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Potato is a versatile food crop and major component of human nutrition

worldwide. Model calculations and computer simulations can be used to

optimize the resource allocation in potato breeding programs but require

quantitative genetic parameters. The objectives of our study are to (i) estimate

quantitative genetic parameters of themost important phenotypic traits in potato

breeding programs, (ii) compare the importance of inter- vs. intra-population

variance, (iii) quantify genotypic and phenotypic covariances among phenotypic

traits, and (iv) examine the effect of a preselection in the single hills stage on

variance and covariance components in later stages of the breeding program.

Our study was based on a total of 1066 clones from three breeding programs

which were evaluated in a non-orthogonal way in 15 environments for a total of

26 phenotypic traits. The examined traits showed an overall high to medium

heritability, and variance analysis revealed trait-specific differences in the

influence of the genotypic, environmental, and genotype-environment

interaction effect. Accounting for heterogeneity in the residual variances

between the 15 environments led to a significant improvement of the variance

parameter estimation. The result of our study suggested that the first selection

step at the single hills stage did not negatively impact the genetic variability of the

target traits implying that the traits assessed in the earlier stages were not

correlated with the traits influencing market success. Our results can be used

as base for further simulation studies and, thus, help to optimize the resource

allocation in breeding programs.
KEYWORDS

breeding methodology, heritability, multi-environment trials, preselection, Solanum
tuberosum, variance analysis
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Highlights
Fron
• The herein reported variance an covariance components can

be used as base for further simulation studies to optimally

plan the resource allocation of breeding programs.
Introduction

The growing world population and climate change raise

challenges to food security (Devaux et al., 2020). To cover the

increasing demand for food worldwide, potato (Solanum tuberosum

L.) plays an important role, as it is one of the most important

nongrain food crops and main source of carbohydrates in many

parts of the world (Jansky and Spooner, 2018). Furthermore, potato

has a high nutrient content and a great environmental adaptability

(Alvarez-Morezuelas et al., 2023).

Potato is a vegetatively propagated crop and, thus, is bred following

a typical clonal breeding scheme (Stich and Van Inghelandt, 2018):

Two heterozygous parental genotypes are crossed to develop a

segregating F1 population (Bonierbale et al., 2020). The parental

clones are typically chosen for their per-se performance and the

developed F1 clones are already the potential new varieties. The next

step of the breeding program is therefore to select in a multi-stage

process the clones that have suitable combinations of phenotypic traits

which depends on the planned usage for table consumption, starch

production, or french fry and crisps production (Reddy et al., 2018).

This selection process needs to be performed in multiple stages,

because the number of clones which have to be evaluated in the

beginning of a new breeding cycle is very high (Stich and Van

Inghelandt, 2018), as is the number of phenotypic traits (Gebhardt,

2013). Therefore, not all traits can be assessed in one stage for all clones.

In addition, at the beginning of the multi-stage process, the number of

tubers that are available for each clone do not allow to evaluate (i) the

traits that require destructive measurements or (ii) genetically highly

complex traits with sufficient high precision. Therefore, the evaluation

of those traits that determine market success, which are mostly

quantitative in nature and are influenced by genotype-environment

interactions, is performed late in the breeding program. Thus, classical

clone breeding programs allow only a low selection intensity on such

traits at the beginning of the breeding program.

Model calculations and computer simulations can be used to

optimize the resource allocation in breeding programs by answering

e.g. how many crosses should be performed, how many clones per

population should be generated, and how many selection steps

should be executed. This can lead to an increased gain of selection

for a given budget, as it was shown for hybrid wheat (Longin et al.,

2014) or maize (Riedelsheimer and Melchinger, 2013). Such studies

are relying on quantitative genetic parameters such as variance

components from experimental studies. Variance components for

some potato traits have been reported previously, mostly based on a

small number of clones, traits, or environments (Flis et al., 2014;

Seid et al., 2023). However, a study based on a comprehensive

dataset as well as a detailed assessment of the potential sources of

variation is to the best of our knowledge not available.
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Bradshaw et al. (1998) compared individual selection with

family selection in potato by comparing the variation within and

between populations. Here, the variation within populations was

greater than the variation between them, leading to early selection

on a family basis. Thus, the partitioning of variances within and

between populations can improve selection decisions. However, the

study of Bradshaw et al. (1998) exploited a limited number of

environments and, thus, it could be useful to confirm these findings

with a study with a higher number of environments, while

simultaneously increasing the number of analyzed traits.

In potato breeding programs, not only individual phenotypic

traits are used for selection, but across the different market

segments, a total of about 40 traits are determining the market

success. These traits are in many cases not independent but are

associated with each other. Therefore, a comprehensive

understanding of the genetic and phenotypic correlation among

traits is in addition to the genetic variance components important

for the design of potato breeding programs. A comprehensive

analysis has not been reported for potato, especially for the

breadth of phenotypic traits characterized in this manuscript.

The objectives of this study are to i) estimate quantitative

genetic parameters of the most important phenotypic traits in

potato breeding programs, ii) compare the importance of inter-

vs. intra-population variance, iii) quantify genotypic and

phenotypic covariance among phenotypic traits, and iv) examine

the effect of preselection in the single hills stage on variance and

covariance components in later stages of the breeding program.
Materials and methods

Genetic material

The plant material of this study was a subset of the breeding

material from the breeding companies SaKa (SaKa Pflanzenzucht

GmbH & Co. KG), Norika (Nordring- Kartoffelzucht- und

Vermehrungs- GmbH), and BNA (Böhm-Nordkartoffel

Agrarproduktion GmbH & Co. KG), located in Germany. The

clones from each of the companies corresponded to the A-clone

level (cf. Stich and Van Inghelandt, 2018) and belong to 173 full-sib

families, which were designated in the following as segregating

populations. The number of clones within one population varied

from one clone up to 38 clones (Supplementary Figure S1).

The above mentioned 1066 clones were evaluated in the years

2019, 2020, and 2021 in field experiments in different locations in

Germany. Each breeding company evaluated their proprietary

clones (i.e. entries) together with eight common checks which

was due to intellectual property reasons. The evaluated entries

represent four different market segments, which correspond to

the main usage groups of potatoes in Europe: starch potato (ST),

table potato (TA), crisp production (CR), and french fries

production (FF). The number of clones within one market

segment varied between the segments, with ST being the smallest

(150 clones), followed by TA (263 clones) and FF (266 clones),

while CR was the largest group with 379 clones.
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In order to examine the effect of a preselection on variance

components, but also the potentially increased genetic variability by

including discarded clones, 330 out of the overall 1066 genotypes

corresponded to clones, that would have normally been discarded in

commercial breeding programs in the single hills stage based on

different trait combinations for the four different market classes

(Supplementary Table S1). This group of clones, in the following

designated as clones with discard status, comprised clones from

biparental families, that would have normally been discarded

completely (68 clones, discard status 2), as well as clones from

biparental families, where other clones from the same family were

retained as A-clones (262 clones, discard status 1). Clones were

evaluated at one location per breeding company in 2019, which was

Kaltenberg for BNA, Groß Lüsewitz for Norika, and Windeby for

SaKa. In 2020 and 2021, an additional location was added for each

breeding company, which was Böhlendorf for BNA, Mehringen for

Norika and Gransebieth for SaKa. This resulted in 5 different year-

location combinations for each of the three breeding companies,

which were designated in the following as environments

(Supplementary Table S2).

In general, more clones were evaluated in 2019 than in 2020

and 2021, which was because of virus infections in multiplication

plots which lead to discarding clones in the 2020 and 2021

experiments. Within the environments, the clones were

organized in a block system following an augmented design.

SaKa had eight different blocks, whereas BNA and Norika each

had up to four different blocks. The blocks were further organized

in rows and columns. The eight checks were replicated eight times

in each environment, at least once in each block, while the entries

were cultivated within each environment of the respective

breeding company only once. The number of plants per plot

ranged from nine to 20, depending on the respective environment

(Supplementary Table S2). In 2021, the experiment from the

breeding company SaKa was further organized in two different

trials, which split the clones according to their maturity. One trial

contained clones from the extra early to early maturity group and

the other trial contained clones from the middle early to middle

late maturity group. The two trials were immediately adjacent to

one another and each trial contained the eight check clones

replicated four times.

Data were recorded on an individual plot basis for 26 different

traits (Table 1), of which 16 were considered as agronomic traits

and 10 as tuber quality traits. Trait values were either assessed as a

rating from 1 to 9 or given in the form of a percentage value. The

traits were assessed using methods that were commonly used by the

three breeding companies (Table 1) and are standardized

techniques, so that the breeding companies minimized the level of

subjectivity within and between the environments. In addition, the

ratings were either performed by one person per environment or by

one person per block. The two traits related to diseases, Rhizoctonia

symptoms and Scab symptoms, were evaluated based on the natural

infestation of the environment, without any artificial inoculation.

Furthermore, the total tuber yield per plot (YLDraw) was measured

in kilogram and corrected to a tuber yield per plot of 16 plants

(Y LD) based on the following model:
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YLD =
YLDraw

PN −MP>20%
*16, (1)

where PN was the number of plants planted for the

corresponding plot and MP was the number of missing plants per

plot. Here, MP was only considered if it exceeded 20%, as for a

lower extent of MP a full compensation of the remaining plants is

expected (Bernd Truberg, personal communication). The plot size

was set to 16 plants, as this was across all environments the plot size

that was mostly used (Supplementary Table S2).

Due to limitations of the number of available tubers from the

2019 experiments, the traits BRU, TEX, TST, DSC, CR8, CR4, FRI,

TUL, TUN, and TUS were only evaluated for the second and third

year (2020 and 2021), while the other traits were evaluated in all

three years. The traits CR4 and FRI were not evaluated for all clones,

but only for those clones that belonged to the specific market

segment, which was CR for CR4 and FF for FRI.
Statistical analyses

If not mentioned differently, linear mixed models were fitted

using the software ASReml 4.2 (Gilmour et al., 2021) and all other

statistical analyses have been performed using the software R,

version 4.3.1 (R Core Team, 2022).

In a first step, the data of the breeding company SaKa from 2021

were corrected for the trial effect of the two trials. This was done for

each trait individually by first calculating the mean values of the

eight checks for each trial. Then, the absolute value of the mean

difference between the checks of both trials was subtracted from the

observations of each plot (checks and entries) of the trial with the

higher mean value.

In the following analyses, the breeding companies were denoted

as B1, B2, and B3 and the different locations for each breeding

company were indicated by L1 and L2. Potential outliers were then

identified by fitting model 2 to the complete dataset. As only checks

were replicated in each environment, the genotype-environment

interaction effect could only be estimated for the checks:

yijklm = m + ɡi + ej + Ci(ɡe)ij + bkj + rlkj + hmkj + Єijklm, (2)

where yijklm was the phenotypic observation of the ith potato

clone in the mth column and the lth row of the kth block in the jth

environment, µ was an intercept term, gi was the effect of the ith

clone, ej was the effect of the jth environment, Ci was a dummy

variable filtering for checks with Ci = 1 for checks and Ci = 0 for

entries and (ge)ij was the interaction effect of the ith clone and the

jth environment, bkj was the effect of the kth block of the jth

environment, rlkj was the effect of the lth row of the kth block of the

jth environment, hmkj was the effect of the mth column of the kth

block of the jth environment, and Єijklm was the residual error.

Except for gi, all effects were regarded as random. Based on this

analysis for each trait, records with a standardized absolute residual

value greater than 3.5 were considered as outliers and were removed

from the dataset.

In the next step, a correction for the check-based block effect

was realized as described for the trial effect, in case of a significant
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(a = 0.05) likelihood ratio test (LRT) in model 2. The corrected trait

values were used for all further analyses.

After performing these corrections, the phenotypic data of each

trait were first analyzed across all 15 environments according to

model 2, where bkj was the entry-based block effect of the jth

environment, as the blocks were already corrected by an effect that

arose from the checks. Significance of the random effects of all

models was evaluated using an LRT (a = 0.05). Adjusted entry

means for all clones (checks and entries) were calculated across all

environments based on model 2.
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For the estimation of the genotypic variance, the clone effect was

split up between checks and entries, where the following model was

used and the effect of the checks was regarded as fixed, while the

effect of the entries was regarded as random:

yijklmn = m + Ciɡi + Diɡi + ej + Ci(ɡe)ij + bkj + rlkj + hmkj

+ Єijklm, (3)

where Di was an indicator variable filtering for entries with

Di = 0 for checks and Di = 1 for entries.
TABLE 1 Abbreviations and units for the evaluated traits considered in our study.

Abbreviation Trait Unit Class Method

STA starch content % Q measurement with automatic starch scale [1]

SHL tuber shape longitudinally 1-9 A 1 = round, 9 = long [2]

PPO polyphenol oxidase activity 1-9 Q tuber flesh after DL-DOPA incubation, 1 = no color change, 9 = very
dark coloration

FLE flesh color 1-9 Q 1 = white, 9 = blue/purple [1]

BRU * susceptibility to bruising % Q 5 kg tuber sample [1]

TUL * proportion of large tubers >65mm % A weighting after grading

SKC skin color 1-9 A 1 = cream, 9 = blue/purple [2]

CR8 * crisps color after storage at 8°C 1-9 Q 1 = bad quality (e.g. very dark), 9 = good quality [2]

MAT maturity 1-9 A 1 = still flowering, 9 = dead, relative to checks [2]

TUS * proportion of small tubers<35mm % A weighting after grading

EYE eye depth 1-9 A 1 = very deep, 9 = very flat [2]

SKT skin texture 1-4 A 1 = plain, 4 = cracked [1]

TUN * proportion of normal tubers 35-65mm % A weighting after grading

YLD total tuber yield kg A normalized to a 16 plant plot

SIZ tuber size 1-9 A 1 = small, 9 = big [2]

CR4 * crisps color after storage at 4°C 1-9 Q 1 = bad quality (e.g. very dark), 9 = good quality [2]

FRI * french fry color 1-9 Q 1 = bad quality (e.g. very dark), 9 = good quality [2]

EMR emergence 1-9 A date when 75% of plants in a plot have emerged, 1 = early, 9 = late [2]

DEV foliage development 1-9 A 1 = not grown to very weak development,
9 = superior/extraordinary growth [2]

IMP general impression 1-9 A 1 = deficiencies, 9 = very good [2]

DSC * after cooking discoloration 1-9 Q 1 = very dark, 9 = no discoloration [2]

TEX * texture 1-9 Q 1 = tuber falls completely apart, 9 = tuber stays tightly together [1]

TST * taste 1-9 Q 1 = very strong deficits (e.g. bitter),
9 = nice potato taste [1]

RHI rhizoctonia symptoms 1-9 A 1 = >90% infested, 9 = no symptoms, 2-8 = up to 90, 60, 30, 20 10, 5, 2%
infected, respectively

SHD tuber shape diagonally 1-9 A 1 = round, 9 = flat

SCA scab symptoms 1-9 A 1 = >90% infested, 9 = no symptoms, 2-8 = up to 90, 60, 30, 20 10, 5, 2%
infected, respectively
∗only assessed in 2020 and 2021.
[1] Bundessortenamt (2019).
[2] Tiemens-Hulscher et al. (2013).
Thereby, the column Class indicates whether the trait is a tuber quality trait (Q) or an agronomic trait (A).
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Heritability of the entries on an entry mean basis was calculated

for each trait according to the following formula (Piepho, 2007):

h2 =
s 2
ɡ

s 2
ɡ + n̂

2

, (4)

where s 2
ɡ was the genotypic variance from model 3 and n̂ was

the mean variance of a difference of two adjusted treatment means

of the entries. Furthermore, heritability was also calculated for the

entries on a plot basis according to the following formula:

h2plot =
s 2
ɡ

s2
ɡ + s 2

Є

, (5)

where s2
Є was the error variance from model 3.

Model 3 was further extended allowing the residual variance to

be heterogeneous across the different environments.

In the next fitted mixed model, a new parameter was defined,

which split the entries in four groups according to their anticipated

market segment, which was assigned based on pedigree

information. Thus, the following model was defined:

yijklmn = m + Ciɡi + Dizn + Diqin + ej + Ci(ɡe)ij + bkj + rlkj

+ hmkj + Єijklm, (6)

where zn was the effect of the nth market segment, and Diqin
defined the random effect of the ith genotype nested in the nth

market segment for all entries. Thereby, the variance of the

genotypes within the market segment was assumed to

be heterogeneous.

In the next step, the relatedness structure among the entries was

considered, which was given through the affiliation of the clones to

the different segregating populations. As some populations

contained just a few clones and, thus, did not allow a precise

estimation of the segregation variance, the entries were further split

up into population entries and single entries. Population entries

were entries that belong to populations with six or more clones and

single entries were entries that belong to populations with five or

less clones. Then the model was expanded to the following formula,

where the effect of the clones was nested within their respective

population:

yijklmn = m + Ciɡi + Fipn + Siɡi + Fiani + ej + Ci(ɡe)ij + bkj

+ rljk + hmkj + Єijklmn, (7)

where Fi was a dummy variable coding for the population

entries, pn was the effect of the nth population of the population

entries, Siwas a dummy variable coding for the single entries and ani
was the effect of the ith clone nested within the nth population.

Again, the genotype effect of the checks was considered as fixed

effect and all other effects were considered as random.

The variance of Fipn was a measure of the inter-population

variance (i.e. among family variation, s2
p ), whereas the variance of

Fiani was a measure of the intra-population variance (i.e. within

family variation, s 2
a ).

The intra-population variance of model 7 was first calculated as

a mean intrapopulation variance across all populations, i.e. s 2
a was

considered homogeneous. In the next step, the model was modified
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to obtain the intra-population variance for each population

individually by assuming heterogeneous variances for the clones

in each population and, thus, a separate s 2
an for each population n.

To test the significance of the heterogeneous intra-population

variance, a permutation test (n = 100) was performed. In order to

do so, the clones were randomly assigned to the populations and the

p-value was calculated by taking the percentage of analyses with

randomly assigned populations that had a higher log likelihood

than the original assignment.

As the entries were not repeated within the single

environments, but their respective populations were, a

population-environment interaction effect could be fitted for the

populations of the entries:

yijklmn = m + Ciɡi + Fipn + Siɡi + Fiani + ej + Ci(ɡe)ij + Fi(pe)nj

+ bkj + rljk + hmkj + Єijklmn, (8)

where Fi(pe)nj was the population-environment interaction

effect of the nth population and the jth environment, which was

only calculated for the population entries. For this analysis, s 2
a was

considered homogeneous.

Significance of the variance components was tested with

likelihood ratio tests as well as F-tests.
Bivariate analyses

To assess genotypic and phenotypic correlations among all pairs

of traits, model 2 was used for bivariate analyses (Holland, 2006).

Because using model 2 for the bivariate analysis led to singular

information matrices for all row and column effects, the model was

reduced for these terms prior to the bivariate analyses.
Performance of the checks across
the environments

To compare the performance of the eight check clones in the

different environments, an additive main effects and multiplicative

interaction (AMMI) analysis (Gauch, 2013) was performed, using

the R package metan (Olivoto and Lúcio, 2020). The results have

been further investigated through a generalized Procrustes analysis

using the R package FactoMineR (Lê et al., 2008).
Effect of preselection in the single
hills stage

To examine the effect of a preselection in the single hills stage on

variance components in the following stages, the clones in the

complete data set were split up by their discard status. Then, a

comparison of the genotypic variance derived from the complete

dataset and from a dataset missing the clones with discard status (in

the following designated as reduced set) has been carried out using

model 3 with heterogeneous error variances. In order to correct for

the effect of the sample size, a stratified sampling procedure was
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applied to the complete dataset. A total of 50 sampling rounds of the

complete data set were executed, where each sampling round

comprised 736 clones, which was the number of clones in the

reduced set. The sampling was performed such that the sets of each

sampling round had the same relative composition of clones with

respect to their discard status as the complete set. The eight check

clones were kept in all sampling rounds.

In addition to a comparison of the variances, also the means for

the clones of each discard status group were compared. In order to

do so, the adjusted entry means (AEMs) from model 2 with

heterogeneous error variances were used, and the means for each

trait were compared for the clones of each market segment

individually by their discard status, using a pairwise t-test with

Bonferroni correction.

Furthermore, the effect of a preselection in the single hills stage

on covariance components was examined. Therefore, again two

subsets were built. The first subset again comprised only clones with

discard status 0 (reduced set) and the second set only comprised

clones with discard status one and two (Set D12). Then, both sets

were subject to a bivariate analysis as described before. To further

model the term Ci(ge)ij, the checks were added to both sets, and the

genotypic effect of the checks was again set as fixed effect. Then, the

genotypic correlations based on the entries between both sets were

compared using Mantel’s test as implemented in the R package ade4

(Dray and Dufour, 2007; Gilmour et al., 2021; R Core Team, 2022).
Results

The genotype, environment, as well as the genotype-

environment interaction effect made up together the highest

proportion of the total variance (Table 2). These variances were

significant (a = 0.05) for all traits. In contrast, the relative

importance of the error variance varied considerably between 0.10
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of the total variance for starch (STA) and 0.50 for taste (TST). In

addition to the Rhizoctonia symptoms (RHI), traits that were highly

affected by the environment were yield (YLD), tuber shape

diagonally (SHD), and crisps color after 4°C storage (CR4). A

high variance in the genotype-environment interaction effect was

found for the traits emergence (EMR), skin texture (SKT),

development (DEV) and general impression (IMP). The

heritability on an entry mean basis ranged across all 26 traits

from 0.44 to 0.95. Heritability values above 0.9 were found for

starch content (STA), the tuber shape longitudinally (SHL), as well

as polyphenol oxidase activity (PPO). Heritability values below 0.6

were observed for the traits texture (TEX), taste (TST), Rhizoctonia

symptoms (RHI), tuber shape diagonally (SHD), and Scab

symptoms (SCA). Across all traits, the heritability values on a

plot basis were smaller than the heritabilities on an entry mean

basis. Even though the order of the traits with high and low

heritabilities changed between the two heritability calculations,

the tendencies of high, medium and low heritabilites remained

comparable for both measures. Heritabilities on a plot basis ranged

from 0.86 (STA) to 0.22 (SCA).

To assess whether systematic differences among the year-

location combinations, i.e. environments, exist, an additive main

effects and multiplicative interaction (AMMI) analysis was

performed on the data of the eight checks (Figures 1A, B;

Supplementary Figure S2). The first and second component

explained together 74.78% of the variation on average across the

26 traits. The maximum was 93.5% for the trait emergence (EMR)

and the minimum was 61.6% for the trait eye depth (EYE)

(Figures 1A, B, respectively). To enable the comparison of

environments across all traits, the AMMI results were used as

input for a Procrustes analysis. The first dimension explained

32.9% of the total variation, while the second dimension

explained 20.7%. Across all traits, environments of one breeding

company clustered more closely together than environments from
TABLE 2 Descriptive statistics, variance components relative to the total variance, and heritabilities (h2) of the 26 evaluated potato traits.

Max Min Mean s2
g s2

e s2
(ge) s2

b s2
r s2

h s2
Є h2 h2

plot

STA 22.44 9.76 16.20 0.64* 0.13* 0.10* 0.00* 0.01* 0.01* 0.10 0.95 0.86

SHL 8.71 1.46 4.49 0.59* 0.11* 0.08* 0.01* 0.01* 0.01* 0.19 0.91 0.76

PPO 9.51 1.43 5.28 0.57* 0.13* 0.09* 0.01* 0.01* 0.00* 0.18 0.91 0.76

FLE 5.24 0.91 2.88 0.61* 0.02* 0.06* 0.04* 0.01* 0.01* 0.25 0.89 0.70

BRU 101.91 -1.26 43.12 0.56* 0.10* 0.07* 0.00 0.02* 0.02* 0.23 0.89 0.71

TUL 80.46 -8.47 29.78 0.40* 0.29* 0.11* 0.01* 0.01* 0.01* 0.17 0.89 0.70

SKC 8.88 1.56 3.62 0.43* 0.23* 0.11* 0.00* 0.02* 0.01* 0.20 0.88 0.67

CR8 7.97 1.16 5.37 0.44* 0.26* 0.07* 0.01* 0.01* 0.01* 0.19 0.88 0.70

MAT 9.25 2.58 6.25 0.33* 0.31* 0.16* 0.02* 0.01* 0.01* 0.15 0.87 0.68

TUS 24.28 0.15 4.74 0.46* 0.21* 0.08* 0.00* 0.01* 0.01* 0.22 0.87 0.67

EYE 8.74 2.70 6.16 0.45* 0.18* 0.08* 0.01* 0.01* 0.01* 0.26 0.86 0.63

SKT 5.17 0.78 2.44 0.43* 0.05* 0.23* 0.01* 0.01* 0.00* 0.26 0.85 0.62

(Continued)
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different breeding companies. An obvious effect of location or year

was not observable from the Procrustes analysis (data not shown).

To adjust for the effect of the breeding company potentially caused

by small differences in the way of scoring, a linear mixed model

similar to model 2 was calculated for all checks, with an additional

fixed effect for the breeding company. The estimated effects for each

breeding company were then subtracted from the check data and

the so processed data were subject to another Procrustes analysis

after individual AMMI analyses. The first dimension explained

22.3% of the total variation, while the second dimension explained

18.9% (Figure 1C). In this analysis, a weak clustering of locations

and years was visible.

Allowing a heterogeneous residual variance across the

environments improved the model output for all traits, as the

LRT was significant for heterogeneous residuals across all traits

(Figure 1D). We observed for some trait-environment

combinations strong deviations from the homogeneous error

variance (Figure 1D; Table 2). The total variance was calculated

considering the mean residual variance across environments, and

single environments made up to 231% of the total variance (e.g.

TST, B3_20_L2, Figure 1D). This heterogeneity was not systematic

across traits or environments.

The smallest variation in the error variance was found for starch

content (STA), which ranged between 0.05 and 0.16, but

nevertheless the heterogeneous residual was significant. Also for

CR4, PPO, SKT, and TUL only little variation among the residual

variances of the different environments was observed. In contrast,

the highest variation in residual variances across environments was
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observed for TEX, RHI, TUS, SCA, and TST. In general, high

heritability traits showed less differences in the environment specific

residuals compared to traits with low heritability, including

disease scoring.

Each potato market segment requires specific combinations of

trait values. Therefore, an effect of the market segment was modeled

in combination with a heterogeneous variance of the genotypes

within the different market segments (Supplementary Figure S3). As

CR4 and FRI were only evaluated for the clones in their own market

segment, which was CR for CR4 and FF for FRI, for these traits the

differentiation of the genotypic effect for each market segment could

not be performed and, thus, these traits were excluded from the

analysis. The variances of the genotypic effect varied in a trait

specific manner across the different market segments. For four of

the 24 traits, no significant (a = 0.05) heterogeneity of the genotypic

variance across market segments was observed (MAT, FLE, RHI,

and SHD). Furthermore, RHI, as well as three other traits (TUL,

TUN, and SCA), did not have a significant market segment effect.

However, for the other 16 traits, we observed a significant different

variance among market segments but also significant different

genotypic variance within the market segments.

An important parameter for the optimization of breeding

programs is the information about inter- vs. intra-population

variance. The inter-population as well as the intra-population

effect were significant for all traits and the ratio of the total

variance explained by the inter-population variance varied

between 0.01 and 0.36 across traits. In contrast, this ratio varied

between 0.03 and 0.21 for the intra-population variance (Figure 2).
TABLE 2 Continued

Max Min Mean s2
g s2

e s2
(ge) s2

b s2
r s2

h s2
Є h2 h2

plot

TUN 94.70 18.75 64.17 0.33* 0.32* 0.12* 0.01* 0.01* 0.01* 0.20 0.85 0.63

YLD 44.63 9.50 21.58 0.22* 0.51* 0.07* 0.01* 0.04* 0.01* 0.14 0.83 0.61

SIZ 7.98 2.94 6.04 0.31* 0.29* 0.11* 0.01* 0.02* 0.01* 0.26 0.81 0.56

CR4 8.41 1.66 5.29 0.28* 0.41* 0.12* 0.00 0.01* 0.00 0.17 0.81 0.63

FRI 9.33 3.77 6.34 0.26* 0.36* 0.13* 0.00 0.01* 0.02* 0.20 0.79 0.57

EMR 9.48 0.81 5.27 0.14* 0.38* 0.32* 0.00* 0.01* 0.00* 0.14 0.77 0.52

DEV 10.13 2.68 6.43 0.21* 0.28* 0.21* 0.02* 0.06* 0.02* 0.21 0.76 0.51

IMP 7.46 2.74 5.69 0.20* 0.24* 0.21* 0.01* 0.02* 0.02* 0.30 0.69 0.39

DSC 8.66 1.58 5.45 0.17* 0.30* 0.14* 0.02* 0.05* 0.00 0.32 0.64 0.35

TEX 7.78 1.46 5.87 0.15* 0.34* 0.06* 0.01* 0.06* 0.00 0.38 0.57 0.28

TST 8.92 2.12 6.02 0.19* 0.11* 0.09* 0.01* 0.09* 0.00 0.50 0.57 0.28

RHI 8.77 2.70 7.29 0.09* 0.57* 0.08* 0.02* 0.03* 0.01* 0.21 0.56 0.30

SHD 7.05 0.39 4.11 0.12* 0.43* 0.06* 0.00* 0.01* 0.00 0.38 0.53 0.23

SCA 9.27 2.76 7.71 0.10* 0.32* 0.14* 0.00 0.06* 0.04* 0.35 0.44 0.22
fro
Descriptive statistics of the adjusted entry means (Max, Min, Mean) were derived frommodel 2. The variance components were derived based on model 3. Heritabilities (h2) were calculated from

the given genotypic variance (s 2
ɡ ) and the mean difference of two adjusted entry means of the entries. Significance of the model parameters was calculated by a likelihood ratio test (a = 0.05). s 2

ɡ

genotypic variance, s 2
e environmental variance, s 2

(ɡe) genotype-environment interaction variance, s 2
b variance of the block nested in the environment, s 2

r variance of therow nested in the block

and environment, s 2
h variance of the column nested in the block and environment, s 2

Є residual variance, h2 heritability, h2plot heritability on a plot basis. For abbreviations of the traits see Table 1.

∗ P< 0.05
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Thereby, the inter- and intra- population variance differed

significantly from each other for each trait except SKC (F-ratio

test, a = 0.05). Thus, 11 out of the 26 traits showed a significantly

higher inter-population variance s 2
p than intrapopulation variance

s 2
a , while the opposite was true for the other 14 traits. Thereby,

higher heritable traits were overall more strongly influenced by the

inter-population variance, while lower heritable traits were on

average more strongly influenced by the intra-population

variance. Furthermore, the tuber quality traits were more

frequently (Fishers exact test, a = 0.05) appearing in the group of

traits with a higher inter- than intra-population variance, where the

opposite was true for the agronomic traits.
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The above presented s 2
a values correspond to an average of the

intra-population variance across all populations. However, we

observed considerable differences in the magnitude of intra-

population variation between the different populations for each

trait (Supplementary Figure S4). All traits showed a significant

(a = 0.05) heterogeneity of the intra-population variance.

Furthermore, for all traits, except BRU, CR8, IMP, DSC, RHI,

and SHD, at least one population displayed 50% or more of the

total variance and, thus, had a variance that exceeded noticeably

the mean of the heterogeneous intra-population variances. Thus,

there were single populations with a high intrapopulation

variance. Nevertheless, many populations had zero variance or
FIGURE 1

Analysis of the differences between the environments. AMMI biplots of the check data for the traits with the highest and lowest explained variance
for the first two principal components, emergence (EMR) (A) and eye depth (EYE) (B), respectively. Procrustes analysis of the environments across all
traits as result from the single AMMI analyses for all traits, where a correction of the breeding company effect has been performed (C). Heatmap of
the variance components as proportion of the total variance, derived from model 3 with heterogeneous residual variances across the environments
(D). Significance of the variance components was tested by likelihood ratio tests (a = 0.05). NA-values are indicated in gray, if for this location no

data were available. s2
g genotypic variance, s2

e environmental variance, s2
(ge) genotype-environment interaction variance, s2

b variance of the block

nested in the environment, s2
r variance of the row nested in the block and environment, s2

h variance of the column nested in the block and

environment, s2
Єj

heterogeneous residual variance effect, with s2
Є(Bx _ xx _ Lx) residual variance for each environment indicated by breeder (Bx), year (xx)

and location (Lx). For abbreviations of the traits see Table 1.
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variances were fixed at their boundary in the model fitting in order

for the model to converge. This was especially the case for traits

with low heritability on an entry mean basis. For example, the trait

taste (TST) showed the highest proportion of populations with

zero variance (49%), while in flesh color (FLE) no population

showed a zero variance. On average, 15.9% of the populations had

zero variance across traits.

The variance of each population was correlated to the respective

mean value of each population, where the latter was the mean of the

AEMs from model 3 with heterogeneous residual variances. Across

all traits, no obvious trend in the correlations was observed

(Supplementary Figure S5) and the mean of the correlations

across all 26 traits was 0.04. The traits FRI and TUS showed a

strong positive correlation between the variance of a population and

the respective population mean (0.76 and 0.73, respectively), while

the traits TUN, IMP and RHI showed a strong negative correlation

(-0.57, -0.50 and -0.50, respectively).

The variance of population-environment interaction was for all

traits considerably smaller than the genotype-environment

interaction variance of the checks (Supplementary Figure S6). Its

relative variance was maximal 0.06 of the total variance for after

cooking discoloration.
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We examined the effect of preselection of clones in the single

hills stage on variance components in the later stages of the

breeding program. Therefore, for each trait, the genotypic

variance estimates of the reduced set, which comprised only

clones without discard status, were compared to the mean values

of the genotypic variance derived from the stratified samples of the

complete dataset. No clear trend of the absolute genotypic variances

was observed across all traits (Table 3). For 13 out of 26 traits, the

genotypic variance was higher for the complete dataset compared to

the one without clones with a discard status. The change in the

genotypic variance from the reduced data set to the complete

dataset ranged from -17.72% for RHI to 100% for SCA and 33.9%

for TUS. Across all 26 traits, the mean change of the genotypic

variance from the reduced set to the complete set was 6.8%, and the

median was 0.3% (Supplementary Figure S7).

Furthermore, we analyzed the differences between the AEMs of

the clones for each discard status and for each market segment

derived by model 3 with heterogeneous error variances

(Supplementary Figure S8). Again, there was no consistent trend

between the traits with a high change in the variance and the traits

that showed significant differences between the AEMs of the two

groups (Supplementary Figure S8). No trait showed a significant
FIGURE 2

Heatmap of the variances of model 7 relative to the total variance, separating inter- and intra-population variance. Significance of the variance

components was tested by likelihood ratio tests (a = 0.05). s2
g genotypic variance of the single entries, s2

p variance across the popuations (inter-

population variance), s2
a genotypic variance within the populations for population entries (intra-population variance), s2

e environmental variance, s2
(ge)

genotype-environment interaction variance, s2
b variance of the block nested in the environment, s2

r variance of the row nested in the block and

environment, s2
h variance of the column nested in the block and environment, s2

Є residual variance. For abbreviations of the traits see Table 1.
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difference between the AEMs of clones with discard status 0 and 1

for all four market segments (Supplementary Figure S8).

Furthermore, significant differences in the mean of the AEMs per

discard status and market segment did not inevitably indicate an

improvement in the reduced set, as there were also some negative

significant differences between the means, where the set with

discard status had the higher mean value compared to the set

without discard status (Supplementary Figure S9).

In a last next step, a bivariate analysis was performed to

compute correlations between the examined traits. The genotypic

correlations were in general similar in sign but higher in magnitude
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than the corresponding phenotypic correlations (Supplementary

Figure S10). Out of the 325 correlations, 282 correlations were

similar in sign. Of these 282 correlations, the absolute value of the

genotypic correlations was for 245 cases bigger than the absolute

value of the phenotypic correlations. Genotypic correlations ranged

from -0.99 to 0.94, while phenotypic correlations ranged from -0.97

to 0.67.

The biggest difference between the genotypic and phenotypic

correlation was found for the traits BRU and DSC (-0.48 and -0.18,

respectively). Strong genotypic correlations (above 0.5 or below

-0.5) were found within specific clusters of traits (Figure 3A). The

fractions of different sized tubers had strong correlations among

each other as well as with tuber size, which was then further

correlated with yield. Another cluster was defined by crisps color

after storage at 4°C and 8°C, and french fry color, where chips colors

were also positively correlated to starch content. Within this cluster

of traits, starch content was positively correlated to susceptibility to

bruising, which in turn was negatively correlated to longitudinal

tuber shape, which again was positively correlated to eye depth.

Furthermore, the susceptibility to bruising was also positively

correlated to polyphenol oxidase activity and also directly

negatively correlated to eye depth. Two further small clusters

were found, which were defined by the correlations of foliage

development and emergence, as well as the correlation of skin

color and skin texture. Eight traits were not strongly correlated to

any other trait. For 20 additional pairs of traits, genotypic

correlations were found in the medium range above 0.3 and for

26 pairs of traits negative correlations were found in the range -0.3

to -0.5 (Supplementary Figure S10).

To check if there are differences in the correlations between

the clones from different market segments, the bivariate analysis

was also performed for clones from each market segment

individually. Again, the traits FRI and CR4 were not considered

in this analysis, as their values were not available for all market

segments. For some trait-combinations, market segment specific

genotypic correlations were observed, indicated by the standard

deviations among these correlation coefficients (Figure 3B). A

total of 34 trait combinations had a standard deviation of their

market segment specific correlations > 0.2. Especially correlations

including the traits impression (7), development (6), taste (6) and

tuber shape diagonally (6) differed between the market segments,

while correlations including the traits flesh color or eye depth were

not influenced by the respective market segment. However, we

observed no obvious trend that traits that are strongly under

selection in some market segments (Supplementary Table S1)

showed higher correlation differences between the different

market segments than traits that are less strong under selection

(Supplementary Figure S11).

Also, genetic correlations for the subsets with discard status 0

(reduced set) and with discard status 1 and 2 (set D12) were

calculated and compared with the genetic correlations of the

complete set. Overall, the main clusters of correlations remained

similar across all three sets. This has been proven by performing

Mantel’s tests of each combination of the two genetic correlation

matrices for the two subsets and the complete set. Highly significant
TABLE 3 Comparison of genotypic variance components with and
without preselection.

�s2
gstrat s2

greduced
D[%]

STA 4.91 5.60 -14.03

SHL 1.47 1.50 -1.94

PPO 3.01 2.69 10.74

FLE 0.50 0.49 3.71

BRU 508.25 516.68 -1.66

TUL 195.32 204.53 -4.71

SKC 0.53 0.52 1.74

CR8 1.23 1.33 -8.18

MAT 0.87 0.70 19.39

TUS 5.87 3.88 33.91

EYE 0.65 0.68 -4.15

SKT 0.31 0.35 -14.26

TUN 140.93 151.33 -7.38

YLD 10.59 11.97 -13.05

SIZ 0.34 0.28 16.67

CR4 0.77 0.52 32.82

FRI 0.62 0.63 -2.46

EMR 0.52 0.50 4.69

DEV 0.29 0.25 11.76

IMP 0.19 0.15 23.33

DSC 0.39 0.43 -9.92

TEX 0.27 0.23 14.02

TST 0.13 0.13 -1.17

RHI 0.25 0.30 -17.72

SHD 0.31 0.30 5.10

SCA 0.11 0.00 100.00
�s 2
ɡstrat

is the mean genotypic variance of 50 stratified sampling rounds of the complete data set,

and s 2
ɡreduced

is the genotypic variance of the data set reduced by clones with a discard status.

D shows the deviation from s 2
ɡreduced

and �s 2
ɡstrat

. Variance components were derived by model 3

with a heterogeneous effect ofthe residuals across environments. For abbreviations of the traits
see Table 1.
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(a = 0.05) correlations higher than 0.9 were detected for all

combinations (0.99, 0.96 and 0.92 for the complete set and

reduced set, complete set and set D12, and reduced set and set

D12 respectively, Supplementary Figure S12).
Discussion

Computer simulations are a powerful tool to optimize the

resource allocation of breeding programs and, thus, allow to

optimally choose the number of clones selected or the stage of the

implementation of genomic prediction, as it was for example shown

by Wu et al. (2023). For all computer simulations, one has to

assume variance components, e.g. the ratio of genetic variance to

error variance or environmental variance, as well as correlations

among traits, if selection in a multi-trait scenario should be

examined. As the assumed variance components influence the

results of the computer simulations, these should be selected from

comprehensive empirical studies such as ours.
Frontiers in Plant Science 11
Factors contributing to phenotypic
variation of potato

The variance components observed in this study showed high trait

specific differences (Table 2). E.g., the variance of yield was highly

influenced by the environment which was not the case for starch

content, which is in agreement with previous studies (e.g. Flis et al.,

2014). Furthermore, the high environmental variance for traits that

were related to diseases like Scab and Rhizoctonia symptoms could be

due to the fact that in our study disease rates were assessed under

natural infection and, thus, some environments with only weak disease

infestation were included. Therefore, no or only little variation in the

trait scores between the different clones (Navarro et al., 2015) could be

observed. In general, the infestation pressure is without a systematic

incubation of those diseases highly variable between the environments,

which also explains the deviations of those traits to the other traits in

the later analyses. Our findings illustrate the importance of optimizing

the phenotypic evaluations performed in commercial breeding

programs separately for the different traits.
FIGURE 3

Network representation of the genotypic correlations of the 26 evaluated potato traits derived from the bivariate analyses across all clones (A). Edges
indicate correlations greater than 0.25 or smaller than -0.25. Standard deviations of the genotypic correlations calculated for each market segment
separately (B). Edges indicate standard deviations of the correlations for those trait combination higher than 0.2. For abbreviations of the traits
see Table 1.
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Heritability values were moderate to high for most traits

examined in this study. This shows that the general design of the

study led to a sufficient part of genetic factors that explain the

differences among the adjusted entry means. Therefore, the data set

is also suitable for later genetic analyses, such as genome-wide

association mapping or genomic prediction.

For the traits that were also assessed in the studies of Bradshaw

et al. (2008) (9) and Slater et al. (2014) (4), heritabilities of similar

size were observed. While heritability estimates for maturity were

high (> 0.8) for all studies, that of after cooking discoloration was of

medium heritability (0.54 - 0.64). The high heritability observed for

yield in our study was only reported by Bradshaw et al. (2008) but

not by Slater et al. (2014). This might be due to the inclusion of

interaction effects in our and the former study, which has the

potential to decrease the error variance. Differences in the

heritabilities can be also due to the choice of the environments

that allowed a more reliable differentiation of the phenotypes, or the

examined genetic material.

The significant improvement of model 3 using heterogeneous

residual variances across the environments is in agreement with

earlier studies in other crops (Casanoves et al., 2005; Hu et al.,

2013). In our study, also large differences between the residual

variances of the environments were reported for all traits

(Figure 1D). These high differences show that including the

heterogeneous residual variances in the model will improve

model predictions for follow up analyses.

The variation of the residual variances across the environments

was in general smaller for traits with higher heritability, thus, less

heritable traits did not just have a higher mean residual, but also the

variance of the residuals between the environments was bigger. One

possible explanation for this heterogeneity of the residuals across

environments is undetected genotype-environment interaction of

the entries, as the genotype-environment interaction was only

estimated for the replicated checks. Across all traits, the locations

led to bigger differences in the residual variances than the years.

Nevertheless, we observed no trends in the distribution of the high

and low residual variances per environment across the examined

traits. This indicated on one side that the experiments were

performed with high quality across all environments. On the

other side this shows that breeding companies need to develop

trait specific strategies in order to systematically maintain or even

improve the precision of the performed experiments.
Effect of preselection in the single hills
stage on trait variances and means in the
later stages of the breeding program

An addition of clones that would in a commercial breeding

program have been discarded in the single hills stage to the analyses

did not inevitably increase the genetic variance of traits that are

influencing the market performance (Table 3). Only half of the

evaluated traits did have a higher genotypic variance for the full data

set, and differences between the genotypic variance of both data sets
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were for many traits rather small. The higher genotypic variance in

the set of selected clones for some traits might be due to missing

correlations between the considered traits and the traits used for

early selection. An additional explanation is that diversifying

selection among the market segments leads to this increased

genotypic variance. This explanation is in accordance with our

observation that the genotypic variance for STA is significantly

lower in the set of selected clones compared to the set of selected

and discarded clones in individual market segments (data not

shown) whereas a higher genotypic variance was observed for the

set of selected clones compared to the set of selected and discarded

clones across all market segments. To overcome these problems, it

might be useful to use these early evaluations not just for selection

decisions, but also store them for later analyses and investigate the

correlation of these traits in early and later phases of the breeding

program. Furthermore, no obvious trend in the adjusted entry

means of the clones with different discard status across the

market segments was observed (Supplementary Figure S8). In

addition, also the main correlation patterns among traits did not

vary when analyzing the complete set or subsets of only clones with

discard status 0 compared to clones with discard status 1 and 2.

Nevertheless, within the individual market segments,

differences between adjusted entry means of clones with and

without discard status were observed for specific traits. For

example in the market segment FF, the mean of the fraction of

large tubers (TUL) was significantly higher in the clones without

discard status compared to the mean of the clones with discard

status 1, and this is one main trait in the respective market segment

(Bonierbale et al., 2020). However, this improvement is neither

consistent within the trait and market segment, as the mean of

clones with discard status 0 was not significantly higher than the

mean of clones with discard status 2, nor was this trend observable

for each important trait in the respective or the other market

segments (e.g. there was no significant difference in the mean of

the starch content between the clones with different discard status

in the market segment ST). On one side, these observations

illustrated that the preselection at the single hills stage does not

negatively impact the genetic variability of the target traits typically

assessed later in the breeding program. This observation suggests

that the traits assessed in single hills stages are not correlated with

the traits influencing market success. This is in accordance with our

observation of no systematically significant differences between the

means of the clones with different discard status. Our finding is in

agreement to earlier studies which concluded that selection at the

seedling stage is ineffective (Anderson and Howard, 1981; Brown,

1987). Therefore, a less restrictive phenotypic selection method may

be advantageous at this stage (Maris, 1988). Instead, genomic

selection (Slater et al., 2016) has been recommended for this

stage. In contrast, the results of Wu et al. (2023) suggest that

because of the cost of genotyping, an application of genomic

selection in the single hills stage is not recommended. However,

phenomic selection as evaluated by Maggiorelli et al. (2024) might

be an ideal tool to integrate predictive breeding approaches at this

stage of the breeding program.
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Inter- vs. intra-population variances

An important choice to be made by breeders is the number of

populations vs. the size of individual populations, when the total

number of progenies is limited. This choice should be made

dependent on the inter- vs. intra-population variance.

Our analyses suggested the presence of a significant population-

as well as a genotype-within-population-effect for all traits

(Figure 2). This finding is in agreement with the results from

Martins et al. (2023) for yield and specific gravity. The

homogeneous segregation variance analysis revealed trait-specific

differences in the origin of variance (Figure 2), i.e. the relative

importance of inter- and intra-population variance varied

considerably across traits. The choice of the right population and

therewith their parents is more important for traits with high inter-

population variance, such as STA, SHL, or PPO. Thus, in case of a

high inter-population variance, breeders will aim for a high number

of populations with only small sizes to then select for the best

population, as the clones within the population might not vary that

much from each other. This procedure was also described by

Bradshaw et al. (1998), who found a general improvement in

selection through early-generation family selection and later

within family selection.

Furthermore, our results suggested the presence of significant

differences in the size of the intra-population variance

(Supplementary Figure S4). However, in addition to the

segregating variance also the mean of the population is an

important parameter influencing the gain of selection. We have

observed a trait specific association between the segregating

variance and the population mean (Supplementary Figure S5).

This observation illustrates the additional importance of choosing

the right population not only with respect to the mean but also the

segregation variance. Furthermore, our study sets the stage for

future research on the prediction of segregation variance in

populations of tetraploid potato, as our results can be used as a

base for further analyses.
Interaction of the populations with
the environment

Theoretical considerations suggest that unreplicated

experiments at multiple environments are the method of choice

to increase the gain of selection (Moehring et al., 2014; Paget et al.,

2017). If also in such experiments information about the

interaction with the environment is important, one can interpret

the residuals as being completely caused by interactions with the

environment. An additional method is the use of molecular

markers to separate G*E from the error variance (Malosetti et al.,

2013). In case of the absence of molecular genetic information, an

alternative method would be to assess population-environment

interactions and use these for selection decisions on the level of

segregating populations. The observation of significant population

environment interactions for all traits except CR4 indicate in

contrast to the results from Melo et al. (2011) that this is

possible even without the availability of genome wide marker
Frontiers in Plant Science 13
profiles. However, the results of our study (Supplementary Figure

S6) indicated that the variance of the interaction of a population

with the environment is small compared to the interaction of single

clones with the environment. The checks in our study are elite

varieties and, thus, were selected for their high environmental

stability whereas the entries that are considered for estimating

population-environment interaction are less strongly preselected.

Therefore, we expect that the differences between both variances

would be even stronger when comparing them based on the same

genotypes. Thus, we recommend to exploit in addition to these

population-environment interactions also the possibility of

predicting genotype-environment interactions e.g. from genome-

wide molecular marker profiles (Heslot et al., 2014; Cuevas

et al., 2016).
Conclusion

This study investigated the source of variation for various

important potato traits. These reported variance components

can be used as base for further simulation studies, which are

used to optimally plan the resource allocation of a breeding

program. Furthermore, our results suggested that including the

heterogeneous residual variances in the model might improve

model predictions for follow up analyses. In addition, breeding

companies need to develop trait specific strategies in order to

systematically maintain or even improve the precision of the

performed experiments. Our observations furthermore suggested

that the traits assessed in the single hills stage are not correlated

with the traits influencing market success and, thus, ways to select

in the single hills stage should be revisited. In addition, our results

revealed the presence of significant differences in the importance of

the intra- vs. inter-population variance across traits, which has

implications on the selection procedure. Furthermore, our study

sets the stage for future research on the prediction of segregation

variance in populations of tetraploid potato. Finally, the correlation

patterns among the traits relevant to potato breeding reported in

our study can be further used to evaluate the joint response to

selection in multi-trait selection schemes.
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