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Aboveground biomass (AGB) is a key indicator of crop nutrition and growth

status. Accurately and timely obtaining biomass information is essential for crop

yield prediction in precision management systems. Remote sensing methods

play a key role in monitoring crop biomass. However, the saturation effect makes

it challenging for spectral indices to accurately reflect crop changes at higher

biomass levels. It is well established that rapeseed biomass during different

growth stages is closely related to phenotypic traits. This study aims to explore

the potential of using optical and phenotypic metrics to estimate rapeseed AGB.

Vegetation indices (VI), texture features (TF), and structural features (SF) were

extracted from UAV hyperspectral and ultra-high-resolution RGB images to

assess their correlation with rapeseed biomass at different growth stages. Deep

neural network (DNN), random forest (RF), and support vector regression (SVR)

were employed to estimate rapeseed AGB.We compared the accuracy of various

feature combinations and evaluated model performance at different growth

stages. The results indicated strong correlations between rapeseed AGB at the

three growth stages and the corresponding indices. The estimation model

incorporating VI, TF, and SF showed higher accuracy in estimating rapeseed

AGB compared to models using individual feature sets. Furthermore, the DNN

model (R2 = 0.878, RMSE = 447.02 kg/ha) with the combined features

outperformed both the RF (R2 = 0.812, RMSE = 530.15 kg/ha) and SVR (R2 =

0.781, RMSE = 563.24 kg/ha) models. Among the growth stages, the bolting stage

yielded slightly higher estimation accuracy than the seedling and early
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blossoming stages. The optimal model combined DNN with VI, TF, and SF

features. These findings demonstrate that integrating hyperspectral and RGB

data with advanced artificial intelligence models, particularly DNN, provides an

effective approach for estimating rapeseed AGB.
KEYWORDS

rapeseed (Brassica napus L.), aboveground biomass (AGB), phenotypic metrics,
hyperspectral images (HSI), machine learning approach
1 Introduction

Winter oilseed rape (Brassica napus L.) is one of the most

important oil crops globally, with China accounting for about one-

third of the world’s cultivated area and one-fifth of total production

(Liu et al., 2019). The Yangtze River basin is the primary growing

region for this crop in China. In addition to providing essential oil

products, cultivating oilseed rape offers benefits such as improving

soil fertility and serving as a potential raw material for bioenergy.

Therefore, efficiently and accurately monitoring rapeseed growth is

crucial for enhancing both yield and quality. Timely estimation of

AGB is particularly important for diagnosing nutrient deficiencies,

guiding precise fertilization, and predicting yield outcomes.

AGB is a critical physiological indicator for monitoring crop

growth and guiding agricultural management. It is closely linked to

the crop’s nutritional status and the ability of leaves and stems to

absorb organic matter, making it a key variable in crop phenotyping

(Araus and Cairns, 2014). Accurate AGB monitoring is essential for

effective crop management, yield prediction, and ensuring food

security through a stable supply (Li et al., 2020, Li Z. et al., 2022).

However, traditional methods of estimating AGB—such as destructive

field sampling followed by laboratory drying and weighing—are time-

consuming and inefficient. These approaches do not meet the need for

large-scale, high-throughput, timely, and quantitative monitoring,

thereby limiting real-time AGB assessment at the field scale (Chang

et al., 2017; Yue et al., 2018b; Zeng et al., 2018).

In the past decade, research on crop growth monitoring using

UAV-mounted spectral platforms has emerged as a new direction in

precision agriculture. Hyperspectral imaging and UAV technology

have significantly improved the flexibility of predicting crop AGB

(Tao et al., 2020; Yue et al., 2020, 2023), enabling the collection of crop

phenotypic information at the field scale for growth monitoring

(Clevers et al., 2017; Gitelson et al., 2003; Kooistra and Clevers,

2016). Previous studies have successfully utilized these technologies

for biomass monitoring in crops such as rice, maize, barley, wheat, and

grasslands (Bendig et al., 2014, 2015; Derraz et al., 2023; Shu et al., 2023;

Sinde-González et al., 2021; Zhai et al., 2023). Compared to UAV-

mounted RGB and multispectral sensors, hyperspectral sensors cover a

broader range of spectral bands, allowing for a deeper investigation of

crop physiological characteristics (Daughtry et al., 2000). This

technology has shown promising results in yield prediction for
02
soybean and disease monitoring for wheat (Banerjee et al., 2020; Guo

et al., 2021; Herrero-Huerta et al., 2020. Therefore, the application of

spectral imaging technology is essential for accurately detecting spatial

variability in crop biochemical composition.

Previous studies on the estimation of rapeseed AGB were based

on the methods of index and texture characteristics, however there

were few studies on the estimation of rapeseed biomass in

combination with structural parameters. Current research on

estimating AGB using optical data primarily focuses on leveraging

vegetation indices (VI) that are sensitive to dry matter content in

crop canopies (Cheng et al., 2017; Hansen and Schjoerring, 2003;

Itoh et al., 2006). VI capture changes in crop physiological activity

and canopy structure, facilitating accurate AGB estimation (Wang

et al., 2019). Several studies have validated effective VI for

estimating AGB in crops such as winter wheat, maize, rice, and

cotton using traditional regression methods. Commonly used

indices include the Normalized Difference Vegetation Index

(NDVI), Visible Atmospherically Resistant Index (VARI),

Transformed Vegetation Index (TVI), and Red-edge Chlorophyll

Index (Han et al., 2019; Ma et al., 2022; Pugh et al., 2018; Varela

et al., 2017). However, due to differences in canopy structure and

growth stages across species, the performance of VI can vary,

making AGB estimation less reliable at different growth stages.

For instance, before canopy closure, interactions with soil

background and spectral saturation can reduce the accuracy of

VI-based AGB estimates (Yao et al., 2018; Yue et al., 2017, 2023).

High-resolution imagery provides rich texture features at the

plot level. Previous studies have successfully used texture features

derived from satellite data to estimate AGB, particularly in forested

areas (Zha et al., 2020; Zhang et al., 2015). Additionally, AGB

prediction can be achieved using 3D data from UAV sensors, which

combine height information from LiDAR or stereo imagery with

spectral features from multispectral images (Muharam et al., 2014;

Zhu et al., 2019). These studies have demonstrated that texture and

structural parameters significantly improve crop monitoring

accuracy. However, the high cost and weight of LiDAR sensors

make routine crop growth monitoring challenging. In contrast,

RGB photogrammetric sensors are lighter and more practical,

making them a viable alternative. Therefore, exploring the

potential of extracting crop structural parameters from RGB data

is crucial for crop monitoring. In recent years, the integration of
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artificial intelligence (AI) algorithms with optical data for AGB

estimation has emerged as a promising new approach. AI methods

are particularly advantageous for processing multi-dimensional

data, effectively addressing the issue of data redundancy that is

common in traditional regression models (Li R. et al., 2022; Verrelst

et al., 2012; Volpato et al., 2021; Wang et al., 2016).

Currently, there is limited research on the accuracy of AGB

estimation models for rapeseed using canopy spectral, texture, and

structural information extracted from UAV-based hyperspectral and

RGB images. To assess the potential of combining optical and

phenotypic parameters for rapeseed AGB estimation, the objectives

of this study are: (1) to extract optical and phenotypic metrics—VI, TF,

and SF—from UAV hyperspectral and ultra-high-resolution RGB

images to investigate the correlation between rapeseed biomass and

these metrics at different growth stages. (2) to estimate rapeseed AGB

using DNN, SVR, and RF. The study compares the accuracy of VI, TF,

SF, and their various combinations, while also evaluating the

performance of the three artificial intelligence approaches in

estimating AGB across different growth stages.
2 Materials and methods

2.1 Experimental design

The study was conducted at the Smart Agriculture Research

Base of the Jiangsu Academy of Agricultural Sciences, Nanjing,

China, located at 32°02′34″N, 118°26′25″E (Figure 1A). Two

varieties of rapeseed, Zheza 903 (C1) and Ningyou 26 (C2), were

used in the study. During the 2022–2023 growing season, nitrogen

fertilizer treatments were applied at rates of 0, 90, 180, 270, and 360

kg/ha, labeled as N0, N1, N2, N3, and N4, respectively. Each

treatment was replicated three times in a randomized block

design on a 600 m² test plot. Phosphorus and potassium

fertilizers were applied at rates of 120 kg/ha P2O5, 180 kg/ha

K2O, and 15 kg/ha boron. Sowing took place on October 10,

2022, with transplanting on November 5, 2022, at a planting

density of 1.125 × 105 plants/hm². Fertilizer was distributed as

base fertilizer: wax fertilizer: moss fertilizer in a 5:3:2 ratio, while

other cultivation practices followed high-yield field management

(Figure 1B). During the crop growing season, data on average daily

precipitation and minimum temperature were collected in the field

(Figure 1C). The highest daily average precipitation (53 mm) was

recorded in June 2023, while the highest daily temperature occurred

in May. The lowest temperature was observed in January.
2.2 Data acquisition

2.2.1 Field data acquisition
AGB and plant height (PH) measurement datasets were

collected for rapeseed at the seedling stage (December 28, 2022),

bolting stage (February 20, 2023), and early blossoming stage

(March 2, 2023). Collection of AGB data: To ensure

representative sampling, three plants reflecting the overall growth

condition were randomly selected from each plot and placed in
Frontiers in Plant Science 03
sealed plastic bags for transportation to the laboratory. Once

separated, the stems and leaves were washed with running water

and placed in an oven at 105°C for 1 hour, followed by drying at 80°

C for more than 48 hours until a stable weight was reached. The

stems and leaves were then weighed using a high-precision balance

(accuracy 0.001 g), and the total weight of the samples was

calculated. AGB was determined based on the population density

and the total weight of the samples. Collection of PH data: Four

representative rapeseed plants were selected from each plot, and the

distance from the base to the tip of the leaf was measured using a

ruler. The average of the four measurements was calculated as the

PH for the rapeseed in the plot.

2.2.2 Hyperspectral and RGB data collection
A six-rotor UAV (Matrice 600 Pro, DJI, China) equipped with a

Resonon PIKA CX imaging spectrometer (Resonon, USA) was used

to capture hyperspectral data on sampling days. The hyperspectral

sensor covers a spectral range of 400–1000 nm with 2.2 nm spectral

resolution across 150 channels. To ensure data consistency, all

flights were conducted from the same takeoff point between 12:00

and 13:30 under clear, windless conditions. Each flight followed a

consistent route for all growth stages, flying at an altitude of 50 m

(with a 6 m transect width) and a speed of 2 m/s. An 80% overlap

was maintained in both forward and side directions. Radiometric

calibration was performed before each flight using black and white

reference panels. Hyperspectral images were acquired at four key

growth stages: bare-soil (October 20), seedling, bolting, and early

blossoming, with a spatial resolution of 2.5 cm.

RGB images were also captured on the same days and at the

same altitude using a quad-rotor UAV (Dajiang Yu2, DJI, China).

These images, along with digital surface models (DSM), were

processed using Pix4D software. Ground control points (GCPs)

were used to align the RGB photos for spatial consistency across

growth stages. The images were processed into high-density point

clouds, grids, and textures using structure-from-motion (SfM)

algorithms, and mosaicked into digital orthophotos for each

growth stage.

2.2.3 Hyperspectral data processing
The UAV hyperspectral images were preprocessed in three

steps: (1) Correction and mosaicking: The data were corrected

and mosaicked using Spectronon software (USA) for both

radiometric and geographic corrections. (2) Image stitching:

ENVI software (Harris Exelis, USA) was used to stitch the images

within the specified navigation area, incorporating position data

from GCPs to minimize correction error. This resulted in a new

hyperspectral image. (3) Extracting rapeseed canopy reflectivity:

Rapeseed canopy reflectance curves were extracted from the images.

Using ArcGIS software, different maximum area vectors were

delineated, and vector data were assigned numbers based on

samples. The average spectral reflectance of each region of

interest was then extracted using the interactive data language

(IDL) in ENVI software. These values were considered the

spectral reflectance of the rapeseed canopy in different plots. The

images and the average values for each plot were used as the

rapeseed canopy spectrum, as illustrated in Figures 2A–F.
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2.3 Optical and phenotypic
metrics selection

2.3.1 VI metrics extraction
Canopy spectral information, obtained through optical

sensors, is a crucial parameter for monitoring crop growth. The

VI is closely linked to the physiological and biochemical
Frontiers in Plant Science 04
characteristics of crops, making it an essential tool for assessing

crop development. This index captures the interaction between

spectral bands and enhances the response to specific crop

properties. Based on previous research, 15 spectral vegetation

indices were selected to estimate the AGB of rapeseed. The band

calculation tool in ENVI 5.3 software was used to compute these

VIs, as detailed in Table 1.
FIGURE 1

Geographical location of the study area and planting region for rapeseed. (A) Sampling area for Measurement data and spectral data collection, (B) Field
distribution of processing condition. (C) Temperature of the crop growing season.
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2.3.2 TF metrics extraction
The Gray Level Co-occurrence Matrix (GLCM) is one of the

most widely used methods for texture extraction, originally

proposed by Haralick (1973). GLCMs became popular due to

their ability to maintain rotational invariance, capture multi-scale

features, and allow for low-complexity calculations (Haralick et al.,

1973). In this study, three texture metrics—Data Range (DR),

Variation (VAR), and Entropy (ENT)—were extracted from UAV

RGB bands. The selected window size effectively captures variations

in spatial information among the rapeseed plants within the

experimental plot. A window that is too small can increase

computational complexity and the volume of calculations, while a

window that is too large may result in the loss of detailed texture

information (Bai et al., 2021). To address this, an averaging

technique that combines the functionality of different window

sizes was employed. Through trial and error, texture features were

computed using the average values of two window sizes (3 pixels × 3

pixels and 5 pixels × 5 pixels) and four directional orientations (0°,

45°, 90°, and 135°) rotated clockwise along the x-axis. These features

have been shown to be effective in quantifying changes in crop

canopy structure and estimating AGB (Yue et al., 2018a).

2.3.3 SF metrics extraction
In this study, UAV RGB images of rapeseed were captured to

create a base map for the DEM before sowing. Canopy point cloud

images were then acquired to construct the DSM at various growth

stages of rapeseed. The height model for each growth period was

derived by subtracting the DEM from the DSM. Using the statistical

toolbox in ArcGIS and the Kriging interpolation algorithm, the average

plant height (PH) was extracted from the region of interest for each

image (Xu et al., 2022). Plant roughness (PR), a metric that
Frontiers in Plant Science 05
characterizes the irregularities of the canopy surface, was measured

using 3D point clouds from UAV RGB images. PR has been shown to

have a significant correlation with crop AGB (Herrero-Huerta et al.,

2020). The fraction of plant cover (PC) was determined through image

classification, where ground objects in the RGB images were

categorized as either crops or soil (Maimaitijiang et al., 2019). PC for

each image was calculated by dividing the number of cropped pixels by

the total number of pixels in the image. Building on previous research,

the volume method was applied to estimate crop biomass within a

defined spatial range. The plant volume metric (PVM) of rapeseed was

calculated as the product of PC and PH, along with the canopy

elevation fluctuation rate (CEFR) to describe the relative shape of the

canopy, as commonly used in forestry studies (Han et al., 2019). The

canopy structure metrics extracted from UAV RGB images—PH, PR,

PC, PVM, and CEFR—are defined in Table 2.
2.4 Model construction method

2.4.1 Model construction
The input layer of the DNN model used in this study consists of

four hidden layers with 256, 128, 64, and 32 neurons, respectively (Hu

et al., 2024). A ReLU activation function was applied after each hidden

layer. To address overfitting, a dropout layer with a 0.2 ratio was added

after the first hidden layer. The network was trained using the Adaptive

Moment Estimation (ADAM) optimizer, with a maximum of 600

training iterations and a batch size of 256. The initial learning rate was

set at 0.001, decreasing by 10% every 100 rounds. For the Random

Forest (RF) model, bootstrap sampling was used to create a training

dataset, and random decision trees were generated based on the

integrated classifier (Niu et al., 2019). The RF model was configured
FIGURE 2

The hyperspectral images and canopy spectral reflectance of rapeseed at (A, D) seedling stage, (B, E) bolting stage and (C, F) early blossoming stage.
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with 80 decision trees (n tree = 80) and a maximum number of

variables considered at each split (m try = 4). The final prediction was

determined through a majority voting process among the decision

trees. Support Vector Regression (SVR) was applied for linear and

nonlinear regression tasks (Liu et al., 2023). The training dataset was

binary-classified using a kernel function to minimize the distance of all

samples from the hyperplane. The sample data were then fitted to

generate predictions.

2.4.2 Model evaluation
A total of 60 datasets were collected for each period during the

2022-2023 season. Repeats 1 and 2 were selected as the calibration

dataset, while plots from Repeat 3 were used as the validation dataset.

The statistical results were presented in Table 3. To construct an AGB

estimation model for rapeseed across various growth stages, a ten-fold

cross-validation approach was employed. Pearson correlation analysis

was performed to examine the relationship between features and AGB.

The model’s performance and stability were assessed using the
Frontiers in Plant Science 06
coefficient of determination (R²), prediction root mean square error

(RMSE), and relative root mean square error (rRMSE). The study

workflow was shown in Figure 3.

R2 = 1 −oi(y − y0)2

oi(y − �y)2
(1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(y − y0)2

n

s
(2)

rRMSE =
RMSE
�y

(3)

Where y is the observed value (manual measurement), and y0 is
the predicted value (model extracted value), �y is the average value,

and n is the sample size.
3 Results

3.1 Correlation of metrics and AGB

3.1.1 Statistical analysis of AGB measurements
For the AGB samples, the average value in the calibration

dataset was 1785.6 kg/ha, with an overall coefficient of variation

of 38.85%, while the validation dataset had a higher coefficient of

variation at 42.38% (Table 3). The minimum AGB value observed

was 147.5 kg/ha, and the maximum was 5573.39 kg/ha. For PH, the

average was 43.74 cm in the calibration dataset and 42.76 cm in the

validation dataset. The overall coefficient of variation for PH was

41.75%, while the validation dataset exhibited a larger variation of

53.18%. These results indicate that the validation dataset generally
TABLE 2 The SF metrics extracted from UAV-RGB images.

SF metrics Equation Reference

PH (Plant Height) DSM-DEM (Xu et al., 2022)

PR (Plant Roughness) IQRmed (Herrero-Huerta
et al., 2020)

PC (Plant Cover) Plant Pixel/total pixels
(Maimaitijiang
et al., 2019)

PVM (Plant
Volume Metric) oN

i S*PHi (Han et al., 2019)

CEFR (Canopy Elevation
Fluctuation Rate)

(PHmean-PH10%min)/
(PH10%max-PH10%min)

(Han et al., 2019)
TABLE 1 The VI metrics extracted from hyperspectral images.

Vegetation indices Equation Reference

NDVI (normalized-difference vegetation index) (R800 − R680)/(R800 + R680) (Rouse et al., 1974)

RVI (ratio vegetation index) R810/R660 (Rouse et al., 1974)

EXG (Excess green vegetation index) 2G-R-B (Bendig et al., 2013)

EXB (Excess blue vegetation index) 1.4B-G (Bendig et al., 2013)

NGBVI (Red green blue vegetation index) (G2-BR)/(G2+BR) (Bendig et al., 2013)

NGBDI (Normalized green blue difference index) (G-B)/(G+B) (Bendig et al., 2013)

EVI(enhanced vegetation index) 2.5 × (R800 − R670)/(R800 + 6 × R670 − 7.5 × R450 + 1) (Tao et al., 2020)

SPVI (spectral-polygon vegetation index) 0.4 × [3.7 × (R800 − R670) − 1.2 × |R550 − R670|] (Tao et al., 2020)

MCARI (modified chlorophyll-absorption ratio index) ((R700 − R670) − 0.2 × (R700 − R550))×(R700/R670) (Tao et al., 2020)

RNDVI (renormalized-difference vegetation index) (R800 − R670)/(R800 + R670)1/2 (Tao et al., 2020)

CIred edge (Red edge chlorophyll index) R810/R690-1 (Gitelson et al., 2003)

VARI (Visible atmospherically resistance index) (R555 − R680)/(R555 + R680 − R480) (Gitelson et al., 2002)

SAVI (Soil-adjusted vegetation index) (1 + 0.5) × (R800 − R670)/(R800 + R670 + 0.5) (Gnyp et al., 2014)

GNDVI (Green normalized-difference vegetation index) (R750 − R550)/(R750 + R550) (Zheng et al., 2019)

SIPI (Structure-insensitive pigment index) (R800 − R450)/(R800 + R680) (Li B. et al., 2020)
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showed larger coefficient of variation values compared to the

calibration dataset.

3.1.2 Correlation of VI metrics and AGB
The correlation between VI metrics and AGB across different

growth stages was illustrated in Figure 4. The AGB and VI values for

the three different growth stages of rapeseed showed strong

significance (p< 0.01). The strongest correlation during the

seedling stage was observed with the RVI, which had a

correlation coefficient of r = 0.82 (p< 0.01). Significant

correlations were also noted between AGB and SAVI (r = 0.75,

p<0.01) as well as NDVI (r = 0.72, p< 0.01). The results suggested a

linear relationship between VI and AGB at all growth stages,

although the strength of the correlation decreased as the crop

developed. It was important to note that VI tends to saturate
Frontiers in Plant Science 07
when AGB was high, meaning the accuracy of AGB estimation

using a single VI may require validation through a more

comprehensive estimation model.

3.1.3 Correlation of TF metrics and AGB
In this study, the correlation between nine TF metrics and

rapeseed AGB across different growth stages was evaluated, as

shown in Figure 5. The strongest correlation was observed

between the GVAR and AGB across all three growth stages,

with the average correlation exceeding 0.5 (p< 0.01). The

correlations between GDR and BENT were also close to 0.5

(p< 0.05). The results indicate that DR, VAR and ENT metrics

exhibit significant variability in relation to AGB, suggesting they

fluctuate more throughout the growth stages in response

to AGB.
FIGURE 3

Research workflow.
TABLE 3 Descriptive statistics for AGB (kg/ha) and PH (cm) of calibration and validation datasets.

Dataset
Crop
parameters

Min Average Max
Standard
deviation

Coefficient of variation (%)

Calibration
AGB 147.50 1785.60 5573.39 688.56 38.85

PH 8.90 43.74 110.50 18.26 41.75

Validation
AGB 223.40 1945.23 6061.60 824.47 42.38

PH 10.10 42.76 105.20 22.74 53.18
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3.1.4 Correlation of SF metrics and AGB
The correlation between SF metrics and AGB at the seedling,

bolting, and Early blossoming stages of rapeseed was shown in Figure 6.

SF metrics, such as PH, PR, PC, and CEFR, showed significant

correlations with AGB across all three growth stages (pp< 0.01). The
Frontiers in Plant Science 08
correlation between these metrics and AGB increased progressively

through the growth stages. Notably, the PVM showed a rise in

correlation with AGB at first, followed by a decrease in the later

growth stages. PH displayed the strongest correlation across all stages,

with r values of 0.56 (p< 0.05), 0.67 (p< 0.01), and 0.75 (p< 0.01) at the
FIGURE 5

Pearson correlation analysis between TF metrics and AGB for three growth stages.
FIGURE 4

Pearson correlation analysis between VI metrics and AGB for three growth stages.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1504119
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1504119
seedling, bolting, and Early blossoming stages, respectively. These

results demonstrate that SF metrics have a linear relationship with

AGB at each growth stage.
3.2 Construction of AGB estimation models

Based on the results of the correlation analysis, we selected the

most significant correlation metrics (r > 0.6) as input variables for

the AGB estimation models (Table 4). Utilizing both the calibration

and validation datasets, we developed rapeseed AGB estimation

models through three machine learning algorithms: ANN, SVR, and

RF. The regression results, including R², RMSE, and rRMSE, were

summarized in Table 5 and illustrated in Figure 6. The findings

indicate that, among the estimation models constructed using

individual features and the three algorithms, the ANN model

combined with VI yielded the best performance. Specifically, the

ANN model that employed the combination of VI, TF, and SF

achieved the highest R² values of 0.878 and 0.864 for the training

and test datasets, respectively. This model also resulted in the lowest

RMSE and rRMSE values of 447.02 kg/ha and 0.171, respectively. In

contrast, the SVR model using TF exhibited the lowest R² along

with the highest RMSE and rRMSE values. The performance

ranking of the three algorithms in constructing AGB estimation

models was as follows: ANN > RF > SVR.

Figure 7 presents the R² values for models utilizing seven

different feature combinations. In four combinations—VI, VI+TF,

VI+SF, and VI+TF+SF— the ANN model consistently

outperformed both SVR and RF models in terms of R². However,

for the TF, SF, and TF+SF combinations, the RF models achieved
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the highest R² and the lowest RMSE and rRMSE across both

training and test datasets. In the VI+TF model, the SVR model

recorded the lowest R² and the highest RMSE and rRMSE, while the

ANNmodel ranked second behind RF. In the VI+TF+SF model, the

RF achieved the highest R² on the training set, whereas the SVR

model displayed the lowest R². However, on the test set, the ANN

model produced the highest R². These results confirm that the ANN

model, when combined with VI, TF, and SF features, provides the

best performance for both training and validation datasets,

highlighting the superior capability of the ANN model in

estimating rapeseed AGB.
3.3 Optimal estimation model of rapeseed
at different growth stages

AGB estimation models for rapeseed were constructed for three

key growth stages: seedling, bolting, and early blossoming, using

three machine learning algorithms: ANN, RF, and SVR. The

optimal feature combinations were selected, and the results were

presented in Table 6 and Figure 8. Across all growth stages, the

ANN model consistently demonstrated the highest accuracy,

followed by the RF model, while the SVR model exhibited the

lowest accuracy. The high consistency between the training and

validation set results further confirms the superior performance of

the ANN algorithm. In terms of growth stage comparisons, the

ANN model achieved an AGB estimation accuracy of 0.783 during

the seedling stage. As the rapeseed developed, the estimation

accuracy improved, reaching 0.896 during the bolting stage.

However, a slight decrease in accuracy was observed during the
FIGURE 6

Pearson correlation analysis between SF metrics and AGB for three growth stages.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1504119
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1504119
early blossoming stage, with a value of 0.878. Similar trends were

observed in the RF and SVR models, where estimation accuracy

peaked during the bolting stage, outperforming both the seedling

and Early blossoming stages. As a result, the AGBmaps produced of

different periods by optimal estimation model (Figure 10).
3.4 Evaluation of variable importance

To assess the contribution of different input metrics to the

estimation models, we applied the RF importance evaluation

method. Figure 9 illustrates the variable importance scores of
Frontiers in Plant Science 10
three rapeseed growth stages. During the seedling stage, the RVI

metric exhibited the highest importance, with vegetation indices

contributing approximately 50% of the overall importance.

However, as the crop progressed to the bolting stage, structural

metrics gained prominence, with PH becoming a key factor in AGB

estimation. The variable importance in the early blossoming stage

closely mirrored the results of the bolting stage, highlighting the

continued relevance of structural metrics at later stages of

development. Overall, these findings were consistent with the

performance of the AGB estimation models, reflecting the shift in

the relative importance of vegetation and structural parameters as

rapeseed matures.
4 Discussion

4.1 The correlation of metrics and
rapeseed AGB

This study assessed the effectiveness of combining spectral,

textural, and structural features derived from UAV-based
TABLE 5 Rapeseed AGB estimates based on different features combination with algorithms.

Features Algorithm Calibration Validation

R2 RMSE
(kg/ha)

rRMSE R2 RMSE
(kg/ha)

rRMSE

VI

DNN 0.765 597.27 0.235 0.705 810.51 0.316

SVR 0.681 683.65 0.272 0.620 951.54 0.351

RF 0.726 634.51 0.266 0. 661 927.16 0.348

TF

DNN 0.554 823.14 0.347 0.510 1135.84 0.434

SVR 0.615 767.83 0.312 0.583 1015.21 0.395

RF 0.629 755.92 0.295 0.561 1054.33 0.406

SF

DNN 0.647 722.16 0.272 0.614 968.78 0.364

SVR 0.605 774.41 0.311 0.564 1054.65 0.401

RF 0.720 686.02 0.264 0.676 889.82 0.332

VI+TF

DNN 0.798 550.78 0.215 0.733 803.14 0.318

SVR 0.732 650.24 0.268 0.703 835.24 0.314

RF 0.765 540.15 0.235 0.695 848.17 0.326

VI+SF

DNN 0.823 524.95 0.201 0.785 687.82 0.264

SVR 0.741 645.18 0.244 0.712 788.15 0.292

RF 0.804 556.47 0.206 0.768 754.52 0.277

TF+SF

DNN 0.755 630.13 0.23 0.712 788.15 0.295

SVR 0.651 712.54 0.295 0.581 1020.45 0.397

RF 0.763 638.43 0.244 0.745 762.53 0.286

VI+TF+SF

DNN 0.878 447.02 0.171 0.864 583.85 0.224

SVR 0.781 563.24 0.227 0.733 775.16 0.295

RF 0.812 530.15 0.205 0.761 761.58 0.283
The best model under each feature combination is shown in bold.
TABLE 4 Input metrics were selected for algorithms.

Algorithm Feature Metrics

DNN,
SVR, RF

VI
NDVI, RVI, EXB, NGBDI, RGBVI, EVI,
SPVI, RNDVI, VARI, SAVI, GNDVI

TF GDR, GVAR, BDR, BVAR, BENT

SF PH, PR, PC, PVM, CEFR
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FIGURE 7

Scatter plots between measured and estimated AGB for calibration and validation datasets of different combination model. (A) Combine DNN and VI,
(B) combine RF and TF, (C) combine RF and SF, (D) combine DNN and VI+TF, (E) combine DNN and VI+SF, (F) combine RF and TF+SF, (G) combine
DNN and VI+TF+SF.
TABLE 6 Estimated AGB for calibration and validation datasets of three growth stages.

Growth stages Algorithm

Calibration Validation

R2 RMSE
(kg/ha)

rRMSE R2 RMSE
(kg/ha)

rRMSE

Seedling stage

DNN 0.783 101.67 0.195 0.762 115.64 0.213

SVR 0.655 129.15 0.251 0.584 155.32 0.284

RF 0.751 106.93 0.227 0.702 128.53 0.236

Bolting stage

DNN 0.896 193.18 0.184 0.866 169.51 0.175

SVR 0.774 264.65 0.242 0.722 244.36 0.254

RF 0.830 229.6 0.214 0.797 209.18 0.216

Early
blossoming stage

DNN 0.878 447.01 0.177 0.831 598.77 0.238

SVR 0.745 609.17 0.236 0.695 804.08 0.319

RF 0.824 513.32 0.194 0.787 660.14 0.262
F
rontiers in Plant Scienc
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The best model under each stage is shown in bold.
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hyperspectral and RGB imagery to enhance the accuracy of AGB

estimation in winter rapeseed. Previous research has demonstrated

the high accuracy of UAV-based methods for estimating plant

biomass (Liu et al., 2022, 2023; Niu et al., 2019). Consistent with

these studies, our analysis found significant correlations between

rapeseed AGB and the spectral, textural, and structural parameters

extracted from UAV imagery. However, we observed that the

stability of these correlations varied across different growth stages.

While individual features, such as vegetation indices, texture

metrics, and structural characteristics, were strongly correlated

with AGB, their predictive power fluctuated as the crop

developed. Notably, a combined approach leveraging the

strengths of spectral, textural, and structural features offers

considerable potential for achieving more accurate and consistent

AGB estimates throughout rapeseed’s growth cycle.

The correlation analysis between VI, TF, and SF with rapeseed

AGB shows distinct trends across different growth stages. VI tend to

saturate as spectral parameters stabilize, resulting in peak

correlations during the bolting stage, following the seedling stage.

These correlations gradually weaken as the crop enters the early

blossoming stage (Liu et al., 2023). In contrast, TF and SF

demonstrate increasing complexity with crop growth, reflecting
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the canopy’s development. This complexity aligns with the rise in

aboveground biomass, suggesting these features may provide

complementary insights into rapeseed AGB estimation.
4.2 Estimation performance of
various metrics

Previous studies have indicated that texture metrics can

outperform VI in predicting above-ground biomass (AGB), though

much of this research has focused on forests, with relatively limited

applications in crop biomass estimation (Basyuni et al., 2023; Nichol

and Sarker, 2011; Xu et al., 2024). In our study, we found that among

individual feature types, SF produced more accurate AGB estimates

than TF. Moreover, the integration of VI+TF+SF led to significant

improvements in AGB estimation for winter rapeseed by reducing

RMSE compared tomodels that relied solely on VI, TF, or SF. Contrary

to earlier findings, our results did not show that texture metrics alone

outperformed VI in estimating AGB. Instead, our study highlights that

the combination of VI and SF yielded better AGB estimates than the

combination of VI and TF (Schumacher et al., 2016; Xu et al.,

2022, 2024).
FIGURE 8

Scatter plots between measured and estimated AGB obtained by DNN, SVR and RF models. (A–C) were seedling stage with three algorithms, (D–F) were
bolting stage with three algorithms, (G–I) were Early blossoming stage with three algorithms.
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Comparing the estimation capabilities of different features at

various growth stages of rapeseed, we found that structural

parameters yield higher accuracy in biomass estimation as the

crop matures. This aligns with the importance evaluation, which

shows that SF like PH, PR, and PC become increasingly significant

as the crop develops. Integrating multiple feature types—VI, TF,

and SF—offers a more comprehensive approach to estimating AGB,

as each capture unique and complementary information about crop

growth. The highest estimation accuracy was observed during the

bolting stage, providing crucial insights for guiding fertilization

decisions during this key phase of rapeseed development.
4.3 Advantages of model estimation

Our findings demonstrate the effectiveness of machine learning

models—specifically RF, SVR, and DNN—in estimating rapeseed

AGB. Across the three growth stages, the DNN model consistently

achieved the highest R² (0.896) and the lowest RMSE (193.18kg/ha)

and rRMSE (0.184) (Table 6). Although the overall performance of

the RF model was slightly lower than that of the DNN model, it

demonstrated superior accuracy when TF and SF were combined as

input variables. In this case, the RF model outperformed the DNN

model in terms of R² and rRMSE on the test set, indicating that RF

may be more adept at processing texture and structural data. The

strong performance of the DNN model is likely due to its deep
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iterative layers, which allow it to capture complex patterns in the

data, highlighting its potential for biomass estimation. However, the

RF model’s ability to handle TF and SF features effectively suggests

that it is particularly well-suited for integrating these types of data.

The evaluation of feature importance also revealed that the relative

contribution of different input parameters significantly impacts

model performance, further explaining the variations in accuracy

among the algorithms.

The estimation results indicate that the inclusion of structural

parameters significantly improved the performance of the

estimation models, suggesting that the enhancement in estimation

accuracy is related to the addition of key estimation factors (such as

PH, PR, and PC). Among the three algorithms used to construct the

estimation models, the DNNmodel demonstrated a clear advantage

across all three growth stages, while the RF model performed better

during the bolting and early flowering stages. In contrast, the SVR

model showed weaker estimation performance in all stages. This

suggests that the DNN algorithm exhibits good practical

applicability for estimating rapeseed AGB at different growth stages.
4.4 Research outlook

The process from data collection to model development

requires meticulous attention to detail and thorough analysis.

Improving the quality of data obtained from UAV imagery,
FIGURE 9

Mapping rapeseed AGB using three metrics and DNN model. (A) Seedling stage, (B) Bolting stage, (C) Early blossoming stage.
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ground observations, and modeling techniques is crucial, as these

datasets can be prone to errors. Standardizing these procedures is

essential for ensuring consistency and accuracy.

While this study presents an effective approach by integrating

three feature types for estimating rapeseed AGB, several challenges

remain. Data accuracy in hyperspectral acquisition and

preprocessing must be carefully managed, and the mixed pixel

problem due to resolution constraints may impact estimation

performance. Additionally, the comparison of biomass under

different nitrogen treatments is a valuable area of research that

warrants further investigation. Future studies could extend the

scope by exploring rapeseed biomass estimation over multiple

years to evaluate the applicability and transferability of the

developed models, thus enhancing their generalizability.

Furthermore, delving deeper into the biophysical properties of

plants and identifying potential error sources will be crucial for

further refining estimation accuracy.
5 Conclusions

This study explored the potential of UAV hyperspectral and RGB

imagery for estimating crop biomass by developing a multi-feature

estimation model that incorporates VI, TF, and SF. The performance of
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these features in estimating rapeseed AGB across different growth stages

was thoroughly evaluated. The RF importance evaluation method was

used to assess the contribution of different input parameters to the

estimation model. The results indicated that both DNN and RF

outperformed SVR when using individual features for AGB

estimation. Additionally, the DNN model surpassed the RF model in

accuracy when feature combinations (VI, TF, and SF) were applied,

achieving the best estimation performance across all growth stages.

Furthermore, the DNNmodel (R² = 0.878, RMSE = 447.02 kg/ha) with

the combined features outperformed both the RF (R² = 0.812, RMSE =

530.15 kg/ha) and SVR (R² = 0.781, RMSE = 563.24 kg/ha) models.

Based on the variable importance analysis, the RVI index emerged as the

most significant, while PH was identified as a key phenotypic metric in

AGB estimation. These findings demonstrate that integrating

hyperspectral and RGB data with advanced artificial intelligence

models, particularly DNN, provides an effective approach for

estimating rapeseed AGB. The estimation model incorporating VI,

TF, and SF showed higher accuracy in estimating rapeseed AGB

compared to models using individual feature sets. Among the growth

stages, the bolting stage yielded slightly higher estimation accuracy than

the seedling and early blossoming stages. The combination of VI, TF,

and SF metrics offers significant improvements in biomass estimation

accuracy, highlighting the potential of UAV-based multi-feature

modeling in precision agriculture.
FIGURE 10

The variable importance scores of three growth stages. (A) Seedling stage, (B) Bolting stage, (C) Early blossoming stage.
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