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Introduction: Astragali Radix is the dried root of Astragalus mongoliae or

Astragalus membranaceus, a leguminous plant. Since ancient times, Astragali

Radix has been widely used in Chinese traditional Chinese medicine. As people

become more health-conscious, the market demand for Astragali Radix grows

and its popularity is increasing in the international market. As an important

medicinal plant, the growth of Astragali Radix is strongly influenced by

environmental conditions. In order to meet the market demand for high quality

Astragali Radix herbs, it is necessary to search and find areas suitable for the

growth of Astragali Radix.

Methods: In this study, we assessed the potential impacts of climate change on

the distribution of the Chinese medicinal plant Astragali Radix using the

maximum entropy (MaxEnt) model in combination with a geographic

information system(GIS). Distribution data and environmental variables were

analyzed to predict suitable areas for Astragali Radix under the SSP126, SSP245

and SSP585 scenario for current and future (2041-2060, 2061-2080, 2081-

2100). Jackknife is used to assess the importance of environmental variables, and

environmental variables with a model contribution greater than 5% were

considered to be the main drivers.

Results: The results showed that the current area of suitable area for Astragali

Radix is 188.41 km2, and the three climate scenarios show an increasing trend in

the future, with amaximum of 212.70 km2. North China has always been themain

suitable area, while the area of suitable area in Southwest China is decreasing,

and Xinjiang will be developed as a new suitable area in the future. Annual

precipitation (41.6%), elevation (15.9%), topsoil calcium carbonate (14.8%), annual

mean temperature (8.3%), precipitation seasonality (8%) and topsoil pH (6%)

contributed more to the model and were the main environmental influences on

the distribution of Astragali Radix. In addition, the centroids of the suitable areas

shifted northward under all three climate scenarios, indicating a migratory

response to global warming.

Discussion: Our study found that suitable area of Astragali Radix has been

expanding for most of the time in each period of the three climate scenarios
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compared with the current situation. In the future, humans can focus on

enhancing the cultivation techniques of Astragali Radix in these suitable areas.

This study provide a scientific basis for the development of planting strategies

and spatial distribution management of Astragali Radix. It helps to optimize the

selection of planting areas and resource conservation of Chinese herbs.
KEYWORDS

Astragali Radix, maximum entropymodel, geographic information system, suitable area,
environmental factor, climate change
1 Introduction

Astragali Radix is the dried root of Astragalus mongoliae or

Astragalus membranaceus, a leguminous plant, which not only has

good medicinal value of tonic qi, but also has the ecological functions

of windbreak, sand fixation and soil and water conservation (Zhong,

2018). It is common in Eurasian countries, including China, Russia,

Kazakhstan andMongolia (Zhang, 2007). In China, Astragali Radix is

mainly distributed in Heilongjiang, Jilin, NeiMongol, Hebei, Ningxia,

Gansu, Qinghai, Sichuan, and Tibet (Liu et al., 2019; Wang et al.,

2023c). The polysaccharides, saponins, and flavonoids of Astragali

Radix are its main active components and the main basis for

evaluating the quality of Astragali Radix herbs (Zhang et al., 2022).

which make Astragali Radix have a variety of medicinal values such as

improving immunity, protecting the liver, nourishing and tonifying

(Ma et al., 2022; Shao et al., 2023), and have been widely used in the

treatment of hypoxic-ischemic encephalopathies, circulatory

disorders, respiratory disorders, renal disorders, neurological

disorders, and blood sugar and blood pressure. China has focused

on ecological protection in recent years and advocated standardized

cultivation of Chinese herbs, which has provided an opportunity

for the scientific cultivation of Astragali Radix and many other

Chinese medicinal plants (National Forestry and Grassland

Administration, 2022).

Climatic, meteorological, topographical and geomorphological

factors are of vital importance to plant cultivation, and they not

only influence the growth and development of plants, but also

determine their distribution range and planting strategies. The

cultivation and efficacy of herbal medicines, in particular, are

greatly influenced by ecological factors (Wu et al., 2019). Soil is a

factor that must be considered when conducting research on plant

cultivation. Previous scholars have conducted several studies on the

relationship between the active ingredients of medicinal plants and

soil factors (Shang et al., 2012; Hou et al., 2024; Yang et al., 2024).

These studies all indicate that soil factors affect the accumulation of

active ingredients in drugs. Furthermore, the geographic

distribution pattern of plants will change as global temperatures

rise, precipitation patterns change, and extreme weather events

become more frequent (Kosanic et al., 2018). Climatic spaces

suitable for plant distribution are likely to disappear (Gómez-Ruiz
02
and Lacher, 2019), accompanied by changes in the topography

suitable for medicinal plants (Li et al., 2024a). A study on the

geographic distribution of plant species in China shows that 122

plant species in China are at risk of losing their geographic ranges

completely under future climate change scenarios, and 125 species

will migrate to higher latitudes and higher altitudes (Wang andWu,

2024). The same migration trend was confirmed in a study by

Malaysian scholars (Muzafar et al., 2022).

Ecological niche models (ENMs) are an important tool for

speculating the potential distribution areas of species by

comprehensively analyzing their distribution information and

related environmental variables (Zhang et al., 2024b), and a

variety of models have been derived, such as the Maximum

Entropy Model (MaxEnt) (Zhao et al., 2022b), the biological

population growth model (CLIMEX) (Early et al., 2022), the

Ecological Niche Factor Analysis (ENFA) (Rosas et al., 2022), and

the Genetic Algorithm Model (GAM) (Liu et al., 2012). Among

them, the MaxEnt model proposed by Edwin Thompson Jaynes in

1957 is considered to be the best tool to be used in conjunction with

GIS (Geographic Information System). It is a probabilistic model

based on entropy maximization, which can learn conditional

probability distributions by maximizing entropy under given

conditions, and is able to predict the potential range of a species

using known species distribution data and environmental factors

(Wang et al., 2024). Due to its simplicity in modeling and accuracy

in prediction, the MaxEnt model has been widely used in the fields

of ecology, geography and botany in recent years. In particular, it

plays an important role in the prediction of potentially suitable

areas of species (Xia et al., 2023; Chen et al., 2022), the risk

assessment of biological invasion (Wang et al., 2023a), and the

prediction of pest and disease trends (Chen et al., 2024). Today, the

MaxEnt model has been used in the distribution studies of a variety

of herbal medicines, such as gastrodia elata (Hu et al., 2023), trollius

wildflowers (Fan and Luo, 2024), gymnadenia conopsea (Cha et al.,

2024), cinnamomum cassia (Li et al., 2024b), and so on. This

provides a scientific basis for predicting the impact of climate

change on the distribution of Chinese herbal medicines in

suitable areas, evaluating the amount of Chinese herbal medicine

resources, and guiding the selection of areas for cultivation of

Chinese herbal medicines.
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In recent years, wild Astragali Radix resources have been

decreasing year by year, and nowadays artificial cultivation is the

mainstay (Zhang et al., 2024a). Therefore, in order to conserve and

cultivate Astragali Radix, it is crucial to understand its current

regional distribution in China and its spatial pattern of suitable

areas under future climate change. In this study, we combined the

MaxEnt model and Geographic Information System (GIS) to screen

the dominant environmental factors affecting the potential

distribution of Astragali Radix on the basis of the available

distribution information, taking into account climate, topography

and soil factors (Xu et al., 2023). Meanwhile, the changes in the

distribution of the possible suitable areas and the migration of

centroids of Astragali Radix were predicted under the scenarios of

SSP126, SSP245, and SSP585 for the years 2041-2060, 2061-2080,

and 2081-2100, respectively. This study provides an important

reference for future conservation and cultivation strategies of

Astragali Radix.
2 Materials and methods

2.1 Data collection

Astragali Radix distribution data were obtained from the Global

Biodiversity Information Facility (GBIF, http://www.gbif.org/) and

the Chinese Virtual Herbarium (CVH, http://www.cvh.ac.cn/).
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Bioclimatic variables were downloaded from the World Climate

Database (WorldClim, http://www.worldclim.Org/). Elevation data

were obtained from the Geospatial Data Cloud (http://

www.gscloud.cn/) of the Chinese Academy of Sciences, from

which slope and aspect were extracted. Soil data were obtained

from the Harmonized World Soil Database (Harmonized World

Soil Database version 1.1, http://www.fao.org/soilsportal/). A total

of 35 environmental variables were used in our study, including 19

climate factors, 13 soil factors, and 3 topographic factors, and all

data had a spatial resolution of 2.5min (Table 1). Where bioclimatic

variables included current data and future data (2041-2060, 2061-

2080, 2081-2100) under the Shared Socioeconomic Pathway 1-2.6

(SSP126), the Shared Socioeconomic Pathway 2-4.5 (SSP245) and

the Shared Socioeconomic Pathway 5-8.5 (SSP585). SSP126,

SSP245, and SSP585 represent future climate scenarios with

radiative forcing targets of 2.6, 4.5, and 8.5 W/m², respectively,

and they represent different global development paths from active

climate policies to high-emission trajectories.
2.2 Data processing

2.2.1 Analysis and processing of occurrence data
To avoid errors caused by clustering effects, the 802 Astragali

Radix distribution data were filtered using the ENMTools 1.4 tool so

that only one observation was retained in each 2.5 min grid. After
TABLE 1 The contribution rate of environmental variables.

Category Abbreviation Variable
Whether
excluding

Percent
contribution (%)

Suitable range

Climate

bio1 Annual mean temperature (°C) No 8.3 4.86~15.08

bio2 Mean diurnal range (°C) No 1.6 9.41~13.50

bio3
Isothermality (bio2/

bio7) (×100)
No 1.5 24.30~32.26

bio4 Temperature seasonality Yes – –

bio5
Max temperature of warmest

month (°C)
Yes – –

bio6
Min temperature of coldest

month (°C)
Yes – –

bio7 Temperature annual range (°C) Yes – –

bio8
Mean temperature of wettest

quarter (°C)
No 0.1 18.29~25.22

bio9
Mean temperature of driest

quarter(°C)
Yes – –

bio10
Mean temperature of warmest

quarter (°C)
Yes – –

bio11
Mean temperature of coldest

quarter (°C)
Yes – –

bio12 Annual precipitation (mm) No 41.6 351.96~712.77

bio13
Precipitation of wettest

month (mm)
Yes – –

(Continued)
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removing redundant data, the final 195 distribution data were

included in the model.

2.2.2 Analysis and processing of
environmental variables

The 35 environmental data corresponding to the location of

Astragali Radix were extracted using ArcGIS 10.7 software, and

Pearson correlation analysis was performed using SPSS 25.0

software. For the environmental variables with correlation

coefficients greater than 0.8 in the results, only one was retained

(the one with higher contribution was selected), and finally 19

environmental variables were included in the model

(Figure 1; Table 1).
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2.3 Model evaluation

The ENMeval package in R 4.3.1 was used for parameter

optimization to improve the accuracy of MaxEnt model by

adjusting the optimal values of the regularization multiplier (RM)

and the feature categories (FC) (Muscarella et al., 2014). FC (H, L,

LQ, LQH, LQHP, LQHPT) and RM (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4) were

combined to calculate the Akaike Information Criterion Coefficients

(AICc) and to assess the model fit and complexity. The optimal

combination of parameters with the minimum AICc score

(DAICc=0) was eventually incorporated into the model as a way to

improve the predictive performance of the model. AUC refers to the

area under the ROC (receiver operating characteristic) curve which is
TABLE 1 Continued

Category Abbreviation Variable
Whether
excluding

Percent
contribution (%)

Suitable range

bio14
Precipitation of driest

month (mm)
Yes – –

bio15 Precipitation seasonality No 8.0 -165.68~100.23

bio16
Precipitation of wettest

quarter (mm)
Yes – –

bio17
Precipitation of driest

quarter (mm)
Yes – –

bio18
Precipitation of warmest

quarter (mm)
Yes – –

bio19
Precipitation of coldest

quarter (mm)
Yes – –

Soil

t_bs Topsoil base saturation (%) Yes – –

t_caco3
Topsoil calcium carbonate

(% wt.)
No 14.8 2.08~16.38

t_caso4 Topsoil Gypsum (% wt.) No 0 -1.51~0.34

t_clay Topsoil clay fraction (% wt.) No 0.2 8.00~24.67

t_ece Topsoil salinity (dS/m) No 0 0.14~1.63

t_esp Topsoil sodicity (%) No 0.3 0.49~4.72

t_gra Topsoil gravel content (%vol.) No 0 2.99~9.72

t_oc Topsoil organic carbon (% wt.) No 0 -3.75~-0.91

t_ph Topsoil pH (-log (H+)) No 6.0 7.31~9.34

t_ref
Topsoil reference bulk density

(kg/dm3)
Yes – –

t_sand Topsoil sand fraction (% wt.) No 0.2 28.99~50.64

t_silt Topsoil silt fraction (% wt.) Yes – –

t_teb Topsoil TEB (cmol/kg) No 0.1 16.79~65.30

Topographical

d_ele Elevation (m) No 15.9 -783.10~1052.71

d_asp Aspect (rad) No 0.4 154.75~352.65

d_slo Slope (°) No 1.0 -3.24~2.05
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usually utilized for testing the accuracy of a model, and it is not

affected by the proportion of subjects in the analyzed sample (Parodi

et al., 2022). The accuracy of the model is assessed based on the AUC

value, the magnitude of which is proportional to the predictive

performance of the model. The model accuracy of AUC value

prediction can be categorized into four levels: excellent (0.9-1),

good (0.8-0.9), fair (0.7-0.8), and poor (<0.7) (Swets, 1988).
2.4 Classification of suitable areas

The maximum test sensitivity plus specificity threshold

(MTSPS) is usually used as a dividing line to delineate the

suitable area of a species (Wang et al., 2024). The range is from 0

to MTSPS values for unsuitable areas and fromMTSPS values to 1.0

for suitable areas. The MTSPS value of this study was 0.362, so areas

with P ≤ 0.362 were classified as suitable areas for Astragali Radix,

and areas with P>0.362 were classified as unsuitable areas. The

predictions were imported into ArcGIS 10.7 software and the

reclassification tool was used to categorize the potentially suitable

areas, and the corresponding spatial areas were calculated

and visualized.
2.5 Centroids of suitable areas

Mean centers of mass (centroids) for the suitable areas were

calculated for each period using the Metrics Geographic
Frontiers in Plant Science 05
Distribution tool in the Spatial Statistics tool of the ArcGIS 10.7

software. Combine centroids from different time periods into one

vector data and plot migration directions and distances using the

Point Set to Line tool in the Data Management tool.
3 Results

3.1 Model optimization results and
accuracy evaluation

When RM was 3.5 and FC was LQH, the DAICc was 0 and the

AUC value was as high as 0.889, indicating that the model had been

optimized for better prediction accuracy and less overfitting. The

model has higher accuracy in predicting the suitable growth area of

Astragali Radix under different climatic conditions (Supplementary

Figure S1; Figure 2).
3.2 Influence of major
environmental factors

Of the 19 environmental variables that were ultimately included

in the model, those with a contribution greater than or equal to 5%

were bio12 (annual precipitation, 41.6%), d_ele (elevation, 15.9%),

t_caco3 (topsoil calcium carbonate, 14.8%), bio1 (annual mean

temperature, 8.3%), bio15 (precipitation seasonality, 8%), t_ph

(topsoil pH, 6%). In addition, the jackknife test showed that
FIGURE 1

Correlation of environment variables.
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bio12, d_ele, t_caco3, bio1, bio15 and t_ph all fit the training data

well, indicating that they contained the most useful information not

contained in the other variables (Figure 3).

The existence probability greater than and equal to 0.5 was

taken as the most suitable condition for survival. From the one-

factor response curve, it can be seen that when bio12 in the range of

351.96~712.77mm, d_ele in the range of -783.10~1052.71m,

t_caco3 in the range of 2.08%~16.38%, bio1 was in the range of

4.86~15.08°C, bio15 in the range of -165.68~100.23, t_ph in the

range of 7.31~9.34 was most suitable for growth of Astragali

Radix (Figure 4).
3.3 Potential distribution of Astragali Radix
in China

The results showed that under the current climatic condition,

the suitable areas of Astragali Radix was 188.41×104 km2, which was
Frontiers in Plant Science 06
mainly concentrated in North China such as Beijing, Liaoning,

Hebei, Shandong, Shanxi, Shaanxi, Henan, and Southwest China,

such as Yunnan, Guizhou, and Sichuan. Under the SSP126 scenario,

the suitable areas increased from 187.58×104 km2 to 190.96×104

km2 and finally reached 193.70×104 km2. Under the SSP245

scenario, the suitable areas increased from 191.59×104 km2 to

195.09×104 km2 and finally reached 213.02×104 km2. Under the

SSP585 scenario, the suitable areas increased from 198.46×104 km2

to 203.74×104 km2 and finally reached 212.70×104 km2

(Supplementary Table S1). The area of potential suitable areas is

higher than that under the current climate conditions under all

three climate scenarios. Under the same climate scenario, the area of

suitable areas showed an increasing trend over time. In addition, the

potential suitable areas for Astragali Radix under the three climate

scenarios in the future will still be mainly distributed in North

China, the suitable areas in Southwest China will be less than the

current area, and new suitable areas will be developed in Northwest

Xinjiang (Figure 5).
FIGURE 3

Results of jackknife test for the importance of the variables for MaxEnt.
FIGURE 2

Model accuracy evaluation. AICc value of parameter combinations based on the ENMeval calculation. AICc, Akaike information criterion correction;
L, linear; Q, quadratic; H, hinge; P, product; T, threshold. H, L, LQ, LQH, LQHP and LQHPT mean different feature categories. DAICc = 0 means the
model with this parameter combination is the optimal one. ROC curves of MaxEnt result. (A) The ROC verification curve of Maxent model;
(B) Jackknife test of the importance of variables.
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3.4 Dynamics of the future area of
suitable areas

The results showed that under the SSP126 scenario, the suitable

areas showed a slight contraction (-0.84×104 km2) during the period

2041-2060, followed by an expansion of 2.55×104 km2 and 5.29×104

km2 during the periods 2061-2080 and 2081-2100, respectively.

Under the SSP245 scenario, the suitable areas will expand by

3.19×104 km2 during 2041-2060, 6.68×104 km2 during 2061-2080,

and significantly by 24.61×104 km2 during 2081-2100. Under the

SSP585 scenario, the suitable areas will expand by 10.05×104 km2

during 2041-2060, 15.33×104 km2 during 2061-2080 and 24.30×104

km2 during 2081-2100 (Supplementary Table S2). The expansion

area is mainly located in Inner Mongolia Autonomous Region and

northwestern Xinjiang, while the reduction area is mainly

concentrated in the southwestern China. The suitable area of

Astragali Radix has been expanding for most of the time in each

period of the three climate scenarios compared with the current

situation (Figure 6).
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3.5 Centroids migration of suitable areas in
the coming period

Currently, the centroid of the suitable area of Astragali Radix is

located in Tang County, Hebei Province (115.047°E, 38.656°N). From

now to 2041-2060, the centroids under the three scenarios of SSP126,

SSP245, and SSP585 has moved by 193.02 km, 229.55 km, and 261.88

km, respectively, and the centroid is located in Xuanhua District

(114.943°E, 40.391°N), Qiaodong District (114.944°E, 40.720°N), and

Chongli District (114.914°E, 41.011°N). From 2041-2060 to 2061-

2080, the centroid shifted by 26.71 km, 23.11 km, and 63.20 km, and

the centroids were located in Xuanhua District (114.814°E, 40.611°N),

Qiaodong District (114.779°E, 40.887°N), and Chongli District

(115.088°E, 41.564°N), respectively. From 2061-2080 to 2081-2100,

the centroid shifted by 27.25 km, 53.81 km, and 48.92 km, and the

centroids were located in Qiaodong District (115.006°E, 40.808°N),

Chongli District (115.265°E, 41.204°N), and Taibesiqi (115.125°E,

42.004°N), respectively. Under all three climate scenarios, the suitable

areas of Astragali Radix showed a northward trend, but the degree of
FIGURE 4

Response curve of Astragali Radix existence probability to the main factors.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1505985
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wen et al. 10.3389/fpls.2024.1505985
northward movement was different, as shown by SSP585 > SSP245 >

SSP126 (Figure 7).
4 Discussion

Astragali Radix is widely cultivated in China and its distribution

is highly dependent on regional environmental conditions. In view

of the continuing effects of climate change, it is necessary to assess
Frontiers in Plant Science 08
the environmental influences on the distribution of Astragali Radix

and to predict suitable distribution areas for the future. This study

analyzed the changes in suitable areas of Astragali Radix based on

the optimized MaxEnt model for the years 2041-2060, 2061-2080

and 2081-2100. More importantly, in order to avoid the overfitting

problem of MaxEnt caused by the concentrated distribution points

and cross-correlation among environmental variables, this study

used the spatial analysis functions of ArcGIS and ENMTools to

screen the distribution points and environmental variables. In
FIGURE 5

Prediction of potential suitable areas of Astragali Radix in different periods.
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addition, the key parameters RM and FC were optimized using the

ENMeval software package in order to improve the prediction

accuracy of the model. The AUC value of the optimized model

was close to 0.9, indicating the reliability of the model for simulation

and prediction. Therefore, the model can be used to predict the

distribution of Astragali Radix.

Medicinal plants are affected by a variety of environmental

factors during their growth and development. Wang et al. in their
Frontiers in Plant Science 09
study of medicinal plants on the Tibetan Plateau noted that

medicinal plants are greatly affected by temperature and

precipitation (Wang et al., 2021). Astragali Radix, as a typical dry

perennial herb, is suitable for growth in cool and dry climatic

conditions. The drought environment inhibits the growth of

aboveground parts of Astragali Radix, so that nutrients are

preferentially transported to the roots, which affects the

accumulation of flavonoid components, thus affecting the quality
frontiersin.or
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Suitable distribution changes of Astragali Radix in different periods.
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of Astragali Radi (Li, 2017; Liang et al., 2016). Elevation is also a

major influence on the distribution of Astragali Radi in this study.

Previous studies have suggested that when Astragali Radix is

planted at an altitude of about 1700 m, it is more favorable for

the accumulation of its main active components (Wu et al., 2021),

and thus there will be a difference in the quality of Astragali Radix

planted at different altitudes. Soil moisture is another important

factor that affects the distribution of Astragali Radix, and it can have

an impact on the activity and reproduction of Astragali Radix pests.

For example, Lerin et al. found that high moisture environments

promote the hatching of weevil eggs (Lerin, 2004). Excessive soil

moisture can limit the growth length of the main root of Astragali

Radix, reduce the formation of lateral roots, and also highly

susceptible to root skin rot (Su, 2017). In addition to climatic and

topographic factors, this study also found that soil calcium

carbonate also affects the suitable area of Astragali Radix. It has

been previously demonstrated that calcium carbonate not only

restores the original pH of the soil, but also stabilizes soil pH

through its acid-base buffering capacity (Yu et al., 2017). Therefore,

this favors the growth of Astragali Radi, which prefers alkaline

growth conditions (Wu et al., 2015). Moreover, previous studies

have found strong anthropogenic correlations with medicinal plant

diversity (Zhao et al., 2022a), suggesting that anthropogenic

activities may also influence the regional distribution of

Astragali Radix.

Intergovernmental Panel on Climate Change (IPCC) (2023)

shows that compared to 1995-2014, the likely range of projected

changes in global mean annual land precipitation over the period

2081-2100 is 0.0-6.6%, and the global mean surface air temperature

average is likely to increase by 0.5-1.5°C (Intergovernmental Panel

on Climate Change (IPCC) (2023)). Many studies have confirmed
Frontiers in Plant Science 10
that climate change drives species migration to higher latitudes

(Wang et al., 2023b; Bertrand et al., 2011). This is consistent with

the overall northward migration of centroids in the Astragali Radix

suitable areas. The specific migration direction and the variability of

migration distance may be related to a variety of factors, such as

human activities, altitude and land use type (Ding et al., 2020; Yang

et al., 2013). Moreover, while previous studies have suggested that

the frequency and intensity of extreme precipitation events may

increase globally (Zhou et al., 2023) and that the geographic

distribution of most plants may decrease (Wang and Wu, 2024).

However, the area of suitable areas for Astragali Radix will expand

in the future. This may be related to the fact that the main habitat of

Astragali Radix is located in the Yellow River Basin area in northern

China. Because some scholars have predicted that the precipitation

in the Yellow River Basin will tend to decrease after the middle of

the 21st century, which will undoubtedly favor the growth of

Astragali Radix, which prefers to be dry (Liu et al., 2024).

In the future, the area of suitable area for Astragali Radix in

Xinjiang shows an expanding trend, and the expanding area is

concentrated in the northwestern oasis belt, which may be related to

the change of oasis area (Jiao et al., 2024). Under global warming,

the rate of alpine ice melt will accelerate in the future, potentially

leading to an increase in oasis area. Meanwhile, in high-altitude and

high-latitude environments, climate change is rapidly reducing the

winter snowpack and accelerating the rate of spring snowmelt (Fyfe

et al., 2017; Musselman et al., 2021). Therefore, the dynamics of

oases in the context of climate change need to be fully taken into

account when planning Astragali Radix cultivation in order to

realize the long-term benign development of the cultivation. In

addition, the provinces of Yunnan, Guizhou and Sichuan are

located in southwest China, which have formed a unique
frontiersin.or
FIGURE 7

Situation of centroid shift of suitable areas of Astragali Radix in different periods.
g

https://doi.org/10.3389/fpls.2024.1505985
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wen et al. 10.3389/fpls.2024.1505985
“microclimate zone” due to their similar geographic location and

natural conditions, and have been one of the major production

areas of Chinese herbal medicines since ancient times (Liu, 2018).

However, this study found that the area of suitable area for Astragali

Radix in Southwest China showed a decreasing trend. Previously,

some scholars predicted a significant increase in temperature and

precipitation in Southwest China in the future (Jin et al., 2022; Liu

et al., 2022), as well as the frequent occurrence of extreme weather

and events in the region due to complex topographic conditions.

Together, these factors constitute a potential threat to the growth

environment of Astragali Radix, and thus Astragali Radix may need

to migrate to areas with higher latitudes and relatively lower

temperatures and humidity to adapt to the new climatic

environment. This study predicted the current and future

potentially suitable areas of Astragali Radix. The results can

provide some basis for the screening of ecological planting areas

and the control of key ecological factors for Astragali Radix in

China. Nevertheless, the suitable areas of plant species depends not

only on ecological conditions, but also on other factors such as

economic development, government policies, and anthropogenic

disturbances, and more types of environmental data need to be

collected to enhance the applicability of the model predictions in

future studies.
5 Conclusion

Our study identified precipitation, elevation, temperature,

topsoil calcium carbonate and topsoil pH are the key

environmental variables regulating the growth of Astragali Radix.

Currently, the suitable area of Astragali Radix in China is mainly

concentrated in North China and Southwest China, but the area of

suitable area in Southwest China will be reduced in the future, and

Northwest Xinjiang may develop into a new suitable area. In

addition, the centroid position of the suitable area of Astragali

Radix shows a northward trend, indicating that the population of

Astragali Radix may migrate to higher latitudes to cope with the

environmental changes caused by global warming. This study

provides a scientific basis for the development of planting

strategies and spatial distribution management of Astragali Radix,

and helps to optimize the selection of areas for herbal medicine

cultivation and resource conservation.
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