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Time-lag effects of NEP and NPP
to meteorological factors in the
source regions of the Yangtze
and Yellow Rivers
Hengshuo Zhang, Xizhi Lv*, Yongxin Ni, Qiufen Zhang,
Jianwei Wang and Li Ma

Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Yellow Basin Ecological
Protection and Restoration, Zhengzhou, China
Vegetation productivity and ecosystem carbon sink capacity are significantly

influenced by seasonal weather patterns. The time lags between changes in

these patterns and ecosystem (including vegetation) responses is a critical aspect

in vegetation-climate and ecosystem-climate interactions. These lags can vary

considerably due to the spatial heterogeneity of vegetation and ecosystems. In

this study focused on the source regions of the Yangtze and Yellow Rivers

(SCRYR), we utilized long-term datasets of Net Primary Productivity (NPP) and

model-estimated Net Ecosystem Productivity (NEP) from2015 to 2020,

combined with reconstructed 8-day scale climate sequences, to conduct

partial correlation regression analysis (isolating the influence of individual

meteorological factors on the lag effects). The study found that the length of

lag effects varies depending on regional topography, vegetation types, and the

sensitivity of their ecological environments to changes in meteorological factors.

In the source region of the Yangtze River (SCR), the lag times for NPP and NEP in

response to temperature (Tem) are longer, compared to the source region of the

Yellow River (SYR), where the lags are generally less than 10 days. The long lag

effects of NPP with precipitation (Pre), ranging from 50 to 60 days, were primarily

concentrated in the northwestern part of the SCR, while the long lag effects of

NEP with precipitation, ranging from 34 to 48 days, covered a broad region in the

western part of the study area. NPP exhibits the least sensitivity to changes in

solar radiation (SR), with lag times exceeding 54 days in 99.30% of the region. In

contrast, NEP showed varying lag effects with respect to SR: short lag effects

(ranging from 0 to 15 days) were observed in carbon source areas, while long lag

effects (ranging from 55 to 64 days) were evident in carbon sink areas. The

sensitivity of vegetation tometeorological changes is highest for SVL, followed by

C3A, PW, BDS, and C3 in descending order. This study examined the

spatiotemporal impacts of climatic drivers on NPP and NEP from both

vegetation and ecosystem perspectives. The findings are crucial for enhancing

vegetation productivity and ecosystem carbon sequestration capacity at

important water sources in China.
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1 Introduction

Vegetation and ecosystems are pivotal in carbon sequestration,

substantially contributing to the global carbon cycle (Schmitz et al.,

2003; de Jong et al., 2013; Wang et al., 2023b; Long et al., 2024). To

address global warming, the Chinese government has formulated a

series of ecological policies, particularly focusing on the ecological

protection and restoration projects in the ecologically vulnerable

areas of the Qinghai-Tibet Plateau (Wang et al., 2020; Zhang et al.,

2021) and the Sanjiangyuan region (Bian et al., 2017; Wang et al.,

2023b), laying a solid foundation for achieving the dual carbon

goals (Pei et al., 2009; Li et al., 2022; Zhao et al., 2024). Plant absorb

carbon dioxide (CO2) from the atmosphere through

photosynthesis, leading to the accumulation of organic carbon in

biomass, quantified as Net Primary Productivity (NPP) (Wang

et al., 2023b; Zhu et al., 2023; Jia et al., 2024). This measure of

plant-level productivity is a key component of an ecosystem’s

carbon sink function, representing the primary pathway through

which carbon is introduced into ecosystems (Yang et al., 2020; Li

et al., 2023; Lyu et al., 2023). Beyond NPP, the broader metric of Net

Ecosystem Productivity (NEP) encompasses not only the carbon

sequestered by plants but also the carbon emissions from the

respirat ion of a l l b iot ic components , inc luding soi l

microorganisms (Ye et al., 2022; Lyu et al., 2023; Zhang et al.,

2023a), i.e. NEP provides a comprehensive assessment of the

balance between carbon inputs and outputs within an ecosystem,

indicating its net role as a carbon sink or source (Ye et al., 2022;

Huang et al., 2024).

The efficacy of vegetation and ecosystems in sequestering

carbon is modulated by various factors, including species

composition (Jobbágy and Jackson, 2000; Pei et al., 2009; Zhao

et al., 2024), soil properties (Zhang et al., 2013; Koranda et al.,

2023), and climatic conditions (Schmitz et al., 2003; Jones and

Driscoll, 2022). Meteorological variables such as temperature

(Tem), precipitation (Pre), and solar radiation (SR) are

particularly influential (Zhang et al., 2014; Guo et al., 2020; Lyu

et al., 2023), as they directly impact physiological processes such as

photosynthesis and respiration (Yu, 2020; Liu et al., 2023b).

However, the responses of NPP and NEP to these climatic drivers

are not immediate, but rather, they often exhibit time-lag effects

(Kong et al., 2020; Liu et al., 2021; Huang et al., 2024). These lag

effects arise from the complex interactions between biotic and

abiotic factors, resulting in a delayed response of carbon

sequestration processes to changes in meteorological conditions

(Liu et al., 2022; Li et al., 2023; Huang et al., 2024). A comprehensive

understanding of these temporal dynamics is essential for

accurately forecasting ecosystem responses to climatic variability

and for informing strategies aimed at mitigating the effects of

climate change (Kong et al., 2020; Huang et al., 2024).
Abbreviations: NEP, Net Ecosystem Productivity; NPP, Net Primary

Productivity; SCRYR, the source regions of the Yangtze and Yellow Rivers;

SCR, source region of the Yangtze River; SYR, source region of the Yellow River;

Tem, temperature; Pre, precipitation; SR, solar radiation; PFTs, plant functional

types; BDS, Broadleaf deciduous shrub, boreal; C3A, C3 grass, arctic; C3, C3

grass; PW, Permanent wetlands; SVL, sparsely vegetated lands; O, Other types.
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Most previous studies on the time-lag effects of NPP and NEP

in response to meteorological factors have typically been conducted

at a monthly scale, constrained by data availability and

methodological limitations, such as coarse spatial resolution (Liu

et al., 2021, 2022; Huang et al., 2024). Early research demonstrated

that the relationship between vegetation productivity and climatic

variables, such as temperature and precipitation, often exhibited

time lags. For instance, Li et al. (2023) observed that in the Qinghai-

Tibet Plateau regions, vegetation productivity exhibited a lagged

response to climatic variables: up to one month for temperature

changes, up to 1.5 months for precipitation changes, and up to two

months for changes in solar radiation. Research on the lag effects

between NEP and meteorological factors is relatively scarce. This is

attributed to the complexity and heterogeneity of the ecosystem

processes involved, and the high uncertainty associated with

modeling these interactions (Huang et al., 2024). In summary,

these studies used of coarse-scale data introduces significant

uncertainties, potentially masking finer-scale variations and the

intricate interplay between different climatic factors and

ecosystem responses (Nicholson and Farrar, 1994; Kong

et al., 2020).

The source regions of the Yangtze and Yellow Rivers (SCRYR)

play a crucial role in China’s hydrological and ecological systems,

serving as the headwaters for two of the country’s most significant

rivers (Chen et al., 2020a; Sun et al., 2020; Zhu et al., 2023). These

regions are characterized by diverse climatic conditions, ranging

from the cold alpine climate of the Tibetan Plateau to the relatively

temperate environments at lower elevations (Zhu et al., 2023; Lu

et al., 2024). Overall, the Yangtze River source region (SCR) has a

higher average elevation, steeper terrain, and colder climatic

conditions (Bian et al., 2017; Lu et al., 2024) compared to the

Yellow River source region (SYR), which has relatively lower

elevations, gentler terrain, and milder climate (Lu et al., 2024;

Zhang et al., 2024). These differences lead to variations in climatic

conditions, water resource distribution, and vegetation patterns

between the two regions (Bian et al., 2017; Kong et al., 2020; Lu

et al., 2024). Consequently, they introduce multiple uncertainties in

NPP and NEP as well as their lag effects.

Understanding the lag effects of these meteorological factors on

NPP and NEP is critical for predicting how these ecosystems might

respond to future climate change scenarios (Lyu et al., 2023). In the

SCRYR region, where climatic conditions are highly variable and

ecosystems are sensitive to environmental changes, examining these

lag effects can provide valuable insights into the resilience and

adaptability of the region’s ecosystems (Kong et al., 2020; Liu et al.,

2022; Huang et al., 2024). Moreover, different plant functional types

(PFTs) within these ecosystems may exhibit distinct responses to

meteorological factors, further complicating the overall carbon

dynamics (Wang and Ni, 2005; Rao et al., 2024). The study aims

to 1) investigate the finer-scale lag effects of temperature,

precipitation, and solar radiation on NPP and NEP at a daily

scale in the SCRYR region; 2) By analyzing these lag effects from

both vegetation and ecosystem perspectives, along with their

spatiotemporal variations and relationships with different PFTs,

we seek to enhance the understanding of the mechanisms

underlying carbon sequestration and release (mainly time lag
frontiersin.org
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variations) in this ecologically significant area. Our research

provided a scientific basis for understanding the response of the

ecosystem in the source regions of the Yangtze and Yellow Rivers to

climate change, revealing adaptive strategies for carbon

transformation and changes in productivity. This work offers

theoretical support and practical guidance for further optimizing

ecosystem management measures and developing regional climate

change adaptation plans.
2 Materials and methods

2.1 Study area

The SCRYR are located in the northeastern section of the

Qinghai-Tibet Plateau in China (Figure 1), spanning from 89°49′
to 103°29′E and 31°18′ to 36°56′ N. The elevation of this region

ranging from 2675 to 6427 m and covers a total area of 264389 km2.

The SCRYR share borders with Gansu Province to the northeast and

the Tibet Autonomous Region to the west and south. To the

southeast, they connect to Sichuan Province, and within the central

area, they encompass parts of Qinghai Province, including the Yushu

Tibetan Autonomous Prefecture and the Golog Tibetan Autonomous

Prefecture. The SCRYR is the source of two important rivers in Asia,

i.e., the Yangtze River and Yellow River, and is also a vital water

source and significant natural resource conservation area in China

(Wang et al., 2021b, 2023; Zhu et al., 2023).

The SCRYR has a continental plateau climate, with annual

precipitation ranging from 200 to 550 mm (increasing gradually

from west to east) and an average annual temperature from -4°C to

5°C (due to the influence of elevation, temperatures in higher

elevation areas are significantly lower) (Sun et al., 2020; Wang

et al., 2021b, 2023). Due to its unique geographical location and
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relatively thin atmosphere, the SCRYR experiences higher solar

radiation intensity, ample sunlight during the summer and

significant seasonal variability (Liu et al., 2012; Yu et al., 2022).

As a result, the vegetation in these high- elevation regions is highly

sensitive to variations in temperature (Tem), precipitation (Pre),

and solar radiation (SR) (Fan and Bai, 2021; Xu and Wu, 2023).

Generally, the plant functional types (PFTs) in the SCRYR

(Table 1) primarily include Broadleaf deciduous shrub, boreal

(BDS, accounting for 2.65% of the total area), C3 grass, arctic

(C3A, accounting for 67.40% of the total area), C3 grass (C3,

accounting for 8.63% of the total area), and Permanent wetlands

(PW, accounting for 3.55% of the total area), with additional

presence of sparsely vegetated lands (SVL, accounting for 13.39%

of the total area). Other types (O, accounting for 4.37% of the total

area), such as crops, water bodies, and urban construction land, are

irregularly distributed throughout the study area. The primary

ecosystem type in both the SCRYR is C3A (Figure 2). The

distinction lies in the distribution of SVL, which is more

prevalent in the source of Yangtze River region (in the northern

part), while C3 is more commonly found in the source of Yellow

River region (in the southeastern part). The distribution of

ecosystem types is influenced by climate, topography, and human

activities (Fan and Bai, 2021; Xu and Wu, 2023).
2.2 Data sources

2.2.1 NPP data sources
The NPP data used in this study was obtained from the 2015 to

2020 MOD17A2H 8-days composite datasets with 500m spatial

resolution from the US NASA EOS/MODIS (https ://

search.earthdata.nasa.gov/). In addition, the dataset also

eliminates cloud and snow pollution interference, and the quality
FIGURE 1

Location of the study area.
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control files of the dataset clean up the lower quality data, increasing

the reliability of NPP data (Gong, 2021; 2022). The original NPP

data (MOD17A2H) was in the Hierarchical Data Format (HDF). To

extract the data within the study area, the MODIS Reprojection

Tool was utilized to convert the set of HDF data into TIFF format

and project them using the SCRYR boundary vector file as a mask.

The MOD17A2H product outliers were removed, and the effective

values were multiplied by the product scaling factor of 0.0001, by

the MOD17A2H product proportion factor in the MOD17 User’s

Guide, to obtain the NPP data in units of g C·m−2·8d−1.
2.2.2 Meteorological data sources
Meteorological data (including Tem, Pre) were obtained from

the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/).

Tem data (°C) were derived from the TRIMS LST-TP dataset

(Zhang et al., 2023b), and the spatial resolution is 1 km, with a

daily temporal resolution. Pre data (mm) were derived from the

CHM_PRE dataset (Han et al., 2023), and the spatial resolution is

0.1°, with a daily temporal resolution. SR data (W·m-2) were

obtained from the fifth generation of ECMWF atmospheric

reanalysis data set for the global climate (ERA5, https://

cds.climate.copernicus.eu/), and the spatial resolution is 0.25°,
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with a hourly temporal resolution. Through projection

transformation, resampling, cropping, and arithmetic calculations,

Tem and Pre grid data for the SCRYR from 2015 to 2020 were

derived at a spatial resolution of 500 m. All grid data in this study

has been unified to the geographic coordinate system

(Lohmar, 1988).

2.2.3 DEM data sources
Elevation data were obtained from the ASTER Global Digital

Elevation Model V002 (https://search.earthdata.nasa.gov/). The

original spatial resolution is 250m (dated 2020), through

projection transformation, resampling, and mask extraction, DEM

grid data for the SCRYR were derived at a spatial resolution of

500 m.

2.2.4 PFTs data sources
PFTs data were obtained from the National Tibetan Plateau Data

Center (https://data.tpdc.ac.cn/) (Ran and Li, 2019). The original

spatial resolution is 1km, through projection transformation,

resampling, and mask extraction, PFTs grid data for the SCRYR

were derived at a spatial resolution of 500 m.
2.3 Methods

2.3.1 Evaluation of vegetation carbon sink
capacity in SCRYR based on NPP

NEP plays a crucial role in the material and energy flows of

ecosystems. It represents the capacity of plant communities to

produce carbon under natural environmental conditions and

serves as a fundamental indicator for evaluating the coordination

of ecosystem structure and function, as well as the biosphere’s

carrying capacity (Yu, 2020; Lyu et al., 2023). NEP is calculated as

the difference between NPP and ecosystem respiration (Rh).

NEP = NPP − Rh (1)
FIGURE 2

Distribution of PFTs in the SCRYR.
TABLE 1 Area of PFTs in the SCRYR (source of the Yangtze River and
Yellow River).

Number Name Abbreviation Area/km2

1
Broadleaf deciduous

shrub, boreal
BDS 7017.75

2 C3 grass,arctic C3A 178201.00

3 C3 grass C3 22823.50

4 Permanent wetlands PW 9389.00

5 sparsely vegetated lands SVL 35392.00

6 Other types O 11565.75
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We employed the methodology developed by Pei et al. (2009),

which integrates Pre, Tem, and carbon emissions to establish a

regression equation for estimating regional Rh. This approach has

demonstrated efficacy in evaluating vegetation NEP within the

region and has been successfully applied and validated in the

ecosystems of the Qinghai-Tibet Plateau, China (Jiang et al., 2022;

Ye et al., 2022).

Rh = 0:22(e0:0912Tem + ln (0:3145Pre + 1))� 30� 46:5% (2)

Given that the unit of NPP is g C·m−2·8d−1, the units for NEP

and Rh are also g C·m−2·8d−1. Pre and Tem represent the total Pre

(mm) and average Tem (°C) over an 8-day period, respectively.

2.3.2 Partial correlation analysis
This study analyzed the response of NEP to meteorological

factors (Tem, Pre, and SR) by using the partial correlation method

(Lyu et al., 2023; Zhang et al., 2023a). The computation of partial

correlation coefficient (PCC), while controlling for two or more

variables, generally involves employing multiple linear regression to

mitigate the influence of the control variables. In this study, the

`partialcorr` function in MATLAB R2023b was utilized to perform

these calculations. This approach enabled us to derive partial

correlation coefficients, which were subsequently used to assess

the impact of Pre, Tem, or Solar on NPP (or NEP) (Lyu et al., 2023).

The statistical significances of the regression and partial correlation

coefficients were examined using the T test, and the p-values less

than 0.05 were considered significant (Zheng et al., 2020).

2.3.3 Lag effect analysis
We acquired NPP and calculated NEP datasets at an 8-day

temporal resolution. To investigate the time-lag relationships

between 8-day scale NPP (or NEP) and Tem, Pre, and SR, we

employed a novel and straightforward approach. This method

involved reconstructing new 8-day scale temperature,

precipitation, and solar radiation series with a time lag of i days

by advancing the start date of the original time series by i days.

Previous studies have indicated that the time lag between Tem, Pre,

or SR and NPP in the north of China were no great than three
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months (Liu et al., 2021, 2022; Huang et al., 2024). Considering this

and the preliminary peak value analysis of NPP, NEP, TEM, Pre,

and SR in our study, we examined time lags ranging from 0 to 120

days [i.e., (i = 0, 1, 2, 3, …, 120)]. Subsequently, we reconstructed

the 8-day scale Tem, Pre, and SR based on the restructured daily

scale sequences (Figure 3). Specifically, the reconstructed 8-day

scale Pre was the sum of daily Pre, the reconstructed 8-day scale

Tem was the average of daily Tem, and the reconstructed 8-day

scale SR was the average of daily SR. Subsequently, we used

MATLAB R2023b to repeatedly perform the partial correlation

analysis described in Section 2.3.2 to determine the relationships

between 8-day scale NPP (or NEP) and 8-day scale climatic factors.

For Tem and Pre, the lag days (i) with the highest PCC were

identified as the time lag days required for NPP (or NEP) to respond

to the respective factor. For SR, the lag days (i) with the lowest PCC

were identified as the time lag days required for NPP (or NEP) to

respond to the respective factor.

2.3.4 Pearson correlation analysis
Using MATLAB R2023b, we generated new gridded data for the

lag days (i) of NPP (or NEP) and meteorological factors (Tem, Pre,

and SR). We then extracted the lag days (i) for each grid cell and

performed Pearson correlation analysis with the latitude, longitude,

and elevation of the respective grid cell. This analysis aimed to

investigate the spatial distribution differences of the lag effects of

NPP and NEP in the SCRYR.
3 Results

3.1 Spatiotemporal distribution
characteristics of NPP and NEP

To analyze the spatial distribution characteristics of NPP and

NEP, we aggregated the 8-day scale NPP and NEP datasets from

2015 to 2020 into multi-year averages and generated new gridded

data (Figure 4). To analyze the temporal variation trends of NPP

and NEP, we organized the 8-day NPP and NEP datasets from 2015
FIGURE 3

Sketch illustrating how 8-day scale meteorological data were reconstructed using a moving average calculated over a sliding time window.
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to 2020 into monthly averages and compared them with monthly

scale meteorological factor values (Figure 5).

As shown in Figure 4A, during the period from 2015 to 2020,

the annual mean NPP in the SCRYR ranged from -2.60 to 799.60 g

C·m⁻²·a⁻¹, exhibiting significant variation with longitude, increasing
from west to east. Specifically, the annual mean NPP in the SCR was

approximately 134.10 g C·m⁻²·a⁻¹, while in the SYR, it was

approximately 302.18 g C·m⁻²·a⁻¹. The annual mean NEP in the

SCRYR ranged from -185.15 to 632.70 g C·m⁻²·a⁻¹ (Figure 4B),

which exhibited a spatial variation trend similar to that of NPP.

From northwest to southeast, there is a gradual transition from

carbon source regions (NEP <0) to carbon sink regions (NEP >0).

The annual mean NEP in the SCR was approximately 20.25 g

C·m⁻²·a⁻¹, while in the SYR, it was approximately 164.11

g C·m⁻²·a⁻¹.
From a temporal perspective, the variation trends of NPP and

NEP in the study area were similar (Figure 5). Both increased

sharply from May to July, reached their peak in August (63.12 g

C·m⁻²·month⁻¹and 44.20 g C·m⁻²·month⁻¹, respectively), and then

declined rapidly. Here we also focused on the monthly scale

variation trends of meteorological factors (i.e. Tem, Pre, and SR).

Tem reached its peak in August (10.48°C), coinciding with the peak

values of NPP and NEP. Pre peaked in July (134.13mm), while SR

peaked in May (308.94 W·m-2). Consequently, the peaks of NPP

and NEP lag behind Pre by approximately one month and SR by

about three months. Additionally, it is noteworthy that while Pre

and NPP/NEP peak simultaneously on a monthly scale, this only

may indicate a more pronounced lag effect on a daily scale.

We further analyzed the monthly variation of NPP and NEP

values across different PFTs (Figure 6) and found that the variation

trends for NPP and NEP under different PFTs were almost identical

to the overall monthly variation trends in the study area (Figure 5).

However, there were notable differences in the amplitude of

fluctuations. Specifically, the NPP peak in August followed the

order of C3 (117.00± 18.80 g C·m⁻²·month⁻¹) > BDS (85.88± 28.39

g C·m⁻²·month⁻¹) > PW (80.32± 41.48 g C·m⁻²·month⁻¹) > C3A

(61.73± 30.24 g C·m⁻²·month⁻¹) > SVL (36.39± 26.46 g

C·m⁻²·month⁻¹), and the NEP peak followed the same order: C3

(95.02± 18.56 g C·m⁻²·month⁻¹) > BDS (66.56± 27.46 g

C·m⁻²·month⁻¹) > PW (59.39± 39.84 g C·m⁻²·month⁻¹) > C3A
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(43.17± 29.39 g C·m⁻²·month⁻¹) > SVL (18.13± 25.74

g C·m⁻²·month⁻¹).
3.2 Lagged responses of vegetation to
meteorological factors

Meteorological factors from the normal time series (scenario

without time lag) were used as independent and control variables,

with NPP and NEP as dependent variables for partial correlation

analysis. The spatial distribution of the PCC is shown in Figure 7.

NPP showed a positive feedback effect to increases in Tem

(Figure 7A) and Pre (Figure 7B) across the entire study area, with

PCC ranges of -0.23 to 0.78 and -0.39 to 0.94, respectively.

Conversely, NPP exhibited a negative feedback effect to increases

in SR across most of the study area, with a PCC range of -0.63 to

0.38. In contrast, NEP’s response to Tem and Pre exhibited

significant regional differences within the study area, transitioning

from negative feedback effects in the northwest to positive feedback

effects in the southeast, with PCC ranges of -0.94 to 0.60 and -0.95

to 0.76, respectively. Similar to NPP, NEP also showed a negative

feedback effect to increases in SR across most of the study area, with

a PCC range of -0.69 to 0.38.

We performed partial correlation analysis between the NPP and

NEP data and the reconstructed time series of meteorological

factors. The spatial distribution of the partial correlation

coefficients is shown in Figure 8. Within the study area, the

responses of NPP and NEP to meteorological factors were

corrected. The PCC range for NPP and Tem was corrected to

-0.13 to 0.78, for NPP and Pre to 0.02 to 0.94, and for NPP and SR

to -0.74 to 0.09. For NEP, the PCC range with Tem was corrected to

-0.11 to 0.85, with Pre to 0.05 to 0.86, and with SR to -0.17 to -0.89.

To analyze the differences in PCC between NPP (or NEP) and

meteorological factors across different PFTs, we conducted further

analysis under both scenarios: without time lag and with time lag

(Table 2). The results showed that under the scenario without time

lag, the PCC between NPP (or NEP) and meteorological factors was

not sensitive to changes in PFTs. However, under the scenario with

time lag, the PCC between NEP and Tem was most sensitive to PFT

changes. The mean PCC values were ranked as follows: SVL (0.63) >
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The annual average values of NPP (A) and NEP (B) from 2015 to 2020 in the SCRYR.
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FIGURE 5

The monthly scale variation of NPP, NEP, Tem, Pre, and SR from 2015 to 2020 in the SCRYR.
FIGURE 6

Monthly variation of NPP and NEP of different PFTs in the SCRYR. error bars represent SD (standard deviation, 95% confidence intervals).
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C3A (0.46) > PW (0.40) > BDS (0.33) > C3 (0.26). The next most

sensitive was the PCC between NEP and SR: SVL (-0.58) < C3A

(-0.39) < PW (-0.36) < BDS (-0.30) < C3 (-0.21).
3.3 Distribution of vegetation time lags

To further investigate the distribution characteristics of the lag

effects of NPP and NEP within the study area, we extracted the lag

days corresponding to the maximum (or minimum) PCC values

and re-mapped them as grid images (Figures 9A–C; Figures 10A–

C). The corresponding histograms are shown in Figures 9D–F (also

in Figures 10D–F).

The lag relationship between NPP and Tem showed a spatial

pattern of higher lag days in the west and lower lag days in the east

(Figure 9A, i.e., most areas in SCR have longer lag days compared to

the SYR region). The histogram data revealed that in the SCR

region, lag days predominantly range from 20 to 30 days, whereas in

the SYR region, lag days were primarily between 0 and 10 days

(Figure 9D). The lag relationship between NPP and Pre indicated

that areas with lag days ranging from 0 to 30 account for 76% of the

study area (Figure 9E), while areas with lag days ranging from 50 to
Frontiers in Plant Science 08
60 account for 17.57% of the study area and were primarily

concentrated in the northwest part of the SCR (Figure 9B). The

lag days between NPP and SR were primarily concentrated in the 54

to 66 range. (Figure 9F, 99.30% of the study area).

The lag relationship between NEP and Tem exhibited a spatial

distribution similar to that of the lag relationship between NPP and

Tem (Figure 10A). In the SCR region, the lag days predominantly

range from 12 to 32 (Figure 10D), whereas in the SYR region, the lag

days mainly range from 0 to 10. The lag relationship between NEP

and Pre indicated that areas with lag days greater than 34 account

for 85.72% of the study area (Figure 10B, E), while only 14.23% of

the area had lag days less than 30 (primarily concentrated in the

northeastern part of the SYR region). The lag relationship between

NEP and SR in the SCRYR region exhibited a bimodal distribution

(Figure 10C, F), with lag days predominantly concentrated in the 0

to 15 days (northwest region) and 55 to 64 intervals (southeast

region).

As previously analyzed, there were spatial differences in the lag

effects between NPP (or NEP) and meteorological factors.

Therefore, we extracted the lag days for each grid cell along with

their corresponding latitude, longitude, and elevation values, and

conducted Pearson correlation analysis (Table 3). The results
FIGURE 7

Spatial distributions of PCC between NPP and Tem (A), Pre (B), and SR (C) in the SCRYR; spatial distributions of PCC between NEP and Tem (D), Pre
(E), and SR (F) in the SCRYR; scenario without time lag.
FIGURE 8

Maximum (or minimum) PCC between the NPP and Tem (A), Pre (B) and SR (C) in the SCRYR; maximum (or minimum) PCC between the NEP and
Tem (D), Pre (E) and SR (F) in the SCRYR; scenario with time lag.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1502384
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1502384
showed that the lag effects of NPP with Tem were highly

significantly negatively correlated with longitude (r= -0.45, P<

0.01). For NEP, the lag effects with Tem and Pre factors were

highly significantly negatively correlated with longitude (the r

values were -0.39 and -0.37, respectively). In contrast, the lag

effects of NPP (or NEP) with the three meteorological factors

showed little correlation with latitude (only the lag effect between

NEP and SR shows a significant correlation, and the r values was

0.40). The lag effects of NPP with Tem were highly significantly

positively correlated with elevation (r= 0.30, P< 0.01), and the lag

effects of NEP with the Tem and Pre factors were also highly

significantly positively correlated with elevation (the r values were
Frontiers in Plant Science 09
0.38 and 0.41, respectively). While the lag effects of NEP with SR

were negatively correlated with elevation (r= 0.-36, P< 0.01).
3.4 Differences in lag effects among
various PFTs

As shown in Section 3.1, there were significant differences in the

monthly scale NPP and NEP across different PFTs within the

SCRYR region. Therefore, to exam the time-lag effects and their

variability across various PFTs, we conducted further analysis

(Supplementary Figure S1–S6).
TABLE 2 PCC between NPP (or NEP) and Tem, Pre, and SR in the SCRYR.

Without time lag With time lag

NPP NEP NPP NEP

Tem Pre SR Tem Pre SR Tem Pre SR Tem Pre SR

BDS

Min 0.08 -0.16 -0.56 -0.91 -0.94 -0.64 0.08 0.05 -0.68 -0.08 0.09 -0.86

Max 0.73 0.87 0.25 0.58 0.74 0.20 0.73 0.87 -0.09 0.85 0.76 0.07

Mean 0.44 0.48 -0.22 0.07 0.16 -0.27 0.44 0.48 -0.40 0.33 0.44 -0.30

C3A

Min -0.13 -0.19 -0.62 -0.93 -0.95 -0.69 -0.13 0.02 -0.74 -0.11 0.06 -0.88

Max 0.77 0.93 0.22 0.60 0.76 0.19 0.77 0.93 -0.06 0.85 0.85 0.09

Mean 0.45 0.54 -0.24 -0.08 -0.02 -0.31 0.45 0.54 -0.44 0.46 0.49 -0.40

C3

Min -0.03 -0.14 -0.59 -0.93 -0.88 -0.61 -0.01 0.02 -0.68 -0.09 0.05 -0.83

Max 0.78 0.84 0.38 0.60 0.71 0.38 0.78 0.84 0.09 0.81 0.74 0.17

Mean 0.46 0.46 -0.12 0.17 0.26 -0.14 0.46 0.46 -0.37 0.26 0.34 -0.21

PW

Min -0.14 -0.10 -0.59 -0.94 -0.93 -0.69 -0.02 0.09 -0.70 -0.06 0.06 -0.89

Max 0.74 0.89 0.36 0.52 0.72 0.36 0.74 0.89 -0.01 0.84 0.85 0.15

Mean 0.47 0.53 -0.20 -0.01 0.04 -0.22 0.47 0.53 -0.41 0.40 0.44 -0.36

SVL

Min -0.16 -0.19 -0.63 -0.92 -0.94 -0.68 -0.13 0.09 -0.70 -0.03 0.09 -0.89

Max 0.77 0.94 0.26 0.54 0.75 0.27 0.77 0.94 0.01 0.85 0.86 0.12

Mean 0.45 0.62 -0.29 -0.40 -0.34 -0.30 0.45 0.62 -0.41 0.63 0.49 -0.58
fro
FIGURE 9

Time lags at which there was maximum PCC between the NPP and Tem (A) and Pre (B), and minimum PCC between the NPP and SR (C); histogram
of time lags between the NPP and Tem (D), Pre (E), and SR (F).
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The average lag days of NPP with Tem across different PFTs were

ranked as follows (Table 4): PW (11.25)> SVL (10.29)> C3A (9.83)>

BDS (6.66)> C3 (5.65). For BDS, the area proportion with lag days in

the 0 to 8 range was 85.12% (Supplementary Figure S1F), whereas for

C3, the area proportion within this lag range was 97.65%

(Supplementary Figure S1H). The average lag days for BDS and C3

are significantly lower than those for C3A, PW, and SVL, which is

closely related to the spatial distribution of PFTs. Over 20% of the

area for C3A, PW, and SVL is located in the western part of the SCR,

with lag days ranging from 22 to 25 (Supplementary Figures S1G, I,

J). The average lag days of NPP with Pre across different PFTs were

ranked as follows: C3 (21.90)> SVL (20.34)> C3A (18.46)> PW

(17.39)> BDS (15.07). Influenced by the spatial distribution of PFTs,

C3A and SVL also exhibit a bimodal lag distribution, with lag days

primarily concentrated in the 0 to 15 and 55 to 56 ranges

(Supplementary Figure S2B, E, G, J; C3A and SVL with larger lag

days were primarily distributed in the northwest part of the SCR).

Meanwhile, the lag days for C3A, PW, and BDS were mainly within

the 0 to 35 range (Supplementary Figure S2F, H, I; the area

proportions were 79.37%, 89.27%, and 91.46%, respectively). The

average lag days of NPP with SR across different PFTs were ranked as

follows: C3 (15.19)> BDS (12.85)> PW (10.23)> C3A (9.97)> SVL

(8.88). Although the lag range in SCRYR spanned from 0 to 50, 99%

of the area has lag days within 30 days. For different PFTs, most lag
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days fall within the 0 to 17 range (Supplementary Figure S3). The area

proportions within this lag range were 79.97% for BDS, 87.70% for

C3A, 65.81% for C3, 82.90% for PW, and 88.20% for SVL.

The average lag days of NEP with Tem across different PFTs

were ranked as follows: SVL (17.19)> C3A (13.70)> PW (12.17)>

BDS (9.55)> C3 (7.50). The lag days of BDS, C3, and PW exhibited a

unimodal distribution ((Supplementary Figure S4F, H, I)), with the

highest proportion of area having a lag of 7 days (accounting for

31.25%, 48.13%, and 27.96% respectively). The proportions of area

with lag days in the 0 to 9 range are 77.85% for BDS, 89.63% for C3,

and 58.68% for PW. However, the lag ranges for C3A and SVL are

relatively evenly distributed within 0 to 32 days (Supplementary

Figures S4G, J), with the maximum area proportion corresponding

to any specific lag day not exceeding 20%. Additionally, for C3A

and SVL, which are widely distributed in SCRYR, the lag days are

greater in the SCR region compared to the SYR region

(Supplementary Figures S4B, E). The average lag days of NEP

with Pre across different PFTs were ranked as follows: C3A (39.63)>

SVL (39.43)> PW (32.63)> BDS (31.12)> C3 (25.04). The lag days of

NEP with Pre were distributed within the 34 to 48 range

(Supplementary Figure S5). The area proportions within this

range were 61.99% for BDS, 85.72% for C3A, 46.26% for C3,

68.09% for PW, and 88.78% for SVL. The average lag days

between NPP and SR across different PFTs were all around 60 days.
4 Discussion

4.1 Spatiotemporal dynamics of NPP
and NEP

NPP primarily focuses on plant-level productivity and carbon

exchange (Jiang et al., 2020; Lyu et al., 2023; Jia et al., 2024), while

NEP considers carbon exchange at the entire ecosystem level,

including respiration from all biological components and other

related biochemical processes (Yu, 2020; Lyu et al., 2023; Zhang

et al., 2023a). Therefore, we analyzed the carbon sink capacity of the

SCRYR region from both the plant and ecosystem levels.

NPP as the key indicator of plant growth and organic matter

accumulation (Zhu et al., 2023; Jia et al., 2024), reflects how much
FIGURE 10

Time lags at which there was maximum (minimum) PCC between the NEP and Tem (A), Pre (B), and minimum PCC between the NEP and SR (C);
histogram of time lags between the NEP and Tem (D), Pre (E), and SR (F).
TABLE 3 Pearson correlation between lag effects and latitude,
longitude, elevation.

Longitude Latitude Elevation

Lag_ NPP& Tem -0.45 0.07 0.30

Lag_ NPP& Pre -0.10 -0.13 0.04

Lag_ NPP& SR -0.27 0.08 0.24

Lag_ NEP& Tem -0.39 -0.26 0.38

Lag_ NEP& Pre -0.37 -0.10 0.41

Lag_ NEP& SR 0.24 0.40 -0.36
P< 0.01; Lag_ NPP& Tem represented the lag days of NPP and Tem; Lag_ NPP& Pre
represented the lag days of NPP and Pre; Lag_ NPP& SR represented the lag days of NPP and
SR; Lag_ NEP& Tem represented the lag days of NEP and Tem; Lag_ NEP& Pre represented
the lag days of NEP and Pre; Lag_ NEP& SR represented the lag days of NEP and SR; the
same below.
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energy the ecosystem can provide to other parts of the food chain,

such as animals and microorganisms (Yang et al., 2020; Wang et al.,

2023b). The reasons for the significant spatial variation in the

annual average NPP in the SCRYR region are multifaceted. NPP

in SCRYR is increasing spatially from northwest to southeast, with a

mean NPP value range of -2.60 to 799.60 g C·m−2·a−1 during 2015 to

2020 (Figure 4A). This variation aligned with the spatial patterns of

precipitation and temperature changes, yet contrasted with the

variation in SR (Supplementary Figure S7), in agreement with the

findings of Zhang et al. (2014); Jiang et al. (2020), and Liu et al.

(2023a). In alpine grassland regions, temperature directly enhances

photosynthesis (leading to increased vegetation productivity), while

increased precipitation provides more available water for vegetation

(Guo et al., 2020). In contrast, high radiation intensity often

accompanies evapotranspiration from vegetation and soil, thereby

reducing the available water for vegetation (Long et al., 2024).

Additionally, the NPP of different PFTs exhibited significant

variability on a monthly scale (Figure 6), and these changes in

NPP with latitude, longitude, and elevation exhibited co-variability

with vegetation distribution (Zhang et al., 2014, 2021).

This study estimated NEP using a model of the relationship

between NPP and NEP that has been widely utilized in previous

research (Yu, 2020; Lyu et al., 2023). The variation patterns of NEP,

whether in terms of spatial distribution (Figure 4), temporal

dynamics (Figure 5), or changes across different PFTs (Figure 6),

showed a high degree of similarity with those of NPP. This indicates

that the organic matter accumulation capacity at the plant level in

the SCRYR region largely determines its carbon sink capacity at the

ecosystem level. The high degree of synchronicity between NPP and

NEP across spatial and temporal scales indirectly confirms that

most of the study area comprises mature and stable ecosystems with

minimal human interference (Liu et al., 2024). This synchronicity

reflects the tight coupling among ecosystem components and their

coordinated response to external changes (Schmitz et al., 2003;

Jones and Driscoll, 2022).
4.2 Indications of time-lag effects

The productivity and carbon sink capacity within the study area

reached its maximum in August (Figure 5), both at the vegetation

level (as indicated by NPP) and at the ecosystem level (as indicated
Frontiers in Plant Science
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by NEP). This phenomenon is closely linked to the optimal climatic

conditions present within the study area (Wang et al., 2020), the

phenological stages of vegetation (Zhang et al., 2018), the peak in

photosynthetic activity (Liu et al., 2023c), and the stabilization of

ecosystem respiration processes, which encompass both plant and

soil respiration (Liu et al., 2023b). Numerous studies have shown

that meteorological factors are the dominant drivers of these

phenomena in alpine regions (Chen et al., 2020b; Wang et al.,

2020). As shown in Figure 5, the peak in productivity and carbon

sink capacity at both the vegetation and ecosystem levels had the

shortest lag with temperature (less than one month), followed by

precipitation, and had the longest lag with solar radiation

(approximately three months). This is generally consistent with

the findings of Hossain et al. (2021) and Li et al. (2023) in alpine

grassland regions.

In past studies on the lag effects of meteorological factors on

ecosystem vegetation productivity (or carbon sink capacity)

primarily employed simple correlation analysis methods (e.g.

Pearson correlation analysis or linear correlation analysis.) (Lyu

et al., 2023; Tian et al., 2023; Huang et al., 2024; Jia et al., 2024), and

without accounting for the multi-collinearity between different

meteorological factors and the control of confounding variables.

To eliminate the complex interactions and dependencies among

independent variables and to reveal the true relationships between

NPP (or NEP) and meteorological factors, this study employed

partial correlation coefficients. This method was used to reflect the

driving relationship of meteorological factors on NPP (or NEP).

After applying the time lag treatment, the absolute PCC values

between meteorological factors and NPP (or NEP) increased to

varying degrees. This is primarily related to the differences in

sensitivity to meteorological factors among different PFTs (Liu

et al., 2015). After applying the time lag treatment to the

meteorological factors, the variability of PCC values among

different PFTs increased, particularly when analyzing the partial

correlation between carbon sink capacity and temperature, as well

as between carbon sink capacity and solar radiation from an

ecosystem perspective. The ranking of PCC values for different

PFTs indicates their correlation with various meteorological factors

and their sensitivity to changes (Table 2) (Liu et al., 2015).

Therefore, when analyzing solely from the vegetation level, the

differences in the sensitivity to changes in meteorological factors

(Tem, Pre, and SR) for the vegetation productivity (NPP) of

different PFTs are not significant. However, from an ecosystem

perspective, the sensitivity of ecosystem carbon sink capacity (NEP)

to meteorological factors (Tem and SR) under different PFTs are

ranked as follows: SVL > C3A > PW > BDS > C3. This indicates that

the differences in sensitivity are not due to the vegetation itself, but

rather to the variations in the ecosystem environments dominated

by different PFTs. This is related to differences in ecosystem

structure and function among different PFTs. For instance,

ecosystems with deeper root systems and higher soil organic

matter content tend to exhibit greater resistance to short-term

climate variations (Jackson et al., 1996; Jobbágy and Jackson,

2000), which explained why sparsely vegetated lands (SVL) are

the most sensitive to changes in meteorological factors.
TABLE 4 Average lag days of NPP (NEP) with meteorological factors
across different PFTs.

BDS C3A C3 PW SVL

Lag_ NPP& Tem 6.66 9.83 5.65 11.25 10.29

Lag_ NPP& Pre 15.07 18.46 21.90 17.39 20.34

Lag_ NPP& SR 58.70 60.80 57.60 61.93 58.86

Lag_ NEP& Tem 9.55 13.70 7.50 12.17 17.19

Lag_ NEP& Pre 31.12 39.63 25.04 32.63 39.43

Lag_ NEP& SR 32.05 25.03 43.47 31.42 14.12
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4.3 Spatial variations in time-lag effects

The lag between Tem and NPP is primarily related to soil

temperature and nutrient availability (Braswell et al., 1997; Kong

et al., 2020). In addition to these factors, the lag between Tem and

NEP also involved soil microbial respiration and organic matter

decomposition (Braswell et al., 1997; Liu et al., 2022). The study

results indicate that the lag effects of both NPP and NEP with

temperature are significantly negatively correlated with longitude

and significantly positively correlated with elevation (Table 3). Most

areas of the northwestern SCR, characterized by higher elevations,

vegetation growth exhibits a lag of more than 20 days relative to

temperature changes, while the carbon sink response of the

ecosystem lags by more than 15 days. In contrast, in the lower

elevation eastern SYR region, both vegetation growth and the

ecosystem’s carbon sink lag behind temperature changes by less

than 10 days. This is closely related to the regional characteristics of

the study area (with relatively high elevations and lower

temperatures in the western SCRYR region). The slower warming

rate in these areas means that it takes longer for plants to transition

from dormancy to active growth (Zheng et al., 2021; Rathore et al.,

2022). Plants in high-elevation regions are typically adapted to cold

environments, exhibiting traits such as slower growth rates, shorter

growing seasons, and lower metabolic rates (Gale, 2004; Kumar and

Vats, 2017; Kumar et al., 2023). Additionally, in the high- elevation

regions of the western part of the study area, the lag time of NEP

relative to NPP in response to temperature is shorter. This suggests

that ecosystem productivity is more sensitive to temperature

variations than vegetation productivity. For instance, processes

such as soil microbial activity and associated biochemical

reactions exhibit a more rapid response to temperature changes

compared to vegetation (Zifcakova, 2020; Wang et al., 2021a).

The lag effect between NPP and Pre indicated the temporal

delay between precipitation events and the subsequent availability

of water to plant roots, representing the time required for water to

percolate and reach the root zone (Jobbágy et al., 2002; Kong et al.,

2020). Furthermore, the lag effect between NEP and Pre

encompasses the additional delay associated with soil microbial

responses, such as respiration and decomposition, to the infiltration

of precipitation into the soil (Zhang et al., 2013; Wang et al., 2023a).

On a temporal scale, although the lag range of NPP with Pre

(Figure 9E, 0 to 60 days) was longer compared to the lag range of

NEP with Pre (Figure 10E, 0 to 48 days), the spatial extent of the

long lag effect between NEP and Pre was more widespread.

Specifically, the lag time of NEP with Pre exceeded 30 days in

80% of the study area (Figure 10B), encompassing nearly the entire

SCR region and much of the SYR region. In contrast, the lag time of

NPP with Pre exceeding 30 days only covers 25% of the area, mainly

concentrated in the northwestern part of the SCR region

(Figure 9B). The reasons for this phenomenon are twofold. First,

there is a precipitation gradient across the study area

(Supplementary Figure S7B), increasing from the northwest to the

southeast. Second, the northwestern edge of the SCR region is

characterized by higher elevations, lower vegetation density (with a

higher proportion of SVL), poor soil quality, and slower infiltration
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rates (Chen et al., 2020a). These factors make it more challenging

for plant roots to access water (Kong et al., 2020), thereby

contributing to the concentration of the long lag effect between

NPP and Pre in this region. The broader distribution of the long lag

effect between NEP and Pre, as observed, aligns closely with regions

above 4500 meters in elevation (as indicated by the correlation

coefficients in Table 3). This suggests that, in comparison to simpler

vegetation systems, the complex ecosystems at high elevations are

less responsive to changes in Pre concerning carbon sequestration

(or carbon emissions). This is related to the limitations that low

temperatures in high- elevation areas impose on microbial activity

(Wang et al., 2024). Even with changes in precipitation, the

response of soil microbial activity is relatively slow, resulting in a

lower sensitivity of ecosystem carbon sequestration to precipitation

changes (Zeng et al., 2022; Wang et al., 2024).

The lag effect between NPP and SR indicated a delayed response

of plants to changes in solar radiation, affecting photosynthetic

efficiency and carbon fixation processes (Li et al., 2023; Jia et al.,

2024). This includes the adjustment of photosynthesis, biomass

accumulation processes, seasonal variations, and non-light-limiting

factors within the ecosystem (Buermann et al., 2018; Li et al., 2023).

Compared to other meteorological factors, the lag effect of NPP in

response to SR is the longest, with lag times reaching around 60

days within the study area, which is consistent with results from

other studies conducted in alpine grassland regions (Li et al., 2023).

Furthermore, this long lag effect was minimally influenced by

spatial factors (Table 3) and PFTs (Table 4). This suggests that

precipitation and temperature are the primary meteorological

factors limiting NPP, rather than solar radiation. Even if solar

radiation increases, improvements in NPP may be limited if other

factors do not improve, especially in areas with low temperatures,

arid conditions, or poor soil quality (Knapp et al., 2014). The study

found that the lag effect between NEP and SR exhibited a bimodal

pattern. Areas with short lag effects (less than 10 days) closely

overlap with carbon source regions (NEP <0), while areas with long

lag effects (over 55 days) closely overlap with carbon sink regions

(NEP > 0). In carbon source regions with low vegetation cover, low

biomass, and high rates of organic matter decomposition in the soil,

ecosystems are typically in a state of carbon emission (Wu et al.,

2022; Zeng et al., 2023). Soil respiration and organic matter

decomposition respond quickly to environmental changes, and

microbial activity can react to changes in photosynthetic energy

within a short time frame (Wu et al., 2022; Ma et al., 2024; Zhao

et al., 2024). Carbon sink regions typically have higher vegetation

cover and biomass (Wu et al., 2022; Zhao et al., 2024) result in a

time-lag effect between NEP and SR that mainly depends on the lag

time of vegetation response to SR (i.e., the long time-lag effect

between NPP and SR).
4.4 PFTs variations in time-lag effects

Different PFTs exhibit substantial variations in the lag effects of

NPP and NEP in response to meteorological factors due to

differences in their physiological characteristics, as well as
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associated variations in soil types and microbial communities

(Weng et al., 2021; Koranda et al., 2023). Aside from the lag

effect between NPP and SR, which did not show significant

differences among different PFTs, the lag effects of NPP (or NEP)

in response to other meteorological factors exhibited noticeable

variations across different PFTs (Table 4). The primary reasons for

this outcome are twofold. Firstly, the sensitivity of NPP (or NEP) to

changes in meteorological factors varies across different PFTs (as

detailed in Section 4.1). On the other hand, we found that this is also

closely related to the spatial distribution of vegetation. The more

concentrated the vegetation distribution within the study area, the

more similar the lag effects of NPP (or NEP) with meteorological

factors. Conversely, the more dispersed the vegetation distribution,

the greater the differences in lag effects. For example, the lag time of

NPP for C3A with Tem is within 10 days in the SYR region, while it

exceeds 20 days in the SCR region. Similar patterns are observed for

other PFTs with different meteorological factors. This indicated that

different PFTs and their respective environments exhibited

corresponding adaptations to changes in meteorological factors

(Wang and Ni, 2005; Rao et al., 2024). The consistent impact of

regional microclimatic conditions (especially temperature and

precipitation) on vegetation within the area is greater than the

differences in physiological characteristics of the plants themselves

(Jones, 1993; Pincebourde et al., 2016).
5 Conclusions

This study highlighted the significant spatiotemporal dynamics

of NPP and NEP within the SCRYR region, both at the vegetation

level and the broader ecosystem level. It revealed complex

interactions with meteorological factors such as temperature,

precipitation, and solar radiation. The findings underscore the

distinct responses of different PFTs to these factors, influenced

by both physiological characteristics and environmental conditions.

Our analysis demonstrates that, while solar radiation exerts

the longest lag effect on NPP, temperature and precipitation are

the primary drivers of carbon sink capacity, as evidenced by the

pronounced sensitivity of NEP and NPP to these variables. The

observed lag effects, particularly the bimodal patterns between NEP

and SR, emphasize the differential carbon dynamics across regions,

with shorter lags corresponding to carbon source areas and longer

lags to carbon sink areas.

The study also identified that ecosystem responses to climatic

changes are more heavily influenced by regional microclimatic

conditions than by the physiological traits of the vegetation alone.

This is particularly evident in high- elevation areas where the slower

warming rates and unique environmental conditions lead to distinct

lag responses. The implications of these findings are critical for

understanding the carbon dynamics in alpine ecosystems and can

inform future conservation and management strategies aimed at

mitigating climate change impacts. Overall, our results suggest that

effective ecosystem management must consider both the immediate

and lagged responses of different PFTs to changing meteorological

conditions, particularly in regions with varied microclimatic and

environmental contexts.
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