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1 Introduction

Natural products derived from medicinal plants are a class of compounds with extensive

biological activities, playing a crucial role in the pharmaceutical, food, and cosmetics

industries. Due to their excellent physiological functions, increasing attention is being paid

to the biosynthesis pathways of plant natural products (PNPs) (Kawatra et al., 2022; Halder

and Jha, 2023). However, as market demand continues to grow, traditional harvesting and

plant extraction methods exert immense pressure on the environment (Singh, 2023). In

recent years, the rapid advancement of synthetic biology has offered new approaches for

producing structurally complex bioactive small-molecule compounds using biotechnology

(Hesami et al., 2023). Nevertheless, the lack of knowledge about biosynthetic pathways

significantly impedes the large-scale biomanufacturing of natural products from medicinal

plants. Unlikemicroorganisms, the biosynthetic genes for plant natural products are relatively

dispersed across chromosomes, and medicinal plants often lack efficient genetic manipulation

systems, which hinders the elucidation of their biosynthetic pathways. Recently,

chemoproteomics based on activity probes has demonstrated great potential in elucidating

plant natural product biosynthesis (steviol glycosides, camptothecin, chalcomoracin, etc.), as

it enables the rapid identification of functional proteins interacting with substrates, thereby

accelerating the discovery of biosynthetic pathways (Li et al., 2018; Zhou et al., 2018; Gao

et al., 2020; Wong et al., 2020; Zhang et al., 2024) (Figure 1).

Traditional approaches have played a crucial role in advancing our understanding of plant

natural product biosynthetic pathways, laying a foundation for emerging technologies like

chemoproteomics. Gene knockout and RNA interference (RNAi) methods, for example, have

been widely used to identify genes involved in biosynthetic pathways by observing phenotypic

changes in metabolite production when specific genes are silenced (Zhao et al., 2016).

Additionally, multi-omics approaches, such as transcriptomics, offer insights by gene

coexpression, though these methods can be limited by the need for extensive data analysis

and do not directly identify enzyme activities (Liu et al., 2024a; Swamidatta and Lichman,
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2024). Heterologous gene expression, often in microbial and plant

systems, has enabled functional analysis of individual genes or gene

clusters by recreating biosynthetic pathways outside the native plant

context (Lau and Sattely, 2015; Hong et al., 2022; Yang et al., 2024).

However, traditional biochemical assays used to verify enzyme

function may require large amounts of purified protein, a time-

intensive process (Tatsis et al., 2017). These methods, while

foundational, often fall short in dissecting complex pathways

directly within plants, which is where chemoproteomics, with its

activity-based probes and functional annotation capabilities, offers

distinct advantages. Consequently, applying chemoproteomics

technology to comprehensively analyze the biosynthesis of plant

natural products not only has practical value for the rapid

identification of functional genes involved in biosynthesis but also

holds strategic significance for achieving large-scale production of

medicinal plant natural products through synthetic biology (Zhang

et al., 2022; Gao et al., 2023; Liu et al., 2023; Zhang et al., 2023;

Golubova et al., 2024; Jiang et al., 2024; Liu et al., 2024b).
2 Workflow of affinity probes

Affinity probes are specialized chemical tools used in

chemoproteomics to isolate and identify active enzymes within

complex biological samples, particularly those involved in plant

natural product biosynthesis. These probes typically consist of a

binding moiety that targets the enzyme’s active site, a reactive tag that

enables enzyme capture through covalent attachment after activation

and a reporter tag for detection. Effective affinity probe design

requires specificity to mimic natural substrates, stability in
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biological conditions, and controlled reactivity to ensure selective

and durable binding (Parker and Pratt, 2020; Fang et al., 2021)

(Figure 2). The primary advantage of affinity probes lies in their

ability to selectively target and capture active enzymes within native

proteomes, bypassing the need for extensive purification or genetic

manipulation. However, challenges such as non-specific binding and

the complexity of probe design can limit their effectiveness (Tabana

et al., 2023). Affinity probes have proven invaluable for mapping

biosynthetic pathways in plants, as shown in studies on enzymes

synthesizing steviol glycosides and other complex natural products.
3 UDP-glycosyltransferases in steviol
glycosides biosynthesis

Steviol glycosides, the sweetening agents derived from Stevia

rebaudiana, have been widely studied due to their potential as non-

caloric sweeteners (Masand et al., 2024). Recent research utilizing a

chemoproteomics-based strategy successfully identified the UDP-

glycosyltransferases (UGTs) SrUGT73E1, AtUGT73C1 and

AtUGT73C5, which play a pivotal role in catalyzing the

glycosylation of steviol to form steviol glycosides (Li et al., 2018;

Zhou et al., 2018; Wong et al., 2020). The use of a photoaffinity

probe specific to steviol, combined with mass spectrometry, allowed

researchers to selectively profile the UGTs responsible for the final

glycosylation steps. This discovery not only advances our

understanding of the biosynthetic pathway of steviol glycosides

but also offers a novel platform for the rapid identification of other

enzymes involved in glycosylation, enabling synthetic biology

approaches for scalable production.
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FIGURE 1

(A) Chemoproteomics approach to characterize the enzymes involved in the biosynthesis of plant natural products. (B) Reported photoaffinity-based
probes for enzyme discovery.
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4 Chalcomoracin biosynthesis
through FAD-dependent cycloaddition

Chalcomoracin, a bioactive flavonoid isolated from mulberry

(Morus alba), is synthesized through a highly unique flavin adenine

dinucleotide (FAD)-dependent intermolecular Diels-Alder

reaction. For years, the enzyme responsible for this cycloaddition

reaction was unknown, despite its importance in the formation of

chalcomoracin’s characteristic cyclohexene ring. Recent studies

have identified a novel enzyme, Morus alba Diels–Alderase

(MaDA), through a biosynthetic intermediate probe (BIP)-based

chemoproteomics strategy (Gao et al., 2020).MaDA catalyzes the [4

+ 2] cycloaddition with high specificity and enantioselectivity,

marking the first discovery of a stand-alone intermolecular

Diels-Alderase in plants (Gao et al., 2020, 2024). The use

of chemoproteomics in this context allowed the functional

characterization of this enzyme, which had remained inaccessible

through traditional genomics or transcriptomics due to the lack of

gene clustering in plant biosynthetic pathways.
5 Camptothecin biosynthesis and the
role of OpCYP716E111

Camptothecin, an alkaloid with potent anti-cancer properties,

is derived from Camptotheca acuminata and Ophiorrhiza pumila

(Yang et al., 2021). The biosynthesis of camptothecin has long

been a subject of study, with a significant gap in understanding the

steps following strictosamide formation. A breakthrough came

with the discovery of OpCYP716E111, an epoxidase responsible

for catalyzing the conversion of strictosamide to strictosamide

epoxide. Using a chemoproteomic approach, researchers designed

a diazirine-based probe specific to strictosamide, which enabled

the selective identification of OpCYP716E111 in the proteome of

Ophiorrhiza pumila (Zhang et al., 2024). This discovery fills a

critical gap in the camptothecin biosynthesis pathway

and underscores the power of chemoproteomics to uncover

previously unknown enzymes involved in complex plant

metabolic processes.
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6 The broader impact of
chemoproteomics in
plant biosynthesis

The discoveries surrounding steviol glycosides, chalcomoracin,

and camptothecin highlight the broad applicability of

chemoproteomics in the field of plant natural product biosynthesis

(Li et al., 2018; Zhou et al., 2018; Gao et al., 2020; Wong et al., 2020;

Zhang et al., 2024). Traditional methods such as transcriptomics and

gene knockout studies often fall short in plants due to the dispersed

nature of biosynthetic genes, making it difficult to pinpoint the

enzymes responsible for each step. Chemoproteomics circumvents

this issue by directly targeting enzyme activity through small

molecule probes, allowing for rapid functional annotation of

enzymes even in non-model plants. This approach is particularly

advantageous in plants where secondary metabolism genes are not

organized into clusters, a feature common in microbial systems but

rare in plants. Chemoproteomics offers unique advantages for

studying biosynthetic pathways, such as high sensitivity for

detecting low-abundance enzymes without needing gene cloning or

protein expression steps. It can also distinguish between closely

related isoforms and profile multiple enzymes simultaneously,

enabling a comprehensive view of metabolic networks in plant

systems. These features make chemoproteomics particularly

valuable for advancing research in natural product biosynthesis.

Furthermore, the integration of chemoproteomics with synthetic

biology holds the promise of sustainable production of these

valuable compounds. By identifying and characterizing the

enzymes involved in natural product biosynthesis, researchers can

reconstitute these pathways in microbial hosts, enabling the scalable

and controlled production of complex plant-derived compounds

(Zhang et al., 2022; Gao et al., 2023).

Despite its advantages, chemoproteomics faces challenges in

studying complex plant biosynthetic pathways. These include non-

specific binding of probes, the need for extensive optimization in

non-model plants, and reliance on high-quality mass spectrometry

data for accurate enzyme identification. Additionally, challenges

arise from probe design limitations that may affect binding

efficiency and specificity. Future advancements, such as improved
FIGURE 2

The workflow of affinity probes.
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probe selectivity and integration with other omics technologies,

hold promise for overcoming these obstacles and enhancing the

approach’s utility in biosynthetic research.
7 Conclusion

Chemoproteomics has proven to be an indispensable tool in

elucidating the biosynthetic pathways of complex natural products

like steviol glycosides, chalcomoracin, and camptothecin. The ability to

directly profile active enzymes involved in these pathways offers a new

frontier in plant natural product research, accelerating the discovery of

key biosynthetic genes and facilitating their application in synthetic

biology. As this field continues to grow, chemoproteomics will likely

play a central role in unlocking the full potential of plant-derived

natural products for pharmaceutical and industrial applications.
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