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The Leaf Area Index (LAI) is an essential parameter that affects the exchange of

energy and materials between the vegetative canopy and the surrounding

environment. Estimating LAI using machine learning models with remote

sensing data has become a prevalent method for large-scale LAI estimation.

However, existing machine learning models have exhibited various flaws,

hindering the accurate estimation of LAI. Thus, a new method for large-scale

estimation of Dendrocalamus giganteus LAI was proposed, which integrates

ICESat-2/ATLAS, and Sentinel-1/-2 data, and refines machine learning models

through the application of Bayesian Optimization (BO), Particle Swarm

Optimization (PSO), Genetic Algorithms (GA), and Simulated Annealing (SA).

First, spatial interpolation was performed using the Sequential Gaussian

Conditional Simulation (SGCS) method. Then, multi-source remote sensing

data were leveraged to optimize feature variables through the Pearson

correlation coefficient approach. Subsequently, optimization algorithms were

applied to Random Forest Regression (RFR), Gradient Boosting Regression Tree

(GBRT), and Support Vector Machine Regression (SVR) models, leading to

efficient large-scale LAI estimation. The results showed that the BO-GBRT

model achieved high accuracy in LAI estimation, with a coefficient of

determination (R2) of 0.922, a root mean square error (RMSE) of 0.263, a mean

absolute error (MAE) of 0.187, and an overall estimation accuracy (P1) of 92.38%.

Compared to existing machine learning methods, the proposed approach

demonstrated superior performance. This method holds significant potential

for large-scale forest LAI inversion and can facilitate further research on other

forest structure parameters.
KEYWORDS

ICESat-2/ATLAS, sentinel data, remote sensing data, sequential gaussian conditional
simulation, optimization algorithm, LAI, machine learning models
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1 Introduction

The Leaf Area Index (LAI) quantifies the total green leaf surface

per unit of ground area, serving as a metric key for quantifying leaf

area density within an ecosystem (Fang et al., 2019). LAI is a

dimensionless parameter that exhibits considerable variability based

on the growing environment, species-specific traits, leaf

morphology, and other associated characteristics. The parameter

is associated with numerous elements including the type of

vegetation, the stage of growth, the angle of leaf orientation, the

characteristics of leaf clusters, and the biomass of non-leaf

components, and it is affected by the methods used for

measurement. It is important for the assessment of vegetation

cover and ecosystem health (Chen and Black, 1992).

Consequently, the search for scientifically valid and efficient

approaches to acquire large-scale spatial distribution data of

vegetation LAI has become a prominent research priority in the

field of forestry. While traditional direct ground survey methods can

achieve high measurement accuracy, they frequently require a

significant investment of both time and funds. Additionally, these

methods are limited to point-scale measurements, making it

challenging to obtain detailed spatial distribution data for LAI.

This limitation poses significant challenges for practical

applications, as it prevents researchers from effectively capturing

the broader landscape variability of LAI, thereby hindering

ecological assessments and management strategies.

Accurately assessing and monitoring LAI is critical, as it not

only enhances the management of forest resources but also

provides essential scientific insights for addressing climate

change. Moreover, the continuous advancement of research

techniques and data sources enables researchers to better

capture and analyze variations in LAI across different temporal

and spatial scales, thereby facilitating deeper exploration of related

scientific inquiries and practical applications. The swift progress

in satellite remote sensing technology has greatly expanded the

application of LiDAR (Light Detection and Ranging), microwave,

and optical remote sensing for estimating forest structural

parameters, providing higher accuracy and resolution. Optical

remote sensing is capable of acquiring data on the horizontal

structure of forest canopies. In contrast, microwave remote

sensing and LiDAR are proficient in providing information

about the vertical arrangement of forest structures. Although

optical remote sensing successfully addresses the limitations of

conventional methods, it presents some challenges. For example,

both optical and microwave remote sensing are vulnerable to

topographical influences, and spectral signals may experience

saturation when analyzed on a regional scale (Wulder et al.,

2010). Airborne LiDAR stands as a sophisticated remote sensing

technique, adept at precisely capturing vegetation structure data

across various elevations, and facilitating accurate LAI inversion.

Despite its advanced capabilities, the technology’s widespread

application is restricted by the expensive nature of the

equipment, the considerable costs involved in data collection,

and its tendency to gather strip-shaped data over relatively small

regions (Yan et al., 2019). Synthetic Aperture Radar (SAR) offers a

significant advantage in that it can operate independently of
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weather conditions, allowing for continuous, all-weather

monitoring of vegetation LAI. This capability enables round-

the-clock data collection, making SAR particularly valuable in

regions with frequent cloud cover or adverse weather. However, its

broader application has been constrained by several factors,

including the inherent characteristics of the sensor, the

structural complexity of the vegetation canopy, and the physical

properties of the surface. These limitations can introduce

uncertainties in LAI estimation and reduce the overall accuracy

and reliability of the data (Torres et al., 2017). As a newly

developing technology in the field of active remote sensing,

satellite-mounted LiDAR combines multiple existing techniques

to achieve enhanced resolution and precision. This technology is

capable of capturing detailed structural characteristics and surface

changes of terrestrial objects with greater accuracy compared to

traditional methods. Its ability to provide high-density, three-

dimensional spatial data makes it particularly valuable for

monitoring dynamic processes and detecting subtle variations in

the Earth ’s surface, offering significant advantages for

environmental, ecological, and geophysical applications. This

technology effectively solves the problem of “saturation” in

traditional optical images and can accurately obtain detailed

parameter information of the research object (Lefsky et al.,

2002). ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2)/

ATLAS (Advanced Topographic Laser Altimeter System),

provides exceptional vertical resolution and significantly

improved accuracy in elevation measurements. This satellite-

based LiDAR system, known for its extensive measurement

range and improved resolution, has become widely utilized for

precise elevation assessments and data monitoring. It is

particularly effective in applications involving polar ice caps, sea

ice, and forest vegetation (Narine et al., 2020).

Dendrocalamus giganteus is widely distributed in the southeast

to southwest regions of Yunnan, known for its tall poles and wide

range of applications. Thanks to its outstanding ecological

adaptability and quick growth rate, it is widely appreciated in

interior decor and aesthetic applications. It is often used in the

creation of furnishings, ornamental items, and various construction

supplies, establishing itself as a vital cash crop in Yunnan.

Dendrocalamus giganteus is commonly used as a building

material and gabion due to its sturdy material and large size, and

is receiving increasing interest because of its carbon sequestration

potential and environmentally sustainable characteristics, in

response to the rising demand for green and eco-friendly

materials. The growth of the Dendrocalamus giganteus bamboo

sector is anticipated to enhance the earnings of local bamboo

cultivators and drive regional economic development while also

significantly contributing to the promotion of environmental

sustainability. This growth will contribute to ecosystem

conservation, enhance carbon sequestration to mitigate climate

change, and protect biodiversity. Although various models have

been developed over the past decade to predict the impact of climate

change on biodiversity, the models have some shortcomings, such

as large spatial scales and failure to consider plant adaptability

(Willis and Bhagwat, 2009). As global climate change intensifies,

bamboo forests, as important ecosystems, have become a research
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https://doi.org/10.3389/fpls.2024.1505414
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qin et al. 10.3389/fpls.2024.1505414
focus in terms of their response and adaptability to global climate

change. Bamboo forests not only have high biodiversity, but also

play an important role in carbon storage and ecosystem services

(Hammerschlag et al., 2022). Therefore, the development of the

Dendrocalamus giganteus sector represents both an engine for

economic advancement and a significant measure for

environmental protection.

At the present time, the research on LAI is mainly concentrated

in the forest field, while the research on LAI in bamboo forests,

especially Dendrocalamus giganteus, is relatively scarce. Therefore,

the estimation of LAI for Dendrocalamus giganteus is conducted

using ICESat-2/ATLAS alongside various remote sensing

technologies, showing broad application prospects. While

numerous studies have employed either traditional methods or

remote sensing approaches to assess the LAI of vegetation, the

majority depend solely on a single data source. This dependence

may restrict the accuracy and comprehensiveness of the

assessments, suggesting the need for more integrative approaches

that combine multiple data sources to improve the precision of LAI

estimations. This study employed the Sequential Gaussian

Conditional Simulation (SGCS) technique and incorporated

multiple sources of remote sensing data. Moreover, the Random

Forest Regression (RFR), Gradient Boosting Regression Trees

(GBRT), and Support Vector Machine Regression (SVR) models

were enhanced by utilizing optimization techniques such as

Bayesian Optimization (BO), Particle Swarm Optimization (PSO),

Genetic Algorithms (GA), and Simulated Annealing (SA).

Construct the best Dendrocalamus giganteus LAI remote sensing

estimation model in the study area. This research offers a significant

example for promoting sustainable bamboo forestry development
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in China, and for evaluating carbon sequestration in both forest

ecosystems and bamboo plantations. The findings of this study

carry substantial significance for fostering technological progress in

bamboo forestry, boosting the economic value of bamboo

ecosystems, and enhancing their ecological advantages.
2 Materials

2.1 Study area

In this study, Xinping County, located in Yuxi City, Yunnan

Province, China, was selected as the study area, which is between

23°38′~24°26′N and 101°16′~102°16′E, and is geographically

located as shown in Figure 1. Xinping County, situated southwest

of Yunnan Province’s center, lies within the southwestern region of

Yuxi City. Covering a total area of 4,223 km2, it represents 27.6% of

the overall land area of Yuxi City.
2.2 Datasets and preprocessing

2.2.1 Measured data of sample plot
This study involved the establishment of 51 circular plots, each

measuring 8.5 m in radius, situated in Xinping County, within Yuxi

City, Yunnan Province. This data was collected on January 8, 2024,

and Figure 1 depicts the arrangement of the sample plots. In the

process of sample plot design, firstly, based on the findings from the

Yunnan Province Forest Resources Planning and Design Survey,

and using the Thousand Search Moment SR3 (Pro version)
FIGURE 1

Location map of the study area. (A) Location of Yunnan in China; (B) Location of Xinping County in Yunnan; (C) Distribution of 51 samples in the
study area.
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differential localizer (SR3, Pro version, Qianxun SI, Chengdu,

Sichuan, China, https://www.qxwz.com/) in the fixed solution

state of the center coordinates of the sample circle, to ensure the

accuracy of the coordinates of the sample plots. In the process of

data acquisition, the hemisphere photography method is adopted

(Zeng et al., 2015), that is, 9 shooting points are evenly selected in

the sample circle to ensure that each shooting point can cover the

distribution area of the bamboo canopy, and then the fisheye lens is

used to accurately shoot each point to ensure that each sample point

can capture 9 fisheye photos. To guarantee accurate measurement

results, it is essential that the sample site maintains suitable lighting

conditions, and direct sunlight should be avoided when shooting, so

as not to accurately reflect the real situation of the sample. In the

process of pre-processing the fisheye photos of 51 sample plots

conforming to the standard, all images were initially converted to

JPG format. Subsequently, their aspect ratios were adjusted to a

consistent size of 3000×4000 pixels. The images were subsequently

processed using CANEYE (CANEYE, version 6.495, INRA, Paris,

France, https://www6.paca.inrae.fr/can-eye/), a hemispherical

image analysis software developed in MATLAB (MATLAB,

version R2018a, MathWorks, Natick, MA, USA, https://

www.mathworks.com/), with appropriate parameters configured.

In the CANEYE software, first input the image resolution of

3000×4000, select “Create” in the “Optical Center and Projection

Function”, set the “Line” value to 1228, the “Column” value to 1840,

and the “P1” value to 0.0305472, observe the “Distance to the

optical center (pixels)”, where Zenith (°) = P1.D (pix), then set the

“COI (°)” value to 45, and in the “Fapar Computation” box, enter

the values of “Day of Year” and “Latitude (%)” according to the

photo acquisition time and location information at the time of

acquisition, so as to perform calculation analysis. After analysis, LAI

values for Dendrocalamus giganteus were extracted from 51

sample plots.

2.2.2 Spaceborne LiDAR data
ICESat-2, the latest laser altimeter developed globally, was

launched on September 15, 2018. It operates at an approximate

orbital altitude of 500 km, with a 92° inclination, covering latitudes

from 88°S to 88°N. The satellite completes one cycle every 91 days,

tracing 1,387 orbits during each period (Markus et al., 2017). This

study utilized the complete range of ATL03 and ATL08 data

products, covering the entire area of investigation. These datasets

were systematically acquired over a period spanning from January

2022 to August 2023, ensuring a comprehensive temporal and

spatial coverage for the analysis. This dataset consists of 44 data

entries, 132 tracks, and a total of 264 photonic track beams across

the two categories. The data from ICESat-2/ATLAS used in this

research is openly accessible and can be retrieved via the Earthdata

portal at https://search.earthdata.nasa.gov/.

2.2.3 Synthetic aperture radar data and optical
image data

The Sentinel-1 satellite series, which includes Sentinel-1A and

Sentinel-1B, are high-resolution synthetic aperture radar (SAR)

satellites. Sentinel-1A was launched on April 3, 2014, followed by
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Sentinel-1B on April 25, 2016. Situated in a nearly polar, sun-

synchronous orbit roughly 700 kilometers above Earth, these

satellites deliver consistent global coverage, facilitating

applications in land monitoring, disaster management, and

climate change research. With a revisit interval of 12 days, the

satellite ensures frequent and regular data acquisition, making it

well-suited for monitoring dynamic environmental processes. Their

ability to acquire data at regular intervals enhances the accuracy of

long-term studies and supports informed decision-making in

sustainable land use and environmental management. These two

satellites operate 180 degrees apart in the same orbital plane,

ensuring comprehensive coverage and data acquisition. Satellite

sensors make use of C-band technology to ensure extensive global

coverage and facilitate robust data transmission. These sensors

operate across four distinct polarization configurations—VV, VH,

HH, and HV—while maintaining a spatial resolution of 10 meters,

thereby enhancing the precision and reliability of the data collected

(Torres et al., 2012).

Sentinel-2 is an advanced multi-spectral imaging satellite

system composed of two individual satellites, Sentinel-2A and

Sentinel-2B satellites each have a 10-day revisit cycle, and provide

consistent temporal coverage; however, when utilized together, they

can achieve a combined revisit period of just 5 days. The Sentinel-

2A satellite was successfully launched on June 23, 2015. Following

this, the Sentinel-2B satellite was launched on March 7, 2017. This

satellite constellation features a multispectral imager (MSI)

positioned at an altitude of 786 km, which captures data across

13 spectral bands. The MSI’s swath width extends to 290 km,

covering a spectral range that includes visible light, near-infrared,

and shortwave infrared. The spatial resolution for different bands is

as follows: B2 (blue), B3 (green), B4 (red), and B8 (Near Infrared)

have a spatial resolution of 10 m; B5, B6, B7, and B8A (vegetation

red edge bands), along with B11 and B12, have a spatial resolution

of 20 m; and B1, B9, and B10 have a spatial resolution of 60 m

(Drusch et al., 2012). The remote sensing data obtained from

Sentinel-1 and Sentinel-2 utilized in this research can be freely

accessed through the Google Earth Engine (GEE, https://

earthengine.google.com/) platform.
3 Methods

3.1 Research design

In this research, the SGCS method based on the simple Kriging

method was first used to interpolate ICESat-2/ATLAS light spots to

obtain planar grid information, and then the ICESat-2/ATLAS

variables were coordinated with Sentinel-1/-2 variables. The

relationship between variables and measured LAI was assessed

using the Pearson correlation coefficient. RFR, GBRT, and SVR

were respectively used to construct LAI estimation models. Then,

BO, PSO, GA, and SA were used to optimize the RFR, GBRT, and

SVR models respectively. Then, the estimation model of LAI was

constructed using BO-RFR, BO-GBRT, BO-SVR, PSO-RFR, PSO-

GBRT, PSO-SVR, GA-RFR, GA-GBRT, GA-SVR, SA-RFR, SA-
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GBRT and SA-SVR methods. A spatial distribution map of LAI was

generated using the optimal model. Figure 2 illustrates the technical

approach employed in this research.

3.1.1 Geostatistical method
3.1.1.1 Variable handling

To enhance the speed of model convergence, all variables are

normalized to adjust their values to fall within the ranges of [0,1] or

[-1,1] before performing variance function analysis. Following this

step, each variable’s data structure is assessed through a normality

test. To better approximate a normal distribution, variables with

non-normal distributions are transformed using a cube root

function. This transformation ensures the data is appropriately

conditioned for the variance function analysis. The following

formula is applied:

Y = y−ymin
ymax−ymin

(1)

Note: Y denotes the outcome of the normalization procedure;

while y indicates the original value. Additionally, ymin is the smallest

value within the initial dataset, and ymax signifies the largest value in

the same dataset.
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3.1.1.2 Variogram function

The variogram function, commonly known as the semivariance

function, is essential in kriging interpolation and serves as a critical

analytical tool in the field of spatial statistics (Wang et al., 2022).

The theoretical model’s structural characteristics are defined by four

key parameters: the type of function, nugget variance (C0), sill (C0 +

C, with C indicating the partial sill), and range (a). The formula is as

follows:

g (h) = 1
2n(h) o

n(h)

i=1
½Z(Xi + h) − Z(Xi)�2 (2)

Note: g (h) is the variogram, where h is the distance between

points. n(h) is the number of sample pairs, and Z(Xi) and Z(Xi + h)

are the variable values at Xi and Xi + h.

3.1.1.3 Principle of method

Understanding the spatial complexity of forest ecosystems and

accurately estimating their structural parameters rely heavily on

geostatistical techniques. Among these, SGCS has emerged as a

particularly effective method. Rooted in the Monte Carlo

framework, this stochastic simulation technique allows for the
FIGURE 2

Technology roadmap.
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generation of multiple equally probable realizations of spatial

variables, capturing the inherent variability of vegetation structure

across expansive landscapes. Its capacity to account for spatial

variability and uncertainty provides a more comprehensive and

nuanced understanding of vegetation structure over extensive areas

than traditional deterministic methods (Berterretche et al., 2005).

Geostatistics is extensively utilized in the field of geosciences to

measure the uncertainty associated with regionalized variables

(Emery and Peláez, 2011). The Kriging interpolation technique,

commonly employed in the field of forestry, is noted for its

objectivity and low variance in estimation error. Despite this, the

attempt to minimize error variance may inadvertently produce a

smoothing effect, which could potentially bias the estimation of

overall spatial variability (Zhang et al., 2017). As a result, this

technique finds its primary application in localized estimations.

Unlike Kriging interpolation, SGCS employs Monte Carlo methods

to establish the probability distribution function from the initial

dataset. This approach that the variance of simulated values at each

location aligns with the original data’s Gaussian distribution,

effectively preventing the smoothing effect common to all spatial

estimators that aim to minimize mean squared error (Huang et al.,

2016; Olea and Pawlowsky, 1996; Qu et al., 2014). SGCS effectively

maintains the intensity of spatial variation and produces several

equally likely realizations at locations that have not been sampled,

thus aiding in the quantification of spatial uncertainty in geographic

attributes. Given that the acquired data frequently falls short of

meeting the simulation criteria, it is crucial to normalize the data

initially, followed by the application of inverse transformation to

the simulation outcomes (Luo et al., 2023).

3.1.2 LAI estimation model
3.1.2.1 Random forest regression

RFR is a method that combines several decision trees by

utilizing the concept of ensemble learning (Breiman, 2001). RF’s

random selection of the training sample makes it insensitive to data

noise and is not affected by the collinearity of the predictor (Rhodes

et al., 2023). The RFR model in this research was developed using

the “randomForest” package in the RStudio (RStudio, version 4.2.2,

Posit PBC, Boston, MA, USA, https://rstudio.com/) environment.

3.1.2.2 Gradient boosting regression trees

Unlike Random Forest Regression, GBRT is an integrated method

characterized by correction and enhancement (Friedman, 2001), which

offers the benefits of high predictive accuracy and rapid processing

speed, strong robustness to outliers, and is not easy to fall into
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overfitting. The GBRT model in this research was executed using the

“gbm” package available in RStudio.

3.1.2.3 Support vector machine regression

SVR is a machine learning algorithm commonly applied in

supervised learning tasks, extensively utilized in both classification

and regression analysis (Jiang et al., 2022). Because SVR focuses on

support vectors rather than the entire data set, support vector

machines also perform well on small training datasets. The SVR

model is implemented utilizing the “e1071” package within the

RStudio environment.

3.1.3 LAI estimation model
optimization algorithm
3.1.3.1 Bayesian optimization algorithm

BO is an active optimization algorithm proposed by Snoek et al

(Snoek et al., 2012). (Wang et al., 2023) in 2012, which is mainly

used to solve extreme value problems of functions with unknown

expressions. The core of the Bayesian optimization algorithm is

composed of two parts: a prior function and a collection function.

The prior function calculates the function mean and covariance of

each point through Gaussian process regression to obtain a

posterior probability. Then, the collection function is constructed

by improving the probability of finding the minimum value less

than the current function to select the next set of hyperparameters

(Shahriari et al., 2015). For the problem of Bayesian optimization

hyperparameters, in the hyperparameter search space c, the

Bayesian optimizer optimizes f through a finite number of

experiments in an iterative way to get the best combination of

hyperparameters. In this study, the “rBayesianOptimization”

language package in RStudio was used to realize the Bayesian

algorithm optimization of the model, and the algorithm flow is

shown in Figure 3.

x* = argmin
x∈c

f (x) (3)

Note: x* is the best combination of hyperparameters optimized;

f (x) is the target optimization function.

3.1.3.2 Particle swarm optimization algorithm

PSO, an evolutionary algorithm designed for global

optimization, it was first proposed by Kennedy and Eberhart,

1995 (Kennedy and Eberhart, 1995). The PSO algorithm begins

by initializing a population of particles, where each particle is

assigned an initial position and velocity. The evaluation of the
FIGURE 3

Flow chart of Bayesian optimization algorithm.
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fitness function is subsequently carried out for every particle, and

the resulting value is recorded as the best historical solution for that

individual. Then, the global historical optimal solution is obtained

through cooperation and sharing of information among particles,

and the new speed and position are obtained through iteration

(Wang et al., 2018). The particle’s fitness function is subsequently

reevaluated to assess its updated performance. If the new fitness

value exceeds the particle’s previous individual historical optimum,

it becomes the new individual best for that particle. Following the

update of the optimal solution for each particle’s individual history,

the global optimal solution is subsequently revised, and then the

iteration continues to obtain the new speed and position (Indrawati

and Wahyuni, 2023). In this study, the “pso” language package in

RStudio is used to realize the particle swarm optimization of the

model, and the algorithm process is shown in Figure 4. Utilizing the

formula provided, the particle modifies both its velocity and

position. Once it determines its individual optimal solution,

termed as the individual extremum Pbest, in conjunction with the

optimal solution identified by the entire population, referred to as

the global extremum gbest, the particle then carries out the necessary

updates.

Vk+1 = wVk + c1(Pbest − P)rand(0, 1) + c2(ɡbest − P)rand(0, 1) (4)

Pk+1 = P + Vk+1 (5)

Note: V denotes the particle velocity, k represents the kth

iteration, P indicates the current position of the particle, rand

(0,1) refers to a random number that exists within the bounds of

0 and 1, c1 and c2 are the learning factors, and w is the

weighting coefficient.

3.1.3.3 Genetic optimization algorithm

GA were developed through the computational modeling of

biological systems, with their initial introduction credited to Holland

(Ribeiro-Filho et al., 1994). This approach represents a stochastic

technique for global search and optimization that mimics the

evolutionary processes found in nature. It is grounded in principles

derived from Darwin’s theory of evolution and Mendelian genetics.

Essentially, this method operates as a robust parallel search strategy,

autonomously collecting and integrating data regarding the search

space throughout the exploration phase, while also adapting its search

management to pinpoint the optimal solution (Holland, 1992). The

primary components of GA include chromosome coding, fitness

functions, selection, recombination, and evolution schemes. These

components have been successfully applied to address optimization
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problems involving both continuous functions (differentiable or not)

and discrete functions. In this study, the “GA” (Scrucca, 2013) language

package in RStudio was used to realize the genetic algorithm

optimization of the model, and the algorithm flow is shown in Figure 5.

3.1.3.4 Simulated annealing optimization algorithm

SA algorithm is a heuristic algorithm for solving optimization

problems (Rutenbar, 1989). The central concept of the simulated

annealing algorithm begins with a high initial temperature that

gradually decreases over time. This process incorporates specific

probabilistic jump features, allowing the algorithm to explore the

solution space randomly in search of the global optimum of the

objective function. Consequently, the algorithm is likely to avoid

local optima and eventually converge to the global optimum

(Suppapitnarm et al., 2000). In this study, the “GenSA” language

package in RStudio is used to realize the simulated annealing

algorithm optimization of the model, and the algorithm process is

shown in Figure 6.

3.1.3.5 Model optimization parameters

In this research, we utilized several optimization techniques,

including the BO, PSO, GA, and SA, to enhance the RFR, GBRT,

and SVR models. The definitions of each optimization parameter

for these models are detailed in Table 1.

3.1.4 Model accuracy evaluation
In this research, we apply the leave-one-out cross-validation

technique to assess the model’s predictive capacity and the precision

of its LAI estimations from remote sensing. This approach involves

sequentially removing a single data point from the dataset, training the

model on the remaining data, and testing it on the omitted point.

Repeating this procedure for all data points enables a comprehensive

evaluation of the model’s generalization performance and enhances the

accuracy of LAI estimation derived from remote sensing (Fushiki,

2011). The evaluation metrics used to assess model performance

include the coefficient of determination (R2), root mean square error

(RMSE), mean absolute error (MAE), and overall estimation accuracy

(P1). The corresponding formula for the calculation is as follows:

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − y

−

i)
2

(6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)
2

n

s
(7)
FIGURE 4

Flow chart of particle swarm optimization algorithm.
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MAE = 1
non

i=1
(yi − ŷ i)j j (8)

P1 = (1 − RMSE
�y )� 100% (9)

In the formula, yi: actual value; ŷ i: estimated value; �y: mean of

the measured values; n: quantity.
3.2 Data processing

3.2.1 Data processing of spaceborne LiDAR
3.2.1.1 Photon point cloud denoisings

Photon counting radar is more sensitive in detecting photon

signals compared to other laser radars. In the ATLAS system, when

acquiring reflected photons from targets such as the ground and

canopy, it is often affected by noise photons from solar background
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and atmospheric scattering (Chen et al., 2019). Therefore, noise

removal is an important preprocessing step.

In this study, different densities-based spatial clustering of

applications with noise (DDBSCAN) (Zhang and Kerekes, 2014)

is used in conjunction with K-nearest neighbors-based (KNNB)

combined algorithm de-noises ATLAS photon data. The integrated

denoising algorithm has achieved significant improvements in

denoising effectiveness. Additionally, in the DDBSCAN algorithm,

photon densities are computed across all search directions, with the

largest density variation employed as the key metric to minimize the

effects of inconsistent photon densities on the algorithm’s

performance (Zhang et al., 2021).

3.2.1.2 Photon point cloud classification

To effectively differentiate between ground photons and canopy

top photons in the de-noised signal, this study utilizes an enhanced

version of the progressive TIN densification filter (PTD) technique for

classification purposes (Nie et al., 2017). The recognition accuracy of

ground photons by this method is higher in areas with large altitude

differences and complex terrain. The algorithm mainly includes four

parameters (Nie et al., 2018; Zhu et al., 2018, Zhu et al., 2020a): The

predefined window size is set at 200 m. Di represents the distance

between unclassified photons and the two closest seed ground photons.

At refers to the angle created by the line connecting the unclassified

photons to their associated seed ground photons and the line extending

to the ground surface. Furthermore, Ds denotes the vertical distance

from the unclassified photons to the ground surface (Xi et al., 2023). To

begin, choose the photon exhibiting the lowest elevation from each
FIGURE 6

Flow chart of simulated annealing optimization algorithm.
TABLE 1 Description table of parameters for RFR, GBRT and
SVR models.

Model type Parameter Description

RFR, GBRT max_depth Decision tree depth

n_estimators Number of decision trees

min_samples_split The minimum number of samples
required for a node to be divided

min_samples_leaf The minimum number of samples
that a leaf node contains

SVR cost_parameter Regularization parameter

kernel_coefficient Kernel parameter of radial
basis function
FIGURE 5

Flow chart of genetic optimization algorithm.
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window to function as the initial seed ground photon. Subsequently,

connect these seed photons to form the initial segment line,

categorizing the remaining photons as unclassified. Once the

distance Di for each unclassified photon is calculated, if the

maximum Di exceeds the established threshold, photons with

elevations below this maximum are extracted from the unclassified

set as ground photons, ensuring that no canopy photons are included.

To identify the optimal ground segment line, an interval of 10 is

established, testing values ranging from 10 to 50 with a threshold of 20.

This process involves multiple self-iterations until no new seed ground

photons are generated. After the initial section line is generated, the

improved section line is generated by the Douglas-Peucker algorithm.

A cubic spline interpolation method is employed to fit the ground

photons and create a model of the ground surface, enabling the

extraction of the final ground photon data. Photons are identified as

ground photons only whenDs is below 1m; the remaining photons are

classified as vegetation photons (Zhang et al., 2021).

A total of 21080 light spots in the study area were obtained, and 46

parameter values were extracted using the ICESat-2/ATLAS parameter

extraction module constructed by PyCharm IDL (PyCharm, JetBrains,

Prague, Czech Republic, https://www.jetbrains.com/) environment.
3.2.2 Synthetic aperture radar and optical image
data processing

In this study, the GEE platform was used to download Sentinel-1

data from microwave remote-sensing satellite images and Sentinel-2

data from optical remote-sensing satellite images. The data collection

time was from December 2023 to February 2024, and the cloud cover

was set at less than 5%. Then the median synthesis and cubic

convolution methods were used to resample the remote sensing

image data to a resolution of 15×15 m. After resampling, the area is

225 m2, allowing it to be matched with the sample area (226.865 m2)

and the spot area (226.865 m2) to minimize the error, which is

approximately 0.822%, indicating high precision. Among them,

Sentinel-1 data needs to be pre-processed through fine-track

correction, multi-view and coherent speckle filtering, geocoding, etc.

In addition, the grey level co-occurrence matrix (GLCM) in the

second-order texture algorithm is used to generate texture images in

ENVI 5.3 software (ENVI, version 5.3, Exelis VIS, Boulder, CO, USA,

https://envi.geoscene.cn/). The window size is set to 5×5, step size to

1, gray level to 64, and eight texture feature information is extracted

(Holtgrave et al., 2020). Sentinel-2 data need to be pre-processed by

radiometric calibration, atmospheric correction, geometric

precision correction, topographic radiation correction, etc., and

then image feature parameters, are extracted using ENVI

5.3 software.
3.2.3 Selection of feature parameters
3.2.3.1 Spaceborne LiDAR parameters

This research employs the ATL03 and ATL08 data products from

the ICESat-2/ATLAS mission. ATL08 data product is a geophysical

data product based on ATL03 data after denoising and signal photon

classification, which is generated in 100m segments (composed of

5 20m segments) along the direction of the orbit and contains

ground elevation information and vegetation height information.
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The independent variables chosen for modeling in this research,

based on ATLAS parameters, are detailed in Table 2.

3.2.3.2 Sentinel-1/-2 parameters

This study effectively employed Sentinel-1 imagery to extract

backscatter coefficients and texture features. The extracted

backscatter coefficients comprise VV (co-polarized) and VH (cross-

polarized). The texture features extracted from VV and VH include:

Mean, offering an average measure; Variance, signifying the spread of

values; Homogeneity, reflecting uniformity; Contrast, highlighting

differences between light and dark areas; Dissimilarity, indicating the

degree of dissimilarity between pixels; Entropy, measuring randomness

or disorder; Second Moment, related to smoothness or roughness; and

Correlation, denoting the relationship between neighboring pixels. The

calculation formulas for these texture features are clearly presented

in Table 3.

Additionally, by utilizing Sentinel-2 imagery, the study

extracted original single-band factors and a diverse array of

vegetation indices. The extracted original single-band factors

encompass bands 2, 3, 4, 5, 6, 7, 8, and 8A. The vegetation

indices consist of the Normalized Difference Vegetation Index

(NDVI), widely used for assessing vegetation health; Difference

Vegetation Index (DVI), providing another measure of vegetation

difference; Soil-Adjusted Vegetation Index (SAVI), accounting for

soil effects; Optimized Soil-Adjusted Vegetation Index (OSAVI), an

improved version of SAVI; Enhanced Vegetation Index (EVI),

enhancing vegetation detection; Two-band Enhanced Vegetation

Index (EVI2), a variation of EVI; Ratio Vegetation Index (RVI),

based on a ratio of bands; Modified Soil-Adjusted Vegetation Index

(MSAVI), a modified form of SAVI; Green Normalized Difference

Vegetation Index (GNDVI), focusing on green vegetation; Green

Ratio Vegetation Index (GRVI), related to green vegetation ratio;

Renormalized Difference Vegetation Index (RDVI), and Infrared

Difference Vegetation Index (IDVI). The calculation formulas for

these vegetation indices are meticulously shown in Table 4.
4 Results and analysis

4.1 Sequential gaussian condition
simulation effect

4.1.1 Selection of the variogram model
Before fitting the variance function model, testing the normal

distribution of ATLAS feature variables is essential. As shown in

Figure 7, the four feature variables are basically in line with normal
TABLE 2 ICESat-2/ATLAS parameter table.

Serial number Parameters

1 solar_elevation

2 h_mean_canopy_abs

3 h_te_best_fit

4 h_te_interp
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distribution. Then, the variance function is fitted using models within

the GS+9.0 software (GS+, version 9.0, Gamma Design Software, LLC,

Plainwell, MI, USA, https://gs.software.informer.com/), and the best

theoretical model is selected from them. The variance function

analysis results are presented in Table 5. The findings indicate that:

(1) The models with the best effects of the four parameters are all

spherical models. (2) All the four parameters have medium-high

spatial autocorrelation.
4.1.2 Interpolation effect
In this research, GS+9.0 software and ArcGIS10.8 software

(ArcGIS, version 10.8, ESRI, Redlands, CA, USA, https://

www.esri.com/) were used to analyze the SGCS of LAI. First, GS

+9.0 software was used for variance function analysis, and

ArcGIS10.8 software was used for simple Kriging interpolation

with the variable range and partial base value of the optimal

variance function model, and then SGCS analysis was carried out

with the Gauss statistical simulation tool. The study performed

simulations at 1, 10, 25, 50, 75, and 100 iterations to determine the

optimal number required for robust outcomes (Luo et al., 2023).

The findings from the experiments indicate that as the number of
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SGCS simulations rises, there is a marked increase in the pixel-level

variance of the LAI for Dendrocalamus giganteus. When the SGCS

simulations total 25 iterations, signs of stabilization in the

coefficient of variation become evident. Consequently, this study

has determined that the optimal threshold for simulations should be

set at 25. The effects of SGCS are illustrated in Figure 8.

Spatial interpolation is performed through SGCS to obtain the

surface data of the study area. Since the accuracy of spatial

interpolation will affect the quality of ICESat-2/ATLAS data and

may cause errors to propagate into the prediction model

constructed subsequently, we use the 21080 light spots before

interpolation and the 21080 light spots after interpolation to

perform linear regression analysis and use R2 as the evaluation

index to verify the accuracy of spatial interpolation. The effect is

shown in Figure 9.

As shown in the figure above, the R2 of the four parameters are

1, 1, 0.9999, and 0.8423 respectively. Three of the parameters have
TABLE 4 Calculation formula table of vegetation index factor.

Name Formula

NDVI (Rouse, 1973) B8 − B4
B8 + B4

DVI (Clevers, 1986) B8 − B4

SAVI (Huete, 1988) (B8 − B4)(1 + L)
B8 + B4 + L

OSAVI (Rondeaux et al., 1996) B8 − B4
B8 + B4 + 0:16

EVI (Huete et al., 2002)
2:5� B8 − B4

B8 + 6B4 − 7:5B2 + 1

EVI2 (Jiang et al., 2008)
2:5

B8 − B4
B8 + B4 + 1

RVI (Pearson and Miller, 1972) B8
B4

MSAVI (Qi et al., 1994) 2B8 + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2B8 + 1)2 − 8(B8 − B4)

p
2

GNDVI (Gitelson and
Merzlyak, 1998)

B8 − B3
B8 + B3

GRVI (Rouse et al., 1974b) B3
B4

RDVI (Rouse et al., 1974b) B8 − B4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B8 + B4

p

IDVI (Rouse et al., 1974a) B8 − B3
B8 + B3
FIGURE 7

Normal distribution plot of characteristic variables. (A) h_te_best_fit; (B) h_te_interp; (C) h_mean_canopy_abs; (D) solar_elevation.
TABLE 3 Texture feature table (Zhou et al., 2023).

Name Formula

Mean o
n−1

i,j=0

iFi,j

Variance o
n−1

i,j=0

iFi,jði, j − mi,jÞ2

Homogeneity o
n−1

i,j=0

i
Fi,j

1 + (i − j)2

Contrast o
n−1

i,j=0

iFi,j(i − j)2

Dissimilarity o
n−1

i,j=0

iFi,j i − jj j

Entropy o
n−1

i,j=0

iFi,j − ln Fi,j
�� ��

Second Moment o
n−1

i,j=0
iF2

i,j

Correlation o
n−1

i,j=0

Fi,j½
(i − mi)(j − mj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VAiVAj
p �
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extremely high spatial interpolation accuracy, and one parameter

has a relatively high spatial interpolation accuracy, indicating that

they can all be used as remote sensing estimation model parameters.
4.2 Variables correlation analysis

A total of 84 model feature variables were selected in this study,

including 46 ICESat-2/ATLAS feature parameters, 2 Sentinel-1

backscattering coefficients, 16 Sentinel-1 texture feature factors, 8

Sentinel-2 band factors, and 12 Sentinel-2 vegetation index factors.

Through an analysis utilizing the Pearson correlation coefficient,

parameters demonstrating significant correlations with LAI were

identified as independent variables for the model at significance

levels of 0.01, 0.05, and 0.1. The parameter matrix with significant

correlation is shown in Figure 10. At the 0.01 significance level, the

significant variables include VV_Mean and VV_Dissimilarity, with

Pearson correlation coefficients of 0.367 and 0.384, respectively. At

the 0.05 significance level, the significant variables are h_te_best_fit,

VV, VV_SecondMoment, VV_Homogeneity, VV_Entropy,

VH_Mean, VH_Homogeneity, EVI, EVI2, IDVI, NDVI, OSAVI,

RDVI, RVI, and SAVI, with Pearson correlation coefficients of

0.298, 0.315, 0.336, 0.324, -0.336, 0.329, 0.352, 0.319, 0.343, 0.341,
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0.341, 0.341, 0.341, 0.31, and 0.341, respectively. At the 0.1

significance level, the significant variables include h_te_interp,

solar_elevation, h_mean_canopy_abs, 0.252, and 0.243, with

Pearson correlation coefficients of 0.271, -0.236, 0.248, 0.252, and

0.243, respectively.
4.3 Prediction model

In this study, spaceborne LiDAR ICESat-2/ATLAS, synthetic

aperture radar Sentinel-1, and optical remote sensing image

Sentinel-2 were used as data sources to extract feature factors,

and Pearson correlation analysis was used to screen out model

modeling factors. The modeling factors selected from the

ICESat-2/ATLAS dataset include h_te_best_fit, h_te_interp,

h_mean_canopy_abs, and solar_elevation. For Sentinel-1, the

chosen factors are VV_Mean and VV_Dissimilarity. In the case

of Sentinel-2, the selected modeling factors are EVI2 and NDVI.

RFR, GBRT, SVR, BO-RFR, BO-GBRT, BO-SVR, PSO-RFR, PSO-

GBRT, PSO-SVR, GA-RFR, GA-GBRT, GA-SVR, SA-RFR, SA-

GBRT, SA-SVR were used to model the measured LAI and R2,

RMSE, MAE and P1 were used to evaluate the accuracy of

the model.
TABLE 5 Variation function analysis table.

Parameters Model R2 RSS C0 C0+C C0/C0+C Range/m

h_te_best_fit Spherical 0.921 0.567 0.051 2.397 0.979 27500

Exponential 0.87 1 0.001 2.465 1.000 33300

Gaussian 0.914 0.618 0.314 2.392 0.869 22516.66

h_te_interp Spherical 0.921 0.567 0.052 2.398 0.978 27600

Exponential 0.87 1 0.001 2.465 1.000 33300

Gaussian 0.914 0.618 0.319 2.392 0.867 22516.66

h_mean_canopy_abs Spherical 0.925 0.406 0.163 2.197 0.926 27800

Exponential 0.877 0.687 0.001 2.249 1.000 31800

Gaussian 0.917 0.447 0.394 2.192 0.820 22689.87

solar_elevation Spherical 0.74 4.241 710 2151 0.670 13000

Exponential 0.69 5.043 259 2152 0.880 11700

Gaussian 0.732 4.359 947 2151 0.560 11085.13
FIGURE 8

Spatial interpolation renderings of characteristic variables. (A) h_te_best_fit; (B) h_te_interp; (C) h_mean_canopy_abs; (D) solar_elevation.
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FIGURE 9

Accuracy verification diagram of spatial interpolation for characteristic variables. (A) h_te_best_fit; (B) h_te_interp; (C) h_mean_canopy_abs;
(D) solar_elevation.
FIGURE 10

Correlation coefficient thermal matrix diagram.
FIGURE 11

Scatter plots of three unoptimized models constructed using only single ICESat-2/ATLAS data. (A) RFR; (B) GBRT; (C) SVR.
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4.3.1 Establishment of the model based on a
single ICESat-2/ATLAS data
4.3.1.1 Estimate results based on unoptimized models

Four feature parameters of ICESat-2/ATLAS data were selected

as modeling indices for the RFR, GBRT, and SVR models, and the

results are shown in Figure 11.
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4.3.1.2 Estimation results based on optimization model

A total of four characteristic parameters of ICESat-2/ATLAS

data are selected as BO-RFR, BO-GBRT, BO-SVR, PSO-RFR,

PSO-2GBRT, PSO- SVR, GA-RFR, GA-GBRT, GA-SVR, SA-RFR,

SA-GBRT, SA-SVR model modeling metrics, and the results are

shown in Figure 12.
FIGURE 12

Scatter plots of twelve optimized models constructed using only single ICESat-2/ATLAS data. (A) BO-RFR; (B) BO-GBRT; (C) BO-SVR; (D) PSO-RFR;
(E) PSO-GBRT; (F) PSO-SVR; (G) GA-RFR; (H) GA-GBRT; (I) GA-SVR; (J) SA-RFR; (K) SA-GBRT; (L) SA-SVR.
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4.3.2 Establishment of model based on multi-
source remote sensing data
4.3.2.1 Estimate results based on unoptimized models

A total of eight characteristic parameters from ICESat-2/ATLAS

data and Sentinel-1/-2 data were selected as modeling factors for RFR,

GBRT, and SVR models. The results are shown in Figure 13.

4.3.2.2 Estimation results based on optimization model

Select eight characteristic parameters from ICESat-2/ATLAS

data and Sentinel-1/-2 data as modeling factors for BO-RFR, BO-

GBRT, BO-SVR, PSO-RFR, PSO-GBRT, PSO-SVR, GA-RFR, GA-

GBRT, GA-SVR, SA-RFR, SA-GBRT, and SA-SVR models. The

result is shown in Figure 14.
4.4 Comparison of model effects

Based on ICESat-2/ATLAS satellite-borne LiDAR data and

combining multiple remote sensing data, the study establishes

LAI estimation models for single remote sensing data as well as

multi-source remote sensing data using RFR, GBRT, and SVR

models optimized by BO, PSO, GA, and SA, respectively, and the

radar effect diagram generated by the combination of all models is

shown in Figure 15. According to the model effect, the accuracy of

RFR, GBRT, and SVR models optimized by the four optimization

algorithms has been improved to varying degrees compared with

that before optimization. The BO-GBRT model constructed by

combining ICESat-2/ATLAS, and Sentinel-1/-2 data has the best

effect. R2, RMSE,MAE, and P1 were 0.922, 0.263, 0.187, and 92.38%,

respectively. Compared with the constructed GBRT model, R2

increased by 20.3%, RMSE decreased by 25.9%, MAE decreased

by 24% and P1 increased by 7.39%. Among the RFR optimization

models constructed with single ICESat-2/ATLAS data, the BO-RFR

model had the best effect (R2 = 0.865, RMSE=0.425,MAE=0.363, P1
= 87.70%). Among the GBRT optimization models, the GA-GBRT

model had the best effect (R2 = 0.784, RMSE=0.44,MAE=0.328, P1 =

87.25%). Among the SVR optimization models, the BO-SVR model

has the best effect (R2 = 0.739, RMSE=0.464, MAE=0.269, P1 =

86.58%). The optimization model with the worst effect was PSO-

SVR (R2 = 0.54, RMSE=0.613, MAE=0.381, P1 = 82.25%). In the
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RFR optimization model constructed by multi-source remote

sensing data, the BO-RFR model has the best effect (R2 = 0.901,

RMSE=0.384, MAE=0.317, P1 = 88.87%). Among the GBRT

optimization models, the BO-GBRT model had the best effect (R2

= 0.922, RMSE=0.263, MAE=0.187, P1 = 92.38%). Among the SVR

optimization models, the BO-SVR model has the best effect (R2 =

0.836, RMSE=0.373, MAE=0.229, P1 = 89.21%). The least effective

optimization model was GA-SVR (R2 = 0.683, RMSE=0.512,

MAE=0.308, P1 = 85.18%). When the model remained unchanged

and the data sources used were changed, the accuracy of the LAI

remote sensing estimation model constructed with multi-source

remote sensing data was superior to that of the LAI remote sensing

estimation model constructed with single ICESat-2/ATLAS data.

Research indicates that integrating ICESat-2/ATLAS data with

additional remote sensing datasets, and employing multi-source

remote sensing methods to estimate LAI, significantly enhances the

accuracy of LAI estimations. Moreover, various optimization

algorithms are used to optimize machine learning methods, which

can further improve the accuracy of LAI estimation.
4.5 Spatial distribution of LAI

This study utilized data from ICESat-2/ATLAS, Sentinel-1/-2,

applying SGCS combined with an optimized model to estimate the

spatial distribution of LAI for Dendrocalamus giganteus in Xinping

County. To improve the accuracy of RFR, GBRT, and SVR models,

the study incorporated BO, PSO, GA, and SA. When comparing

machine learning models based on single-source ICESat-2/ATLAS

data with those integrating multi-source remote sensing data, it was

found that the BO-GBRT model, which used the combined data,

achieved the highest performance. Figure 16 illustrates the spatial

variation of LAI across the study area. The map reveals pronounced

differences in the distribution of Dendrocalamus giganteus LAI

within Xinping County, mainly ranging from 2.39 to 2.83, with

an average value of 2.61. The high-value LAI areas were mainly near

Garsha Town, Laochang Town, and Shuitang Town, while the low-

value LAI areas were scattered and diversified. Due to the influence

of local climatic conditions, soil types, and other environmental

factors, these regions do not have obvious regular distribution.
FIGURE 13

Scatter plots of three unoptimized models constructed using multi-source remote sensing data. (A) RFR; (B) GBRT; (C) SVR.
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5 Discussion

5.1 Feature variables choice

The selection and combination of characteristic variable factors

largely determine the accuracy of the prediction model and inversion

results (Zhang et al., 2022). This study optimized the parameters of
Frontiers in Plant Science 15
ICESat-2/ATLAS through an analysis using the Pearson correlation

coefficient, and the four variables with the highest correlation

coefficients were obtained as the dependent variables of the LAI

estimation model. In the selection of regional scale feature variables,

optical remote sensing data is susceptible to different degrees of “light

saturation” effect of forest vegetation. Single-band reflectance is the

most significantly impacted, with the vegetation index experiencing
FIGURE 14

Scatter plots of twelve optimized models constructed using multi-source remote sensing data. (A) BO-RFR; (B) BO-GBRT; (C) BO-SVR; (D) PSO-
RFR; (E) PSO-GBRT; (F) PSO-SVR; (G) GA-RFR; (H) GA-GBRT; (I) GA-SVR; (J) SA-RFR; (K) SA-GBRT; (L) SA-SVR.
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effects to a slightly lesser extent, and texture features can represent the

structure information of ground objects in remote sensing images and

reflect the spatial change of land cover type (Shu et al., 2022; Zhao et al.,

2016), and are the least affected by light saturation. In this paper, the

contribution rate of parameters used by each data source in the remote

sensing estimation model is shown in Figure 17. The contribution rate

is 26%, 22%, 21%, 9%, 9%, 5%, 5%, and 3% in descending order. The

contribution rate of spaceborne Lidar data is the highest, followed by

SAR data, and the contribution rate of optical remote sensing data is

the lowest, the SAR factor is added to realize the integration of multi-

sensor data to solve the light saturation problem of optical image data,

to enhance the precision of the model’s estimates. The intricate nature

of the terrain significantly affects the quality of optical and microwave

remote sensing images. Moreover, spaceborne LiDAR footprints often

exhibit a sparse and uneven spatial distribution, which complicates
Frontiers in Plant Science 16
precise measurements (Zhao et al., 2024). These challenges, when

combined, introduce considerable uncertainty in estimating the LAI if

only one type of remote sensing data is utilized. Consequently,

depending solely on a single data source for LAI estimation can

result in substantial inaccuracies, especially in environments

characterized by diverse topography. As a result, researchers often

merge data from various remote sensing sources to enhance the

precision of LAI estimations, thereby addressing the limitations

inherent in relying solely on a single data set.
5.2 Effect of spatial interpolation

The spatial interpolation techniques in geostatistics demand

specific conditions regarding the quantity and spatial distribution of
FIGURE 15

Radar charts used for comparing the accuracy of models. (A) Modeling using ICESat-2/ATLAS data; (B) Modeling using ICESat-2/ATLAS, Sentinel-1/-2 data.
FIGURE 16

The spatial distribution map of LAI in the study area.
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data points. The primary factors that constrain the precision of

geostatistical estimates are the correctness of data point parameters,

the selected interpolation technique along with the attributes of the

employed interpolation model. Spatial interpolation technology can be

used to predict the values of unknown regions based on the measured

data of known regions. This method can make full use of the dense

light spots of spaceborne LiDAR to achieve large-scale forest LAI

inversion. For example, Narine et al (Narine et al., 2020). use ICESat-2

and Landsat 8 data. The AGB inversion results are extrapolated to the

whole study area, so as to realize the estimation of AGB at the regional

scale. The distribution of the footprint from spaceborne LiDAR is

generally uniform along the ground track instead of being random,

forest LAI obtained by interpolating ICESat-2/ATLAS datamay show a

significant smoothing effect. To address this issue and ensure the

acquisition of high-quality data, this study first adopts the simple

Kriging interpolation method, and then uses the Gauss statistical

simulation tool for SGCS analysis, thus effectively reducing the

smoothing effect in the process of spatial interpolation. Xu et al (Xu

et al., 2023). removed low-quality light spots from the strip prior to

applying interpolation with the satellite-borne LiDAR data. This

process involved discarding certain neighboring strips and points

within the same strip, which helped to minimize the smoothing

effect during the subsequent interpolation. Furthermore, because the

spot tracks of ICESat-2 and GEDI differ, the spots from GEDI can

effectively disrupt the uniform distribution of the ICESat-2 spots,

thereby reducing the smoothing effect in the interpolation process

and obtaining high-precision LAI estimation results. Liu et al (Liu et al.,

2022), for example, developed a novel neural network guided

interpolation (NNGI) method. The forest canopy height distribution

map was created through the integration of data fromGEDI, ICESat-2/

ATLAS, and Sentinel-2. A comparative analysis was conducted using

the GEDI verification footprint, UAV LiDAR data, and field

measurements. The results showed that the R2 values and RMSE for
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canopy height obtained via NNGI interpolation fell between 0.55 and

0.60, with RMSE values ranging from 4.88 to 5.32 m. These findings

suggest that the NNGI method has effectively derived the 30 m

resolution forest canopy height distribution across China. In this

paper, GS+9 software was used to conduct variance function

analysis, and the optimal model of each ATLAS parameter

interpolation was determined. Compared with the default

interpolation model, the optimal model selected based on variance

function obtained higher accuracy of interpolation results. In addition,

the adoption of the SGCSmethod effectively reduced the appearance of

the smoothing effect. The practicality of applying spatial interpolation

techniques to extrapolate point data across the entire area has

been demonstrated.
5.3 Model optimization and selection

In this study, there is an error transfer between the spatial

interpolation method and the machine learning model in the process

of LiDAR spot scale conversion. The accuracy of the prediction model

is significantly influenced by factors such as the sample size of the

measured data, the uncertainty inherent in the remote sensing model,

and the variability of its parameters. When the quantity of measured

data increases, the predictive model becomes more representative, and

the associated uncertainty decreases. However, once the sample size

reaches a specific threshold, further increases in the number of samples

no longer lead to substantial improvements in the model’s accuracy. In

this research, 51 LAI data points were collected, with sampling

locations widely distributed to adhere to the principle of maximizing

sample diversity and to meet the precision standards required for field

investigations (Hua and Zhao, 2021; Song et al., 2022). To further

minimize the uncertainty in the prediction outcomes, four

optimization algorithms, BO, PSO, GA, and SA, were selected to
FIGURE 17

The contribution rate chart of modeling factors.
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optimize the performance of RFR, GBRT, and SVR models

respectively. The results show that using the optimization algorithm

can significantly enhances the prediction accuracy of the machine

learning model, and the BO-GBRTmodel constructed by collaborating

with multi-source remote sensing data has the best effect (R2 = 0.922,

RMSE=0.263,MAE=0.187, and P1 = 92.38%), and comparing with the

GBRTmodel before the optimization, the R2 is improved by 20.3%, the

RMSE is reduced by 25.9%, and the 24% reduction inMAE, and 7.39%

improvement in P1. Through continuous iterative improvement of the

original model, the BO-GBRT model makes each new model produce

smaller errors than the last model and builds a new combinedmodel in

the gradient direction of reduced residual (Breiman, 2001). Compared

with PSO, GA, and SA algorithms, the BO algorithm can achieve a

higher model operation rate and model estimation accuracy with fewer

optimization times (Cho et al., 2020). Only four optimization

algorithms are tried in this study, and other optimization algorithms

or deep forest algorithms can be added in the later stage so that small

sample data can also be studied by deep neural network learning and

fitting (Xia et al., 2022; Zhou and Feng, 2019). Moreover, this paper

does not study the differentiation of strong and weak beams of ICESat-

2/ATLAS. Existing studies show that, when forest height estimation is

performed, the weak beam exhibits inferior performance compared to

the strong beam, and the daytime data is worse than that of the night

data (Zhu et al., 2020b). In the future, the influence of the strong and

weak beams of ICESat-2/ATLAS on the estimation accuracy of LAI can

be further explored.
6 Conclusion

In this research, we developed an innovative approach for

estimating large-scale LAI by combining data from multiple remote

sensing sources with an optimization framework. The strength of

ICESat-2 lies in its capability to penetrate tree canopies and deliver

high-precision forest structure information. Sentinel-1 can penetrate

clouds, rain, and fog, enabling all-weather and all-time observations.

Sentinel-2 offers high-resolution vegetation monitoring data. This

method leverages the complementary strengths of these three sensors

to enhance the reliability of data sources. Additionally, using four

optimization algorithms—namely BO, PSO, GA, and SA—we

optimized the RFR, GBRT, and SVR models, significantly

enhancing the LAI inversion accuracy. Among the 30 models

created, which utilized either individual ICESat-2/ATLAS data or a

combination of various remote sensing datasets, the BO-GBRT

model, which integrates data from ICESat-2/ATLAS along with

Sentinel-1/-2, demonstrated the most accurate results. The R2,

RMSE, MAE, and P1 values are 0.922, 0.263, 0.187, and 92.38%,

respectively. Compared to the GBRT model constructed using the

same data source, the R2 increased by 20.3%, the RMSE decreased by

25.9%, the MAE decreased by 24%, and the P1 increased by 7.39%.

This demonstrates a significant optimization effect. Therefore, this

method proves to be efficient and accurate for large-scale LAI

estimation. Compared to estimation accuracy using a single data

source, our method provides more reliable results. In comparison to

existing traditional machine learning methods, our approach
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demonstrates superior performance. However, this method still

exhibits deviations when estimating areas with high vegetation

density or extensive occlusions. In future research, incorporating

additional environmental factors or deep learning methods could

further refine our approach, achieving larger-scale and higher-

precision estimation of vegetation structure parameters.
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