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Rice is an important part of the food supply, its different varieties in terms of

quality, flavor, nutritional value, and other aspects of the differences, directly

affect the subsequent yield and economic benefits. However, traditional rice

identification methods are time-consuming, inefficient, and prone to damage.

For this reason, this study proposes a deep learning-basedmethod to classify and

identify rice with different flavors in a fast and non-destructive way. In this

experiment, 19 categories of japonica rice seeds were selected, and a total of

36735 images were finally obtained. The lightweight network High Precision

FasterNet (HPFasterNet) proposed in this study combines the Ghost bottleneck

and FasterNet_T0 and introduces group convolution to compare the model

performance. The results show that HPFasterNet has the highest classification

accuracy of 92%, which is 5.22% better than the original model FasterNet_T0,

and the number of parameters and computation is significantly reduced

compared to the original model, which is more suitable for resource-limited

environments. Comparison with three classical models and three lightweight

models shows that HPFasterNet exhibits a more comprehensive and integrated

performance. Meanwhile, in this study, HPFasterNet was used to test rice with

different flavors, and the accuracy reached 98.98%. The experimental results

show that the network model proposed in this study can be used to provide

auxiliary experiments for rice breeding and can also be applied to consumer and

food industries.
KEYWORDS

rice seed classification, japonica rice, deep learning, different flavored rice,
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1 Introduction

As the staple food for nearly half of the world’s population, rice

provides a rich source of nutrients (Verma and Srivastav, 2020), and its

yield and quality are important for global food security, soil

conservation, and genetic diversity (Verma et al., 2021). There are

significant differences in the quality of different varieties of rice, and

these differences are mainly affected by natural factors such as climate,

soil, and water, as well as by human factors such as planting technology

and variety selection (Lu et al., 2019). Generally speaking, rice with

good quality is more likely to be favored by the market, thus bringing

higher economic benefits (Creppy et al., 2024). In many countries, the

production and sale of seeds have been commercialized, with huge

economic profits lurking (Qaim, 2020). Poor-quality rice is often

exploited by unscrupulous traders to counterfeit high-quality varieties

on the market for higher profits. However, traditional methods of rice

variety identification are often time-consuming, expensive, and usually

only available for small batches (Koklu et al., 2021a). Computer vision

and deep learning are popular for being non-contact, non-destructive,

and inexpensive, which can automatically extract the features of rice

images, quickly process a large amount of data, and realize accurate

classification through algorithmic models, which significantly improves

the classification efficiency and accuracy (Zareiforoush et al., 2015).

Therefore, the appearance characteristics of rice seeds are crucial to the

accuracy of computer vision recognition (Patrıćio and Rieder, 2018).

In the past, many scholars have conducted related research.

Yufei Ge’s team proposed a real publicly available benchmark

dataset for the classification of rice seed hyper-spectral imaging

systems. Meanwhile, they proposed a difficulty-weighted k-nearest

neighbor-based algorithm, IDKNN, for the hyperspectral

classification of rice seeds and achieved very excellent results

(Ge et al., 2024). Baichuan Jin’s team, on the other hand, utilized

NIR hyperspectral imaging in combination with deep learning to

successfully differentiate between different varieties of rice seeds, in

particular, they employed NIR-HSI with LeNet, GoogLeNet and

residual network (ResNet) models for recognition, among which,

the ResNet model has the best classification effect, and the

classification accuracy of the test set reaches 86.08% (Jin et al.,

2022). Deepa Joshi’s team achieved the label-free and lossless

classification of rice seeds by deep neural network and optical

coherence tomography with a good classification effect (Joshi

et al., 2021). Hengnian Qi’s team utilized near-infrared

hyperspectral imaging for the detection of rice seed viability and

combined it with a transfer learning method to achieve significant

results. They used the CNN model of Yongyou 12 constructed with

MixStyle migration knowledge to classify the vigor of Yongyou

1540, Su Xiang Japonica 100, and Long Japonica 1212, and the

accuracy reached 90.00%, 80.33%, and 85.00%, respectively, which

was an excellent performance (Qi et al., 2023). Jinfeng Zhao’s team

utilized the rotationally aware deep learning model YOLO-rot to

measure the size of rice seeds and achieved remarkable results

(Zhao et al., 2023). Chunguang Bi and other scholars proposed a

seed classification model based on the Swin Transformer, which

utilizes the self-attention mechanism to effectively extract image

information, focuses on feature attention and multi-scale feature

fusion learning, and demonstrates accurate and efficient ability to
Frontiers in Plant Science 02
classify seeds. The MFSwin Transformer model achieved a

remarkable average accuracy, recall, and F1 score of 96.53%,

96.46%, and 96.47%, respectively, on the test set with a parameter

count of 12.83 M (Bi et al., 2022). Murat Koklu’s team developed a

non-destructive model to improve the classification success rate by

utilizing images of rice varieties for classification. In this model, they

extracted 106 morphological and color features from rice images as

inputs to artificial neural networks and DNNs and successfully

performed classification (Koklu et al., 2021b). Helong Yu (Yu et al.,

2024) proposed an improved residual network method based on the

characteristics of rice to effectively classify rice seeds of the same

variety grown in different regions, and the accuracy of the proposed

model reaches 95.13%, which is an improvement of 7.56% to the

original model and achieves very good results. Hongwei Li (Li et al.,

2024) proposed and disclosed a dataset of dragon fruit, which was

captured under different conditions, including multiple angles,

different lighting conditions, and different weather conditions.

The proposed enhanced YOLOv5s model exhibits an impressive

97.80% average accuracy and achieves an impressive 139 frames per

second (FPS) in a GPU running environment. Compared to current

state-of-the-art models, the improved YOLOv5 performs well and

demonstrates the preferred level of overall performance. Mingyou

Chen (Chen et al., 2024) proposed a set of vision algorithms for

motion destination estimation, real-time self-localization and

dynamic harvesting. In addition, a solid coordination mechanism

for continuous motion and harvesting behavior is established. Each

method has unique advantages, such as improving accuracy,

adapting to different conditions, improving harvesting efficiency,

enabling autonomous continuous operation of the robot, and

validating the rationality of the methods in comprehensive field

trials. To sum up, research in hyperspectral and near-infrared

spectroscopy is costly and inefficient, making it difficult to realize

large-scale applications. In addition, the performance of related

studies based on deep learning models may decline when

confronted with more rice varieties, and numerous scholars may

not be able to balance the accuracy of the model and the parameters

of the model itself.

In response to the above problem, this study proposes a fast,

lossless, and inexpensive lightweight network to categorize different

varieties of rice seeds. In the area of deep learning, standard

convolution (Conv) has strong expressive ability and accuracy, and

its strong expressive ability and accuracy are its core advantages

(Cong and Zhou, 2023). However, since each convolutional kernel

needs to learn multiple weight values and there is no shared weight

between different convolutional kernels, the number of parameters of

Conv is usually large (Tulbure et al., 2022). In this study, FasterNet

(Chen et al., 2023) is chosen as an improved model mainly because

FasterNet significantly reduces redundant computations andmemory

accesses by introducing the new technique of partial convolution

(PConv), which makes FasterNet run very fast on a wide range of

devices while maintaining a high level of accuracy. The Ghost module

in GhostNet (Han et al., 2020)generates a large number of ghost

feature maps through cheap operations and then undergoes a small

number of conventional convolutions, thus enlarging the width of the

network and improving the feature representation capability without

increasing the computational effort.
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Fron
1. The research content and methods of this paper include:

Nineteen varieties of flavored rice seeds were collected

and their RGB images were acquired. The images of

individual rice seeds were obtained by image segmentation.

2. Combining Ghost bottleneck (Han et al., 2020) with

FasterNet (Chen et al., 2023) while introducing group

convolution to get HPFasterNet. A learning rate dynamic

adjustment strategy is introduced during model training.

Compared with the original model, HPFasterNet is more

accurate, more efficient, and less weighted.

3. Evaluate the classification performance of the model and

compare it with ResNet50 (He et al., 2016; Xie et al., 2017),

ConvNeXt_T (Liu et al., 2022), RepVggNet_A1 (Ding et al.,

2021), GhostNet (Han et al., 2020), ShuffleNet (Zhang

et al., 2018) and MobileNetV2 (Sandler et al., 2018)

models, respectively.

4. The changes in the results before and after the improvement

were analyzed and the test results of four different flavored

rice were analyzed using the improved model.
2 Materials and methods

2.1 Sample collection and preprocessing

All samples in this study were obtained from the Rice Research

Institute of Jilin Academy of Agricultural Sciences, China. The sample

for the study consisted of 19 varieties of japonica rice. The imaging
tiers in Plant Science 03
system is shown in Figure 1A and consists of a NikonD7100 camera

and a lens, a light control system controlling two lights, and at the

bottom, a carrier for the seeds, which is wrapped in a black light-

absorbing cloth and then shot vertically by the camera. During data

collection, 200 rice seeds of the same variety were first randomly

selected and arranged in a 10 × 20 grinding apparatus. Then, without

seeds overlapping or sticking, they were inverted on a black cloth and

their RGB images were acquired by the camera.

The process of data preprocessing is shown in Figure 1B. A

threshold segmentation method (Al-Amri and Kalyankar, 2010), is

used to select an appropriate threshold value to divide the pixels in

the image into two categories (target and background), and in this

study, the threshold value is set to 0.3, and all the values below 0.3

are set to 0 (black), and all the values above 0.3 are set to 1 (white),

and the binary image is obtained based on the grayscale image. The

binary image is then multiplied pixel-by-pixel with the original

image so that only pixels in the mask image with a value of 1

(representing the target region) are preserved in the original image,

while pixels with a value of 0 (representing the background region)

are set to black. The edges of the rice seeds are then extracted based

on the pixel distributions of the image with the background

removed by utilizing the contour extraction algorithm, thus

extracting the target region. As shown in Figure 1C, three target

images are displayed for each variety, which is divided into four

different flavors, and it can be seen that different varieties of rice

seeds have very diverse morphologies. In this experiment, useless

images need to be eliminated after photographing the seed grains,

such as those that are blurred, damaged, or do not meet the

experimental requirements at all, which may interfere with the
FIGURE 1

Schematic diagram of the data acquisition process, (A) is the schematic diagram of the imaging system, (B) is the schematic diagram of the process
of threshold segmentation, and (C) is the demonstration of the effect of image segmentation.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1502631
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yu et al. 10.3389/fpls.2024.1502631
training and evaluation process of the model and cause the model to

learn wrong or irrelevant features.

As shown in Table 1, a total of 36735 images are segmented, and

then the training set, validation set, and test set are randomly

divided according to the ratio of 6:2:2. That is, 22035 images are

used for training, 7348 images are used for validation, 7352 images

are used for testing, and labeled accordingly.
2.2 Model building

2.2.1 The three convolutions used for
the experiment

As shown in Figure 2 is a schematic diagram of the

three convolutions used in this study, namely Standard

convolution(Conv), Depthwise Convolution(DWConv) or Group

Convolution (GConv) (Cohen and Welling, 2016), and Partial

Convolution(PConv) (Chen et al., 2023).

Depthwise Convolution/Group Convolution (DWConv/

GConv) compensates for some of the drawbacks of Conv by

drastically reducing the number of parameters. Since the

convolution kernel of DWConv is only convolved for a single

channel and does not share weights between different channels,

the number of parameters is usually much smaller than that of

Conv. This helps to reduce the risk of overfitting and makes the
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model easier to train. Due to the small number of parameters,

DWConv is also faster to compute, so it can build lighter-weight

neural network models and reduce the consumption of storage and

computational resources, making it suitable for use in scenarios

with limited computational resources, such as mobile devices

or embedded systems. Meanwhile, since DWConv only

performs spatial convolution independently for each channel, its

representation ability may be weaker compared to Conv.

Partial Convolution (PConv) is from the model FasterNet, which

argues that the main cause of high computation is frequent memory

accesses. Figure 2 expresses the design of PConv, which exploits

redundancy in feature mapping and systematically applies the Conv

on only a portion of the input channels, while the rest of the channels

are left unchanged. In essence, PConv has lower FLOPs than Conv

and higher FLOPs than DWConv. In other words, PConv makes

better use of the computational power on the device, while PConv is

also very efficient in extracting spatial features.

The parameters and FLOPs of these three convolutions are

shown in Table 2, assuming that the number of input and output

channels are C_ in and C_ out , respectively, K
2 is the kernel size of the

convolution, G is the size of the group in DWConv/Gconv, and the

size of the input data is H×W. Cp is the number of channels used in

PConv for spatial feature extraction, and the computation in PConv

is only 1/16 of that of Conv in the case of a typical partial ratio of

r= Cp/C_ in =1/4.
TABLE 1 Profile of samples.

Label Variety Type of Taste Training Set Validation Set Test Set

1 H005 Black flavored rice 1167 389 389

2 H008 Common rice 1171 391 391

3 H009 Common rice 1167 389 390

4 H024 White flavored rice 1167 389 389

5 H029 Common rice 1191 397 397

6 H030 Common rice 1192 398 398

7 H032 Waxy rice 1169 390 389

8 H103 Common rice 1176 392 393

9 H105 Common rice 1191 397 397

10 H109 White flavored rice 1059 353 353

11 H110 White flavored rice 1106 369 368

12 H113 White flavored rice 1045 348 349

13 H114 White flavored rice 1185 395 396

14 H156 Black flavored rice 1165 389 389

15 H179 Common rice 1143 381 381

16 H184 White flavored rice 1192 398 398

17 H186 White flavored rice 1181 394 394

18 H230 White flavored rice 1170 390 391

19 H242 Common rice 1198 399 400

/ Total / 22035 7348 7352
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2.2.2 Ghost bottleneck
To improve the performance of the model, Ghost bottleneck

was introduced in this experiment. The output feature maps of

convolutional layers often contain much redundancy, and some of

them could be similar to each other. The authors of GhostNet (Han

et al., 2020) point out that it is unnecessary to generate these

redundant feature maps one by one with a large number of FLOPs

and parameters. Suppose that the output feature maps are “ghosts”

of a handful of intrinsic feature maps with some cheap

transformations. These intrinsic feature maps are often of smaller

size and produced by ordinary convolution filters.

Specifically, given the input data X ∈ Rc�h�w, where c is the

number of input channels and h and w are the height and width of

the input data,m intrinsic feature maps Y ∈ Rh0�w0�m are generated

using a primary convolution:

Y = X*f (1)
Frontiers in Plant Science 05
where f ∈ Rc�k�k�m is the utilized filters, m is smaller than the

output feature map with n channels, and ∗ is the convolution

operation. In addition, h0 and w0 are the height and width of the

output data, and k� k is the kernel size of convolution filters f. The

hyper-parameters such as filter size, stride, and padding, are

the same as those in the ordinary convolution to keep the spatial

size (h0 and w 0) of the output feature maps consistently. To further

obtain the desired n feature maps, GhostNet proposes to apply a

series of cheap linear operations on each intrinsic feature in Y to

generate s ghost features according to the following function:

yij = Fi,j(y
0
i),                 ∀     i = 1,…,m,     j = 1,…, s (2)

where y
0
i is the i-th intrinsic feature map in Y, Fi,j in the above

function is the j-th (except the last one) linear operation for

generating the j-th ghost feature map yij, that is to say, y
0
i can have

one or more ghost feature maps. The lastFi,s is the identity mapping

for preserving the intrinsic feature maps as shown in Figure 3. By

utilizing Equation 2, we can obtain n =m · s feature maps Y = [y11, y12
, · · ·, yms] as the output data of a Ghost module as shown in Figure 3.

Note that the linear operations F operate on each channel whose

computational cost is much less than the ordinary convolution.
2.2.3 GeLU activation function and ReLU
activation function

The ReLU activation function is a simple and commonly used

activation function that sets negative inputs to zero while positive

inputs are held constant. Its formula is as follows:
FIGURE 2

Schematic representation of the three convolutions in this study.
TABLE 2 Comparison of parameters and FLOPs for Conv, DWConv/
GConv, and PConv.

Name Parameters FLOPs

Conv K2 � C_ in � C_ out C_ in � K2 � H �W � C_ out

DWConv/GConv
K2 � C_ in

G
� C_ out K2 � C_ in

G
� H �W � C_ out

PConv K2 � C2
p K2 �H �W � C2

p
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f (x) =
x, x ≥ 0

0, x < 0

(
(3)

The ReLU activation function introduces a nonlinear property

that allows the neural network to learn nonlinear relationships and

thus better adapt to complex data patterns. The computation of the

ReLU function is very simple, it only needs to compare the inputs

and keep the positive values without complex mathematical

operations, thus making it suitable for large-scale neural

networks. Therefore, the computation is fast and suitable for

large-scale neural networks. During training, the ReLU activation

function can activate one part of the neurons and set the other part

to zero, this sparsity helps to reduce the risk of overfitting and

improve the generalization ability of the model.

The GeLU activation function is a smooth and approximate

ReLU activation function that adds the properties of a Gaussian

error function to ReLU. Its formula is as follows:

f (x) = 0:5� x � 1 + tanh (
ffiffiffi
2
p

q
�
�
x + 0:044715x3

��� �
(4)

The Tanh function is publicized as follows:

f (x) = ex−e−x

ex+e−x (5)

The GeLU activation function is a smooth curve with continuity

and conductivity, which makes it easier to optimize the neural

network during training. In most cases, the GeLU activation

function is very close to the ReLU function, so it can retain most

of the advantages of ReLU while having smoother properties. The

GeLU activation function performs well with noisy data, and its

properties based on the Gaussian error function can better deal with

the uncertainty in the distribution of the data.

The ReLU activation function is simple and efficient for most

deep learning tasks, while the GeLU activation function provides

smoother properties while retaining the benefits of ReLU for

scenarios that require better robustness. The curves of the ReLU
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activation function and the GeLU activation function, as well as a

comparison of the curves of their derivatives, are shown in Figure 4.
2.2.4 Cross Entropy Loss
The loss function used in this study is Cross Entropy Loss

(Zadeh et al., 2020), Cross Entropy Loss is robust to the probability

distribution predicted by the model. Even if the model has a small

deviation in the predicted probability of some categories, it will not

affect the overall loss too much. This makes the model more stable

during training and less susceptible to noise or outliers. The binary

classification Cross Entropy Loss is shown below:

L =  −½y log p + (1 − y) log (1 − p)� (6)

Where y denotes the sample label and p denotes the probability

that the corresponding sample label is predicted to be positive. In

the multiclassification task, each sample may have more than one

possible category, and the model output is the probability

distribution of each sample belonging to each category, Cross

Entropy Loss can measure the distance between the probability

distribution of the model output and the true labels, to guide the

model optimization. The multicategory Cross Entropy Loss formula

is shown below:

L =  −o
M

c=1
yc log pc (7)

where pc  denotes the probability that the label is predicted to

be c.

2.2.5 FasterNet_T0 and HPFasterNet
The improvement process of the model is shown in Figure 5. To

improve the performance of the model and reduce the computation,

the main purpose of this study is to replace the 1×1Conv used for

upscaling and downscaling with 3×3GConv in the residual structure

in FasterNet is to increase the nonlinearity while expanding the
FIGURE 3

The structure of the Ghost bottleneck with Stride=1 and the structure of the Ghost module inside it.
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receptive field, reducing the number of parameters, and improving

the computational efficiency. The 3×3GConv has a higher degree of

nonlinearity compared to the 1×1Conv has a higher degree of

nonlinearity, which helps the model to learn more complex features

and patterns. The 3×3 convolutional kernel has a larger receptive

field than the 1×1 convolutional kernel, which means it can capture

a wider range of information. In deep neural networks, the size of

the receptive field is critical for capturing spatial relationships in

an image.

At the same time, this study synthesizes the advantages of

FasterNet and GhostNet, and introduces the Ghost bottleneck into

the residual structure, so that more and more complex features are

extracted through the Ghost bottleneck for the channels that have

been amplified. From the overall architecture of the model, it can be

seen that the HPFasterNet block is structured as a double residual

structure, and the residual block is still nested within the residual

structure, and this structure makes the model much more accurate.
Frontiers in Plant Science 07
Although this design leads to a slight increase in the computation

and the number of parameters of the model to a certain

extent, when introduced in combination with GConv, the number

of parameters of the model will be reduced relative to the

original model.

2.2.6 Learning rate dynamic adjustment strategy
in this study

If the learning rate is set too high or too low, it can have a

significant impact on the learning process of the model (Croitoru

et al., 2024). If the learning rate is set too high, the advantage is that

the model may update the weights faster and thus explore the

possible solution space faster. But then, the disadvantage is also

obvious that the model may miss the optimal solution because the

step size is too large, leading to oscillations or even divergence

during the training process, making it difficult to converge to a

stable solution. On the contrary, if the learning rate is set too low,
FIGURE 4

(A) shows the curves of the ReLU activation function and its derivative, and (B) shows the curves of the GeLU activation function and its derivative.
FIGURE 5

The overall architecture of FasterNet, the structure of FasterNet Block, and the schematic diagram of the modified HPFasterNet Block.
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although the model can converge more stably, the speed of

convergence may be very slow, the advantage is that the model

may adjust the weights more finely to get a more accurate solution,

but the disadvantage is also obvious, the training process will

become very time-consuming, and the model may be more likely

to fall into the local optimal solution, and cannot find the global

optimal solution. Therefore, it is very important to set the

appropriate learning rate, so we choose the gradient decay

strategy to dynamically adjust the learning rate during the

training process. Its formula is as follows:

lrn = initiallr  �   d n−1
p

h i
(8)

lrn is the learning rate of the nth round of model training, init

iallr is the initial learning rate, d is the decay factor, d=0.85 in this

study, n is the current round of model training, p stands for how

many rounds decay once, p=4 in this study, n−1
p

h i
represents the

downward rounding of n−1
p , i.e., to take the largest integer that is not

larger than n−1
p integer. In this study, it is called the “8-5 Gradient”.
2.3 Evaluation indexes of model

In the field of machine learning, confusion matrices are often

used to compare the results of model classification in supervised

learning. Take the binary classification problem as an example,

define that the actual result is positive and the predicted result is

positive, denoted as TP; if the actual result is negative, the predicted

result is positive, denoted as FP; if the actual result is positive, the

predicted result is negative, denoted as FN; if the actual result is

negative, the predicted result is negative, denoted as TN.

Accuracy (Acc), Precision (P), Recall (R), and F1-score (F1) can

be computed from the data in the confusion matrix and used as

evaluation metrics for assessing the classification performance of

the model.

Accuracy is the ratio of the number of positive and negative

samples correctly predicted to the total number of samples, and its

formula is:

Acc =   TP+TN
TP+FP+FN+TN (9)

Precision is the ratio of the number of correctly predicted

positive samples to the total number of samples predicted to be

positive, and its formula is:

P =   TP
TP+FP (10)

Recall is the ratio of the number of correctly identified positive

samples to the total number of actual positive samples, and its

formula is:

R =   TP
TP+FN (11)

F1-score is the harmonic mean of precision and recall, and its

formula is:

F1 =   2TP
2TP+FP+FN (12)
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2.4 Training hyperparameter information
and experimental
environment configuration

This study provides information on the specific experimental

parameters used in training the new network model proposed in

this paper. In this study, the input size of the dataset is set to 224 ×

224, the number of training rounds is 100, the base learning rate is

set to 0.01, the Batch size is set to 64, and the optimizer uses SGD.

The experiments were deployed on a computer with Intel(R) Xeon

(R) Gold 6246R CPU (3.4GHZ) and NVIDIA Quadro RTX 8000

GPU (48GB) having Windows 10 operating system with software

configuration installed as Anaconda 3 -2021.11-windows version,

using PyCharm compiler and given Pytorch1.2.1 built-in

Python3.8.3 programming language, all the algorithms are run in

the same environment.
3 Results and discussion

3.1 Impact of learning rate dynamic
adjustment strategies on model

To improve the performance of the model, this study first used

FasterNet_T0 as the base model and optimized the parameters

during the training of the model. As shown in Figure 6A, the

trajectory of “8-5 Gradient” during the model training process is

demonstrated, with the learning rate reduced every four rounds.

Figure 6B shows that comparing “8-5 Gradient” with other

representative learning rates, the results show that “8-5 Gradient”

obtains the lowest loss and the highest accuracy, which reach 0.383

and 86.72%, respectively, ahead of the other learning rates. This

result shows that “8-5 Gradient” has good performance.

The accuracy curves of adding an 8-5 Gradient and removing

an 8-5 Gradient on the validation set are shown in Figure 6C. The

accuracy of the model with an 8-5 Gradient removed fluctuates

substantially during the training process, and the convergence and

fitting cannot be completed. The model with 8-5 Gradient added,

on the other hand, completes the convergence and fitting at the later

stage of training, and the accuracy is further improved. This result

further proves the advantage of an 8-5 Gradient.
3.2 Results of ablation experiments

This experiment delves into the multidimensional impact of model

improvement strategies on overall model performance. The first

attempt is to combine FasterNet_T0 with Ghost bottleneck, an

improvement that significantly enhances the model’s representational

capabilities, thus greatly improving the model’s accuracy from 86.78%

to 91.13%. However, this enhancement does not come without a price,

it also brings about a significant increase in computational effort,

number of parameters, parameter size, and weight size. We replace

1×1Conv with 3×3GConv in the FasterNet_T0 backbone, which
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reduces the computation by 241.729M and makes the model more

lightweight. It is worth noting that this optimization does not sacrifice

performance, but instead slightly improves the accuracy of the model.

This proves that GConv can significantly reduce the computational

load and the number of parameters while maintaining performance.

When both GConv and Ghost bottleneck are introduced, the accuracy

is drastically improved by 5.22%, while the computational load is

reduced by 90.957 M. The specific details of this improvement are

shown in Table 3, which fully demonstrates the excellence of

HPFasterNet in improving performance and reducing complexity.
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3.3 Comparative experiments with other
network models

Classical network models are popular for their high accuracy.

Lightweight models are widely used in various mobile devices and

embedded systems due to their smaller computational resource

requirements. To validate the advantages of the network model

HPFasterNet proposed in this study, three classical network models

[ResNet50 (He et al., 2016), ConvNeXt_T (Liu et al., 2022), and

RepVGGNet_A1 (Ding et al., 2021)] and three lightweight network
FIGURE 6

(A) is the trajectory of the learning rate driven by the “8-5 Gradient” during model training, (B) is the results of “8-5 Gradient” compared with other
common learning rates, and (C) is the result of comparing the accuracy curves on the validation set after adding the 8-5 gradient and removing the
8-5 gradient.
TABLE 3 Evaluation results of the model in the ablation experiment.

Model Acc
(%)

P
(Avg)
(%)

R
(Avg)
(%)

F1
(Avg) (%)

FLOPs
(M)

Total
Params (M)

Params
Size(MB)

Weight
Size(MB)

FasterNet_T0 86.78 87.12 86.86 86.92 339.389 2.649 10.1 20.3

FasterNet_T0
+Ghost bottleneck

91.13 91.24 91.22 91.18 483.758 3.291 12.55 25.4

FasterNet_T0+GConv 88.61 88.73 88.67 88.63 97.666 1.029 3.93 7.95

HPFasterNet 92.00 92.08 92.04 92.02 248.432 1.684 6.42 13.2
Bold values represent the results of the algorithmic model proposed in this study.
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models [GhostNet (Han et al., 2020), ShuffleNet (Zhang et al.,

2018), and MobileNetV2 (Sandler et al., 2018)] were compared in

this study. The results show that HPFasterNet has significant

advantages over the classical network models. The FLOPs(M) of

ResNet50, ConvNeXt_T, and RepVggNet_A1 are very large,

reaching 4131.734, 4454.781, and 3428.012, respectively, and

there is no significant advantage in recognition accuracy, reaching

90.09, 79.40, and 90.25, respectively, which are relatively

HPFasterNet is lower. And when comparing other indicators, the

classical network models all performed poorly. When comparing

lightweight network models, HPFasterNet is slightly higher than

ShuffleNet in time complexity and space complexity, but the

recognition accuracy of the network model is 2.44% higher than

ShuffleNet. Although GhostNet has lower FLOPs(M) relative to

HPFasterNet, HPFasterNet has a clear advantage in other metrics.

And when compared to MobileNetV2, HPFasterNet’s advantage is

even more pronounced, leading MobileNetV2 in all metrics. Taken

together, HPFasterNet obtains the optimal overall performance.

The specific details are shown in Table 4.

To further validate the advantages of HPFasterNet, the

precision, recall, and F1 scores of the six network models were

visually compared with HPFasterNet in this study, as shown in

Figure 7. The precision, recall, and F1-scores of the six network

models are not as good as HPFasterNet, with ConvNeXt_T having

the worst performance, with precision, recall and F1-scores of

79.49%, 79.52% and 79.3%, respectively. Overall, among the six

network models, HPFasterNet had the best recognition results.
3.4 Before and after model improvement

To evaluate the performance of the model more

comprehensively, the comparative analysis of the confusion

matrix before and after the model improvement was plotted in

this study to reflect the actual recognition of each variety by

FasterNet_T0 and HPFasterNet. As shown in Figure 8, before the

improvement, due to the limited ability of FasterNet_T0 for feature

extraction and the similarity of features among different varieties of

rice, the error of some varieties is large, such as H003 and H008,

which is easy to misclassify. While the improved model can reduce

the misclassification to a certain extent, the values on the diagonal
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line are also significantly improved with darker colors, which

indicates that the recognition rate of the model on each category

has been significantly improved. In addition, the overall structure of

the confusion matrix has become clearer, with a higher degree of

differentiation between categories. Overall, the improved model

demonstrated better performance on the classification task,

providing more reliable and accurate classification results for

related applications.

As shown in Table 5, based on the confusion matrix, a

comparison of each category before and after the improvement in

terms of precision, recall, and F1 score can be derived. The precision

before improvement varies widely between categories, and it is

worth noting that certain categories have relatively low precision.

After model improvement, the precision of all the categories is

improved, especially on the categories that had lower precision

before. For example, on H032, the accuracy before the improvement

was 70.5%, while after the improvement it increased to 85.1%. This

means that 85.1% of the samples predicted by the model as H032

belong to H032, a significant improvement over the 70.5% before

the improvement. Similarly, for each category, the recall before

improvement varies. After the model improvement, the recall of all

categories is improved, especially on the categories with lower recall

than before, the improvement is more significant. In the case of

H114, for example, the recall before improvement is 76.6%, while

after improvement it increases to 88.2%. This means that 88.2% of

all samples that belong to H114 are correctly predicted as H114 by

the model, which is a significant improvement compared to 76.6%

before the improvement. After model improvement, the F1-scores

of all categories are improved, especially on the categories with

lower F1-scores before, the improvement is more significant. In the

case of H008, for example, the F1 score before the improvement is

73.9%, while after the improvement it increases to 83.0%. This

indicates that the comprehensive performance of the model on

H008 has been effectively improved, both in terms of precision and

recall. The experiments show that after the model improvement, the

performance of all the categories is improved in terms of precision,

recall, and F1 score. This indicates that the classification ability of

the model has been effectively enhanced to better accommodate the

differences between the different categories.

The F1-score is the reconciled average of precision and recall,

which is used to comprehensively evaluate the performance of the
TABLE 4 Evaluation results of HPFasterNet in comparison with other network models.

Model Acc(%) FLOPs(M) Total Params (M) Params Size(MB) Weight Size(MB) Time/
Epochs

ResNet50 90.09 4131.734 23.547 89.82 179 112s

ConvNeXt_T 79.40 4454.781 27.813 106.16 212 141s

RepVGGNet_A1 90.25 3428.012 14.561 48.96 98.2 66s

GhostNet 89.08 154.607 3.926 14.98 30.2 61s

ShuffleNet 89.56 151.704 1.273 4.86 9.92 40s

MobileNetV2 90.53 326.295 2.248 8.58 17.4 62s

HPFasterNet 92.00 248.432 1.684 6.42 13.2 60s
Bold values represent the results of the algorithmic model proposed in this study.
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model. Before improvement, the F1-score varies as precision and recall

vary between categories. To further assess the comprehensive

performance of the model before and after the model improvement,

this study visualized and compared the model’s F1-scores in each

category, as shown in Figure 9. From the figure, it can be seen more

clearly that the F1-scores between the categories of themodel before the

improvement are more different and the model has a poorer
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recognition ability after the model improvement is completed, the

F1-scores of each category are improved, and presents a more balanced

distribution, and the differences between the categories become smaller.

This result indicates that the overall performance of the model has been

significantly improved, and the adaptability and generalization ability

of the model in each category has been enhanced. For some categories

with lower recognition accuracy before improvement (e.g., category 2,
FIGURE 8

Confusion matrix before and after model improvement, (A) is the confusion matrix of FasterNet_T0 in the test set, (B) is the confusion matrix of
HPFasterNet in the test set.
FIGURE 7

Comparison results of HPFasterNet with other network models in terms of precision, recall, and F1-score.
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category 3, category 7, and category 13), themodel gives more attention

and optimization, which results in a significant increase in their

recognition accuracy after improvement, so that the overall

performance of the model as a whole has been substantially improved.
Frontiers in Plant Science 12
Figure 10 shows the loss curve and accuracy curve on the

validation set before and after the model improvement. The

accuracy curve before model improvement still has large

fluctuations in the pre-training period, but then the growth rate

gradually slows down and stabilizes at the end of the training

period. Although a relatively stable level of accuracy can eventually

be achieved through the 8-5 Gradient model, the model still has

large fluctuations in the early stages of training, and there is an

overall risk of overfitting. In contrast, the accuracy curve of the

improved model shows a more obvious upward trend, and the

accuracy rises rapidly in the early stage of training, and then

continues to maintain a stable growth trend, eventually reaching

the highest accuracy level and stabilizing. Meanwhile, the loss curve

of the model before improvement fluctuates greatly in the early

stage of training, but gradually flattens out in the late stage of

training, indicating that the model encounters optimization

difficulties during training and the loss is difficult to be further

reduced. In addition, the higher final value of the loss curve

indicates that the model has limited fitting ability and may have

overfitting or underfitting problems, while the improved loss curve

shows a more desirable downward trend. Ultimately, the smaller the

value of the loss curve, means that the fitting ability of the model is

significantly improved and can better adapt to the training data. By

comparing the loss curves and accuracy curves before and after the
FIGURE 9

Comparison of F1-scores on each category before and after
model improvement.
TABLE 5 Analysis of results for each category before and after model improvement.

Label Variety P (%) R (%) F1 (%)

Before After Before After Before After

1 H005 96.8 98.2 93.8 97.9 95.3 98.0

2 H008 75.5 85.8 72.4 80.3 73.9 83.0

3 H009 77.2 84.8 75.4 83.1 76.3 83.9

4 H024 84.0 92.2 81.2 85.3 82.6 88.6

5 H029 84.7 93.7 91.5 92.7 88.0 93.2

6 H030 93.2 95.9 94.6 95.6 93.9 95.7

7 H032 70.5 85.1 82.7 87.5 76.1 86.3

8 H103 91.9 93.5 83.4 94.2 87.4 93.8

9 H105 96.9 98.3 97.7 99.4 97.3 98.8

10 H109 95.0 96.8 91.0 95.2 93.0 96.0

11 H110 97.0 95.7 92.3 96.3 94.6 96.0

12 H113 94.5 96.5 95.7 98.2 95.1 97.3

13 H114 74.1 80.7 76.6 88.2 75.3 84.3

14 H156 82.2 86.5 77.4 86.1 79.7 86.3

15 H179 96.0 98.0 96.2 97.5 96.1 97.7

16 H184 89.0 95.2 90.1 95.2 89.5 95.2

17 H186 87.7 90.8 82.4 91.0 85.0 90.9

18 H230 83.4 90.2 85.5 92.5 84.4 91.3

19 H242 85.7 91.8 90.4 92.7 88.0 92.2
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improvement, we can see that the optimization ability and accuracy

of the improved model have been significantly improved.
3.5 Test results of rice seeds with
different flavors

The following experiments were done to verify the effectiveness

of the network model proposed in this study for the recognition of

rice with different flavors. As shown in Figure 11, comparing the

confusion matrices of the models in the experiment, when

comparing the confusion matrices of the other six models, it can

be noticed that each model performs differently on the classification

task. Looking at the confusion matrix of HPFasterNet, we can see

that the values on the diagonal line are relatively high, which means

that the model performs well in correctly classifying flavored rice.

The higher values on the diagonal line indicate that the model has a

higher prediction accuracy for the corresponding category.

Meanwhile, relatively low values on the off-diagonal line mean

that the model misclassified samples to other categories less often.

In contrast, the confusion matrices of the other six models show

different degrees of variation. The lower values on the diagonal of

the confusion matrices of the other models relative to HPFasterNet

indicate that they are not as accurate as HPFasterNet on the

classification task. This result suggests that the improved model

has a clear advantage in classification performance.

The accuracy, precision, recall, and F1-scores of each network

model on different flavored rice were derived from the confusion

matrix, and as shown in Table 6, the accuracy, precision, recall, and

F1-scores of HPFasterNet reached 98.98%, 99.00%, 98.95%, and

98.93%, respectively. The results show that HPFasterNet
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outperforms the other six network models, and it can be

concluded that the network model proposed in this study shows

excellent performance in flavored rice recognition.
4 Conclusions

This study delves into the application of the improved

lightweight network HPFasterNet in the field of rice, especially in

classifying and recognizing rice seeds of different varieties. We make

important improvements to the traditional FasterNet_T0 model by

introducing efficient feature extraction modules Ghost bottleneck and

GConv. These innovations not only significantly improve the model’s

accuracy in classifying rice seed grains by 5.22%, but also dramatically

reduce the computational complexity and the number of parameters,

making HPFasterNet an ideal choice for resource-constrained

environments. In the comparison experiments, we selected three

classical network models and three lightweight network models as

references. Through exhaustive performance evaluation and

comparative analysis, we find that HPFasterNet demonstrates

significant advantages in several key metrics. HPFasterNet can

accurately distinguish rice seeds of different varieties, which is mainly

attributed to its powerful feature extraction capability and optimization

strategy. This feature information is fully utilized by the model, thus

achieving high-precision and fast classification recognition. The

experimental results also show that HPFasterNet can accurately

capture the subtle differences between different flavored rice, and can

accurately differentiate between different flavored rice with an accuracy

of 98.98%.

However, despite the results achieved in this study, we are aware

of some limitations. First, due to the diversity of rice varieties and
FIGURE 10

Comparison of loss curves and accuracy curves on the validation set before and after model improvement.
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the complexity of growing environments, existing feature extraction

and classification methods may not be able to fully cover all

situations. Although HPFasterNet has adopted advanced

techniques such as partial convolution (PConv) to improve

performance, more efficient network structures, such as the

introduction of attention mechanism, deformable convolution,

etc., can be further explored in the future to enhance the model’s

ability to extract features from rice seeds. To meet the real-time and

low-power requirements in practical applications, it is possible to

investigate how to further reduce the size and computational

complexity of the model with guaranteed accuracy, e.g., through

model pruning and quantization. Consider combining rice seed

classification with other related tasks (e.g., seed counting, pest and

disease detection, etc.) to improve the model’s generalization ability
FIGURE 11

Comparison of confusion matrices for different models testing different flavors of rice.
TABLE 6 Comparative experimental results of the model on
flavored rice.

Models Acc(%) P(%) R(%) F1(%)

ConvNeXt_T 91.30 91.58 91.35 91.38

GhostNet 97.08 97.13 97.05 97.05

ShuffleNet 96.44 96.45 96.48 96.45

MobileNetV2 96.70 96.70 96.70 96.68

RepVGGNet_A1 98.09 98.10 98.13 98.10

ResNet50 96.70 96.73 96.68 96.68

HPFasterNet 98.98 99.00 98.95 98.93
Bold values represent the results of the algorithmic model proposed in this study.
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and practicality through multi-task learning. To improve the

performance and generalization ability of the algorithm, it is

necessary to construct a larger and more diverse rice seed dataset,

including seed images of different varieties, different growth stages,

and different light conditions.

HPFasterNet can be used for crop monitoring and management

in precision agriculture, e.g., by real-time monitoring of rice growth

and seed yield, it can provide farmers with precise suggestions for

irrigation and fertilization. Combined with other image processing

technologies, HPFasterNet can be further applied to early warning

and control of pests and diseases to improve crop yield and quality.

In the food processing industry, HPFasterNet can be used to classify

and detect food ingredients, such as distinguishing different

varieties of rice, to ensure the quality and safety of food. By

recording and analyzing key information in the food production

process, HPFasterNet can assist in realizing food traceability and

tracking, and improve the efficiency of food safety management. In

ecology, HPFasterNet can be used to categorize and monitor plant

populations, helping to understand changes and trends in

biodiversity. By monitoring and analyzing plant growth,

HPFasterNet can indirectly reflect the health of the environment

and provide the scientific basis for environmental protection

and governance.
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