
 Science
 0
7
 fro
Frogels*, Frogeye Leaf Spots.
ntiersin.org

https://doi.org/10.3389/fpls.2024.1502314
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2024.1502314
7 false negatives suggested high accuracy. Figure 5 depicts the

learning curves of both trained models, which stabilized after

approximately 40 epochs. Figure 6 shows the 10-fold cross-

validation results, demonstrating the effectiveness of the proposed

two-stage approach against overfitting. A comparison of the

proposed approach with those reported in the literature is

presented in Table 5.
4 Discussion

The global agricultural industry plays a vital role in ensuring

food security, and the detection of plant diseases is crucial for

maintaining crop productivity and sustainability (Feng et al., 2023;

Li et al., 2024). The accurate identification of leaf diseases in apple

trees is critical for timely intervention and yield optimization. This

paper presents a novel lightweight deep learning model and

framework designed to efficiently recognize and classify diseases

in apple leaves, offering a valuable tool for agricultural stakeholders.

We used a lightweight deep learning model and framework for

apple leaf condition identification and disease detection. An

ablation study (Table 3) was performed to determine the optimal
Frontiers in Plant Science 08
layer configuration, which indicated that increasing or decreasing

the number of layers affected the training time and classification

accuracy. Notably, the 37-layer deep learning architecture achieved

the highest validation accuracy (91.02%) with reduced validation

loss for the original dataset (without augmentation). Furthermore,

the training time of the proposed model was significantly shorter

than that of the other deep learning models (Table 4) despite using

only 1.3 million learnable parameters. Moreover, the proposed

model was substantially lighter than others. Despite the increased

efficiency and lightweight characteristics, the proposed model

maintained competitive performance in terms of precision, recall,

and accuracy. This reduced memory and storage requirements,

rendering it suitable for deployment in devices with limited

resources. This balance between efficiency and performance can

be crucial for practical applications.

To increase the accuracy, we proposed a two-stage architecture

using the selected lightweight 37-layer deep learning model. The

primary idea was to validate the hypothesis that transfer learning

benefits from correlated images using frozen CNN weights. In the

first stage, the proposed lightweight model was designed and

trained to identify the condition of the apple leaf (healthy or

diseased). The model performed well in classifying healthy and
FIGURE 4

Performance of the proposed two-stage methodology. (A) Apple leaf condition identification and (B) apple leaf disease detection.
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diseased apple leaves, with a classification accuracy of 98.6%

(Figure 4A). In the second stage, the model trained in Stage I was

reused using its frozen weight (transfer learning concept) for

diseased leaf subclassification into rust, complex, scab, and

frogeye leaf spots. The use of frozen weights on correlated images

facilitated the subclassification process. As indicated in Figure 4B,

the performance of the diseased leaf subclassification significantly

increased to 99.2%, with the true positive rate exceeding 98% for all

subclasses. A comprehensive 10-fold cross-validation analysis was

performed to further assess the robustness of the model against data

leakage and overfitting. The results demonstrated a consistently
Frontiers in Plant Science 09
high classification accuracy (Figure 6), further confirming the

efficacy of the proposed two-stage framework.

The comparative analysis further revealed that the proposed

model and framework yield a better classification performance than

the other models utilizing the same dataset (Table 5). The proposed

model offers a practical solution for plant disease classification by

balancing performance, efficiency, and resource requirements. This

makes it a valuable tool for real-world applications, where rapid and

accurate plant disease identification and detection are essential.

Certain limitations were observed in this study. We focused

solely on image data to classify apple leaf conditions and diseases.
FIGURE 5

Learning curves of the proposed two-stage methodology. (A, B) Apple leaf condition identification model. (C, D) apple leaf disease detection model.
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However, in the future, image data should be combined with spectral or

genomic data to further enhance classification and robustness.

Furthermore, existing architectures employed for plant disease

classification are relatively simple. Exploring more advanced

architectures, such as CNNs with attention mechanisms or

transformer-based models, may improve performance. Another key

limitation of this study was the validation of the proposed framework

using a single dataset. Future studies should prioritize testing the
Frontiers in Plant Science 10
generalizability of the framework across diverse datasets by

incorporating various environmental and confounding factors to

ensure broader applicability.
5 Conclusions

This study proposes a lightweight deep learning model and

framework for identifying the apple leaf condition (healthy or

diseased) and detecting diseases (e.g., rust, complex, scab, and

frogeye leaf spots). A 37-layer lightweight deep learning model

was designed to identify the apple leaf conditions, and the Plant

Pathology 2021 - FGVC8 dataset available online was used for

validation. Image augmentation techniques were used to balance

the classes. The proposed model was trained using an augmented

dataset, and numerous comparative experiments were performed

considering various performance evaluation indicators. The

experimental results demonstrated that the proposed method

achieved a high accuracy of 98.25% for identifying the apple leaf

condition. Furthermore, the proposed lightweight deep learning

model required considerably fewer learnable parameters than other

models. The trained model was reused to evaluate its performance

in disease class subclassification using transfer learning. The model

achieved a high classification accuracy of 98.60% for actual disease
FIGURE 6

Performance of the proposed two-stage methodology based on the 10-fold cross-validation. (A) Apple leaf condition identification and (B) apple
leaf disease detection.
TABLE 5 Comparison of the proposed framework with those reported in
other studies using the Plant Pathology 2021 - FGVC8 dataset.

Study Results (%)

(Yadav et al., 2022) 92.66

(Yu et al., 2022) 95.7

(Feng et al., 2023) 90.49

(Ullah et al., 2024) 96.4

(Ait Nasser and
Akhloufi, 2024)

95.96

(Li et al., 2024) 95.69

Proposed
98.25% (for apple leaf condition identification)

98.60% (for apple leaf disease detection)
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detection. This excellent classification performance confirmed that

the proposed model outperformed existing deep learning

algorithms, providing superior results in apple leaf disease

detection tasks. The study findings serve as a reference for

classifying agricultural diseases using deep learning techniques as

the developed model is lightweight, rapid, and resilient.
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