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In the cultivation of green chili peppers, the similarity between the fruit and

background color, along with severe occlusion between fruits and leaves,

significantly reduces the efficiency of harvesting robots. While increasing

model depth can enhance detection accuracy, complex models are often

difficult to deploy on low-cost agricultural devices. This paper presents an

improved lightweight Pepper-YOLO model based on YOLOv8n-Pose,

designed for simultaneous detection of green chili peppers and picking points.

The proposed model introduces a reversible dual pyramid structure with cross-

layer connections to enhance high-and low-level feature extraction while

preventing feature loss, ensuring seamless information transfer between layers.

Additionally, RepNCSPELAN4 is utilized for feature fusion, improving multi-scale

feature representation. Finally, the C2fCIB module replaces the CIB module to

further optimize the detection and localization of large-scale pepper features.

Experimental results indicate that Pepper-YOLO achieves an object detection

accuracy of 82.2% and a harvesting point localization accuracy of 88.1% in

complex scenes, with a Euclidean distance error of less than 12.58 pixels.

Additionally, the model reduces the number of parameters by 38.3% and

lowers complexity by 28.9%, resulting in a final model size of 4.3MB.

Compared to state-of-the-art methods, our approach demonstrates better

parameter efficiency. In summary, Pepper-YOLO exhibits high precision and

real-time performance in complex environments, with a lightweight design that

makes it well-suited for deployment on low-cost devices.
KEYWORDS

green pepper detection, Pepper-YOLO, picking point localization, lightweight model,
picking robot
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1 Introduction

In modern agriculture, automated harvesting has become an

important means to improve production efficiency and reduce labor

costs. Peppers, as a significant economic crop, hold an important

position in the cultivation and harvesting in many regions.

However, current pepper harvesting robots face numerous

challenges in complex agricultural environments, such as color

similarity, dynamic lighting, and severe occlusion, which result in

subpar performance of existing detection technologies in practical

applications. In previous work, many researchers have attempted to

enhance detection accuracy by increasing model complexity;

however, complex models require higher equipment costs.

Therefore, improving the recognition accuracy of peppers and

harvesting points while reducing model complexity is crucial for

enhancing the level of agricultural automation (Hua et al., 2023).

In complex environments, peppers are often occluded by leaves,

branches, or even other peppers, which significantly impairs both

object detection and the localization of picking points. Furthermore,

compared to fruits with stable contours such as bell peppers, apples,

and oranges, green peppers exhibit irregular surfaces and complex

morphologies, including straight, curved, and twisted shapes. These

factors present considerable challenges for the recognition tasks of

harvesting robots. Since the early days of object detection, hand-

crafted feature extraction methods and classifiers, such as SIFT and

HOG, have been combined with Support VectorMachines (SVM) for

object classification (Bellavia and Colombo, 2020; Zhou and Yu,

2021). Arad developed a highly regarded sweet pepper-picking robot

that uses the color difference between yellow peppers and the

background for segmentation and employs the Hough transform

for key point localization (Arad et al., 2020). Ji et al. proposed a local

contrast enhancement algorithm to enhance green pepper images,

followed by boundary pixel information for edge detection, achieving

an accuracy of 83.6% (Ji et al., 2020). Bai et al. constructed a machine

learning model to recognize tomatoes using Hough Circle Detection,

leveraging shape, texture, and color features (Bai et al., 2023). Zhu

et al. achieved grape instance segmentation using components of the

HIS color space and the Otsu algorithm (Zhu et al., 2022). While

these methods perform adequately in simple backgrounds or fixed

scenes, they often struggle with complex backgrounds, multiple

occlusions, varying scales, and object angles. Additionally,

traditional methods require significant human intervention and

feature engineering, leading to poor scalability and limited

adaptability in complex agricultural environments.

In recent years, with the advent of convolutional neural

networks (CNN) and advancements in deep learning algorithms,

object detection technology has been widely applied in agriculture.

Currently, object detection is categorized into two-stage and one-

stage detectors. Two-stage detectors typically employ a complex

network structure to first generate region proposals, followed by

feature extraction and detection for each region. Representative

models include R-CNN and Faster R-CNN (Wan and Goudos,

2020). For example, Wang et al. (Wang et al., 2022) used ResNet-50

as the backbone for Faster R-CNN, providing precise recognition

for automated harvesting robots through two-stage detection. In

contrast, one-stage detectors perform regression and classification
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tasks directly on the feature map of the image without an explicit

region proposal step, enabling faster detection speeds compared to

two-stage detectors (Diwan et al., 2023). Typical examples of single-

stage detectors include the YOLO series and SSD.

One-stage detectors, with their end-to-end network architecture,

excel in real-time object detection and have been widely applied in

agriculture, such as in plant phenotyping (Jiang and Li, 2020),

localization in fruit picking (Chen et al., 2024c), tomato leaf disease

detection (Tang et al., 2023), and small apple detection in orchards

(Sun et al., 2022). In picking point localization, many researchers

have combined one-stage detectors with traditional image processing

and geometric methods to achieve stem recognition and key point

localization. For example, in strawberry picking point detection, Yu

et al. measured and annotated the rotation angle of each strawberry

during data labeling, and based on YOLOv3, proposed the R-YOLO

model. This method estimates the strawberry’s posture by predicting

the rotation angle of the bounding box and then uses statistical

methods to predict the picking point location (Yu et al., 2020).

Similarly, in strawberry picking point identification, Tafuro et al.

constructed a strawberry point cloud and used point cloud

segmentation to estimate the picking point location (Tafuro et al.,

2022). Although this method addresses the picking point localization

problem, it requires a substantial amount of computational resources.

Qi et al. combined YOLOv5 with traditional image processing

techniques to accurately identify the main stems and picking points

in lychee images (Qi et al., 2022). Zhang et al. used an improved

YOLOv5 to detect grape centroids and then applied geometric

estimation to determine the picking point; however, this approach

overlooks the orientation and posture of the grape stems (Zhang

et al., 2023). Although combining deep learning with geometric

methods can estimate picking point locations, these methods

struggle to accurately determine the correct picking points in

environments with complex postures and occlusions.

To improve the accuracy of fruit detection in complex

environments, multimodal image feature fusion has also been

applied to object detection tasks. For instance, the fusion of RGB

images and data from infrared camera sensors after image matching

and integration can help solve the challenges of object detection in

complex scenes (Liu et al., 2023). Similarly, the researchers solved

the localization problem of the fruit by fusing RGB-D data with

RGB images, which can also alleviate the problem of overlapping

occlusion in complex environments (Zhou et al., 2024). Several lines

of evidence suggest that the fusion of multimodal data can provide

richer feature information. However, multimodal data fusion not

only requires more memory and computational power, but also

must overcome feature conflicts between different data modalities

(Liu et al., 2023; Chen et al., 2024d).

With the development of deep learning and pose estimation

technologies, models for parallel computing of object detection and

pose estimation have gained significant attention. Some researchers

have applied the YOLO-Pose model in the field of agricultural

harvesting. For example, Chen et al. utilized an improved YOLOv8-

pose model to achieve object detection and keypoint localization for

strawberries (Xia, 2024). Similarly, Huang et al. employed an improved

YOLOv8n-Pose model for object detection and harvesting point

identification of grape clusters (Chen et al., 2024b). Although they
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have achieved success in parallel computing for object detection and

keypoint localization using the YOLO-Pose series, the pyramid

structure in their backbone is prone to feature loss during multi-scale

feature fusion (Wang et al., 2024), resulting in suboptimal detection

accuracy for complex backgrounds or overlapping phenomena. In

summary, despite the progress made in fruit object detection and

picking point localization, several challenges remain. First, object

detection and picking point localization in complex environments is

a complicated process, and current automated picking systems lack

detection networks that are both lightweight and efficient. Second, due

to the diverse shapes of green peppers and various occlusion issues,

existing algorithms struggle to achieve satisfactory accuracy in

occlusion recognition. Lastly, many pyramid-based multi-layer

network structures suffer from feature loss, resulting in low reliability

when detecting multi-scale objects.

Improving the efficiency of automated green pepper harvesting

requires not only detecting the peppers and localizing picking

points but also overcoming challenges such as occlusions and

varying lighting conditions in complex environments. This paper

proposes a lightweight and efficient Pepper-YOLO model for

simultaneous detection of green pepper targets and picking point

localization. Specifically, our goal is to enhance the accuracy of

pepper object detection and picking point localization while

reducing the model’s computational complexity to ensure efficient

operation on resource-constrained hardware. In addition, this

model integrates the detection of multiple keypoints of pepper

postures, which can also serve for pepper posture recognition. We

conducted experiments using a dataset collected from real-world
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scenarios, and the experimental results demonstrate that our

proposed Pepper-YOLO achieved the best performance in all

comparisons, as shown in Figure 1.

The contributions of this paper are manifold:
• Establish a green pepper dataset that includes object

detection bounding boxes, picking points, and posture

keypoints to assist with harvesting.

• The use of a reversible detection head with a double pyramid

structure reduces information loss during network transmission

and improves multi-scale object detection accuracy.

• Introduce a lightweight model, Pepper-YOLO, which

combines pepper object detection with picking point

localization, enabling simultaneous detection of green

peppers and their keypoints, while demonstrating superior

accuracy and fewer parameters compared to several state-of-

the-art (SOTA) deep networks.
2 Materials and methods

2.1 Dataset acquisition

To evaluate the performance of the model in complex

environments, data was collected on May 2, 2024, at the green

pepper plantation of Lvfeng Agricultural Technology Co., Ltd. in

Fuqing City. During this period, the pepper plants were at their most
FIGURE 1

Pepper-YOLO is a method we proposed for simultaneous green pepper detection and picking point localization. Compared to state-of-the-art
methods, Pepper-YOLO achieves the best performance while maintaining the smallest model size(only around 1.9M parameters).
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foliated, with significant occlusion of the peppers, accurately

representing complex real-world conditions. Data was captured

using an Intel RealSense D435i camera, which consists of an

infrared camera, dot projector, and RGB camera, capable of depth

measurement within a range of 0.2 to 2 meters. During the capture

process, the distance between the camera and the peppers was

maintained at 50 to 70 cm. A total of 1,152 images, including both

RGB and depth images, were collected, containing 2,381 individual

peppers, with a resolution of 1280x720. The dataset covers both

front-lit and backlit environments. As shown in Figures 2A–F, the

peppers in the dataset exhibit various shapes, including straight,

curved, long, and short peppers. These peppers experienced multiple

types of occlusion, such as leaf occlusion, inter-pepper occlusion,

branch occlusion, and cases where only part of the pepper was visible

in the image.
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2.2 Datasets annotation

The images were annotated using Labelme, where rectangular

boxes were used to mark the pepper regions, and keypoints were

created at three locations: the stem, the top of the fruit, and tip of

the pepper. The purpose of annotating three keypoints for each

pepper is to correct the picking point location and make an initial

assessment of the pepper’s shape. The annotation process follows

these principles: (1) The stem keypoint, representing the picking

point, is located 2cm to 5cm above the pepper and is labeled as

“Pick,” as shown in Figure 3 by number 1. (2) The localization point

at the top of the fruit is placed in the center and is labeled as “Top”,

as shown in Figure 3 by number 2. (3) The tip of the pepper is

labeled as the “Bottom” keypoint, as shown in Figure 3 by number

3. (4) Each keypoint can be categorized into three visibility states:
FIGURE 2

Peppers in complex scenes with different shapes, lighting conditions, and types of occlusion. (A) Straight pepper, (B) Curved pepper, (C) Backlit
pepper, (D) Pepper occluded by leaves, (E) Pepper occluded by branches, (F) Peppers occluding each other.
FIGURE 3

Green pepper target bounding box and the annotated locations of the three keypoints.
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the “Visible” state, where the location point is clearly identifiable in

the image; the “Occluded” state, indicating the location point is

partially or completely obscured by leaves, stems, or other parts of

the pepper; and the “Invisible” state, in which the location point is

entirely outside the captured range of the image.
2.3 Dataset construction

The annotated dataset was divided into training, validation, and

test sets in a ratio of 7:1.5:1.5. The validation set contains 86 images

with a total of 328 peppers, and the test set contains 87 images with

a total of 410 peppers. To ensure the model learns feature

representations in complex environments and adapts to varying

lighting conditions, offline data augmentation techniques were

applied to randomly selected images from the training set. These

augmentations included mirroring, translation, brightness

adjustment, and scaling, expanding the training set to 1,261

images with a total of 4,797 peppers.
2.4 Overview of YOLOv8-Pose

YOLOv8-Pose is one of the latest variants in the YOLO series,

specifically designed for object detection and pose estimation tasks

(Varghese and M, 2024). YOLO models have gained significant

attention in the field of object detection due to their fast and efficient

performance. Building on this, YOLOv8-Pose further enhances

pose estimation capabilities (Si et al., 2023). The model combines

the efficiency of the YOLO architecture with the advantages of

multi-task learning, allowing it to accurately detect objects and

estimate keypoints while maintaining real-time performance.

Compared to YOLOv5 (Jocher, 2020), YOLOv6 (Li et al., 2022),

and YOLOv7 (Wang et al., 2023), YOLOv8 demonstrates superior

performance across multiple datasets.

The backbone of YOLOv8 consists of a series of convolutional

layers and improved CSPNet modules (such as the C2f module),

responsible for gradually extracting multi-scale features. Through

downsampling and feature fusion, it generates feature maps at

different scales (e.g., P3, P4, P5), providing rich feature

representations for subsequent object detection. In the neck network,

the C2f module further integrates and transmits these features (Chen

et al., 2024a), utilizing structures like the feature pyramid network

(FPN) to effectively process features from different scales, thereby

improving the detection of objects of varying sizes. Before generating

bounding boxes and keypoint coordinates, YOLOv8 continues to use

the C2f module for multi-layer feature fusion, ensuring the accuracy of

the final detection results. This network architecture is highly effective

for fruit detection and picking point localization tasks in agricultural

and industrial environments (Yang et al., 2023; Diao et al., 2023).
2.5 Reconfiguring the backbone network

YOLO typically uses a top-down and bottom-up pyramid

structure for feature fusion, which has significant advantages in
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feature extraction (Quan et al., 2023). However, this structure tends

to lose low-level feature information when extracting high-level

features, especially in complex scenes with varying background and

heavy occlusion, where the input feature resolutions differ, leading

to inconsistent feature fusion contributions and reduced model

performance (Kim et al., 2021). To address this issue, this paper

proposes a backbone network named Rev2, which is composed of

two bottom-up pyramid structures. Each of these pyramid

structures takes the original image as input. Each pyramid

structure consists of four levels, labeled as P1, P2, P3, and P4 in

Figure 4 backbone. The resolution of the P1 feature layer is

160×160, and each level uses different convolutional kernel sizes

and strides for feature extraction and down-sampling operations,

while the resolution of the P4 feature layer is 20×20. In addition, the

high-level and low-level features from the first pyramid structure

are fused with the low-level and high-level features from the second

pyramid structure, respectively. The fusion paths are shown by the

red and blue arrows in Figure 4 backbone.

Fl+k
2 = Fl+k

2 + T(Fl
1) (1)

Fl
2 = Fl

2 + T 0(Fl+k
1 ) (2)

The mutual fusion of high-level and low-level features between

the two pyramids during feature fusion is illustrated by Equations 1, 2

Fl+k
1 and Fl+k

2 . represent the high-level features of the two pyramids,

while Fl
1 and Fl

2 represent the low-level features of the two pyramids,

and T represents the feature transformation function used for

spatial alignment.

Inspired by the concept of RevCol (Cai Y. et al., 2023), we apply

reversible connections within the two pyramid structures, ensuring

that features are not lost during both forward propagation and

reverse restoration in the backbone network, as shown in Equations

3, 4. In this context, ft represents the nonlinear transformation

operation. In Equation 3, the current feature map Ft is generated by

utilizing the previous layer’s feature map Ft−1, along with Ft−m+1

from the earlier m + 1 layers and the weighted Ft−m. This approach

ensures that each layer in the deep network fully leverages the

contextual information from different levels, thereby enhancing the

feature representation capacity and overall network performance.

Ft = ft(Ft−1, Ft−m+1) + gFt−m (3)

Ft−m = g−1½Ft − ft(Ft−1, Ft−m+1)� (4)

In Equation 4, the reversible operation g−1 is employed to

recover the previous feature Ft−m from the current layer’s feature

Ft . This design guarantees lossless feature transmission within the

deep network. Specifically, during gradient calculation and

parameter updates, it eliminates the need to store all intermediate

activations, thus reducing memory consumption.

In addition, within the dual-pyramid structure, we use

convolutional kernels of varying sizes and strides for feature

extraction and downsampling. During feature transmission, we

employ the lightweight C2f module to fuse and decouple partial

features, enabling efficient multi-scale feature extraction while

avoiding information redundancy and feature loss. Ultimately,
frontiersin.org
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through the fusion of features at different scales, we ensure that

information is transmitted losslessly both forward and backward in

the network, significantly improving feature extraction efficiency

and detection accuracy.
2.6 Enhanced multi-scale feature fusion
with RepNCSPELAN4 for pepper detection

In the green pepper cultivation environment, the variety of

pepper shapes and occlusion issues result in peppers appearing at

various sizes in images, which is one of the main challenges for

pepper recognition and keypoint localization. Effectively fusing

feature maps from different layers of the backbone and accurately

identifying features at multiple scales become particularly important.

In YOLOv8n, the neck uses the C2f module for feature fusion, but

C2f’s fusion method is relatively straightforward, leading to potential

information loss in deeper networks. This limitation is more

pronounced in tasks requiring fine-grained information or very

deep networks. Therefore, we replace C2f with RepNCSPELAN4

(Wang et al., 2024) to enhance the fusion of multi-scale features.

As shown in Figure 5A, RepNCSPELAN4 introduces multiple

shortcut paths, allowing it to effectively retain information from
Frontiers in Plant Science 06
different levels. This ensures that shallow feature information is not

lost in deeper layers, thereby improving gradient flow stability.

Additionally, RepNCSPELAN4 uses two RefConv (Cai Z. et al.,

2023) layers in its RepNCSP structure to implement re-

parameterization, and based on the CSPNet idea (Wang et al., 2020),

it adopts an efficient layer aggregation strategy, which significantly

reduces themodel’s parameter count, as shown in Figure 5B. Through

this feature aggregation strategy, RepNCSPELAN4 enhances the

fusion of features across different scales, improving the detection

capability for objects of varying sizes. Moreover, compared to other

complex feature fusion modules, RepNCSPELAN4 reduces both the

parameter count and computational complexity of the model, making

itmore efficient for deployment on resource-constrained devices, such

as agricultural robots.
2.7 Enhancing large-scale feature
recognition with C2fCIB

Green chili peppers have an elongated shape and occupy a

large portion of the camera’s field of view. Overcoming occlusion

and effectively recognizing large-scale features before the final

inference is particularly important. To address this, we replaced
FIGURE 4

Network structure of Pepper-YOLO.
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the original C2f module with the C2fCIB structure in the

penultimate layer of the network. C2fCIB builds on C2f by

incorporating the Conditional Identity Block (CIB) to replace

the bottleneck, as shown in Figure 5C. The CIB first applies

Depthwise Convolution (Chollet, 2017), performing convolution

on each input channel individually, followed by Pointwise

Convolution (Hua et al., 2018) to restore the channel count.

This interaction mechanism enhances feature information

exchange without increasing computational costs, thereby

improving feature extraction capabilities. The network structure

is illustrated in Figure 5D. This multi-scale feature extraction

method enables the model to handle objects of varying sizes more

effectively. In complex scenarios, such as when object size varies

significantly, C2fCIB outperforms C2f, particularly in processing

targets with large-scale differences.

The main function of the C2fCIB module in Pepper-YOLO is to

integrate features from different scales and layers, enhancing the

network’s detection capabilities by increasing the number of

channels and promoting feature interaction. Positioned in the

penultimate layer, it plays a crucial role in improving the model’s

ability to represent large-scale features, providing robust feature

support for the final detection and localization tasks.
3 Experimental

3.1 Experimental details

To ensure the fairness of the experiments, all tests were

conducted on the same hardware configuration. The experimental

setup includes a GeForce RTX 4090D GPU, an AMD EPYC 9754

processor, and 60GB of RAM. The operating system used is Ubuntu

22.04, with PyTorch 2.0.0 as the development framework, CUDA

11.8, and Python 3.9 as the programming language. In this

experiment, the input image size was standardized to 640×640.

The hyperparameters for the experiment are as follows: the initial
Frontiers in Plant Science 07
learning rate and the final learning rate were both set to 0.01, with a

batch size of 8 images, and the momentum parameter was set to

0.937. Stochastic gradient descent (SGD) was selected as the

optimizer, and the mosaic data augmentation was disabled during

training. After 300 epochs of training, the best-performing weight

file was extracted for model evaluation.
3.2 Evaluation metrics

To more accurately reflect the model’s potential in complex

agricultural environments, we designed two core experimental

stages: the first focuses on the precise detection of green peppers,

and the second on the accurate localization of picking points. To

quantify the model’s complexity, we used the total number of

parameters (Params) and the number of giga floating-point

operations per second (GFLOPs) as evaluation metrics, providing

an in-depth analysis of the model’s computational burden and

resource requirements. For measuring the model’s operational

efficiency, we used frames per second (FPS) to assess the model’s

ability to process video or image sequences in real-time. In

evaluating the performance of the pepper detection task, precision

(P), recall (R), and mean average precision (mAP) were utilized,

with the definitions of these metrics provided in Equations 5–7.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

mAP =
Z 1

0
P(r) dr (7)

TP (True Positives) refers to the number of instances where the

model correctly detects and classifies the target object. FP (False

Positives) represents the number of instances where the model
FIGURE 5

Network structure of Pepper-YOLO and its constituent modules. (A) RepNCSPELAN4, (B) RepNCSP, (C) C2fCIB, (D) CIB.
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incorrectly identifies an object, leading to false alarms. FN (False

Negatives) indicates the actual number of target objects that the

model fails to detect. mAP50 is a metric used to evaluate the model’s

detection accuracy, representing the average precision across all

categories when the Intersection over Union (IoU) threshold is 0.5.

It takes into account both Precision and Recall. mAP50-95 is the

mean of the average precision calculated over various IoU

thresholds (ranging from 0.5 to 0.95 in steps of 0.05).

Xpixel error = xpred − xgt
�� ���W (8)

Ypixel error = ypred − ygt
�� ���H (9)

Di =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xpred,i − Xgt,i)

2 + (Ypred,i − Ygt,i)
2

q
(10)

sD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n o

n
i=1 Di −

1
n o

n
j=1Dj

� �2
s

(11)

When evaluating the performance of the keypoint detection

model, the commonly used error evaluation metrics are pixel error

and Euclidean distance between two keypoints. Pixel error

quantifies the difference by calculating the displacement between

the predicted keypoint and the ground truth keypoint along the x-

axis and y-axis. Specifically, xpred and ypred represent the normalized

predicted coordinates, while W and H represent the width and

height of the image, respectively. The pixel errors along the x-axis

and y-axis are defined by Equations 8, 9. On this basis, the

Euclidean pixel distance between the two keypoints is calculated

using Equation 10. These metrics not only quantitatively reflect the

discrepancy between the predicted and actual keypoint positions

but also provide concrete guidance for model improvements. In the

experiments, the average pixel error and average Euclidean distance

across all instances were calculated to comprehensively evaluate the

model’s overall performance under different test conditions. To

assess the deviation of the Euclidean distances of individual points

from the average Euclidean distance, Equation 11 is used to

compute the standard deviation of the total Euclidean distance.
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3.3 Ablation experiment

To evaluate the impact of different modules on the performance

of the Pepper-YOLO model, we designed a series of ablation

experiments. In these experiments, we sequentially removed or

added the RepNCSPELAN4 (RE), C2FCIB (CC), and Rev2 (R2)

modules. Both dual-module and single-module ablation experiments

were conducted to thoroughly examine the contribution of each

module to model complexity, computational efficiency, and detection

performance. The experimental results are presented in Table 1.

The dual-module ablation experiment evaluates the

effectiveness of individual modules without the support of the

other two. In the experiment, when using only RepNCSPELAN4,

C2FCIB, or Rev2, the Params and GFLOPs values decreased to

varying extents, while both class mAP and picking point mAP

improved. This demonstrates that the computational complexity

was reduced in all cases. Notably, when using the Rev2 module, the

Params of the model decreased by 23.7%, GFLOPs by 21.6%, and

the model size reduced by 21.8%, indicating that Rev2, as the

backbone, can extract more comprehensive feature information,

significantly improving detection accuracy. From these results, we

can conclude that all three modules not only reduce computational

complexity but also enhance both class and picking point accuracy.

The single-module ablation experiment is designed to evaluate

the impact of combining two modules on model performance. As

shown in Table 1, when two modules are used together, they

effectively reduce Params, GFLOPs, and model size, while also

improving detection accuracy. Notably, when RepNCSPELAN4 is

combined with the Rev2 module, the number of parameters is

reduced by 31.5%. Finally, when all three modules are used

simultaneously, the model achieves optimal performance, with

Params reduced by 38.3%, GFLOPs by 28.9%, and model size by

32.8%. Additionally, class mAP@50 improved by 3.9%, while the

picking point mAP@50 increased by 5.8% compared to the baseline,

and mAP@50-95 improved by 3.9%. These experiments

demonstrate that the Pepper-YOLO model effectively extracts

feature information, reduces computational complexity, and

enhances overall model performance.
TABLE 1 Ablation study on different modules.

RE CC R2 Params
(M)

GFLOPs
(G)

Size (M) C50 (%) P50 (%) P95 (%)

× × × 3.08 8.3 6.4 78 81.8 76.5

✓ × × 2.98 8.2 6.3 76.6 83.3 77.1

× ✓ × 2.85 8.2 6.0 79.1 83.4 76.8

× × ✓ 2.35 6.5 5.0 79.5 84.1 75.6

✓ ✓ × 2.62 7.7 5.6 80.2 84.1 77.3

× ✓ ✓ 2.12 6.3 4.6 79 84.3 76.8

✓ × ✓ 2.11 6.1 4.7 79.7 85.2 77.7

✓ ✓ ✓ 1.9 5.9 4.3 81.9 87.6 80.4
RE, RepNCSPELAN4; CC, C2fCIB; R2, Rev2; C50, class mAP50; P50, Pose mAP50; P95, Pose mAP50-95.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1508258
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2024.1508258
3.4 Pepper detection
comparative experiments

To evaluate the comprehensive performance of Pepper-YOLO

in green pepper detection under complex scenarios, we compared it

with SOTA algorithms, with the test results shown in Table 2.

Additionally, Figure 6 visualizes the detection results of seven green

pepper objects in a complex environment. In Figure 5A, the

detected peppers are numbered. Due to issues such as occlusion,

lighting, and color similarity, different models exhibit varied

performance in these challenging scenarios. In Figure 6A, Pepper-

YOLO successfully identifies all seven green peppers. Notably,

Pepper-YOLO can detect pepper 1 despite its curved posture, and

it accurately recognizes peppers 2, 5, and 6 under severe occlusion.
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Even under low light conditions, peppers 4 and 7 are correctly

detected. Importantly, pepper 5, which is long, closely adjacent to

other peppers, and heavily occluded by leaves, is still correctly

recognized by Pepper-YOLO.

In contrast, Figure 6B shows that YOLOv10n fails to correctly

detect pepper 5, as the occlusion by leaves causes it to be mistakenly

identified as two separate peppers. Figures 6C, F reveal that

YOLOv9t and YOLOv5n-Pose are unable to detect peppers 2 and

7. While YOLOv9t does identify pepper 5, the occlusion prevents it

from placing an accurate bounding box. In Figure 6D, YOLOv8n-

Pose not only fails to correctly detect pepper 5 but also misses

peppers 6 and 7 entirely. Lastly, in Figure 6E, YOLOv6n struggles to

detect peppers 2 and 5, and fails to overcome the occlusion problem,

which leads to incorrect identification of pepper 5. In summary, all
TABLE 2 Performance comparison of different algorithms.

Models Params
(M)

GFLOPs
(G)

FPS Size
(M)

P R C50
(%)

P50
(%)

P95 (%)

YOLOv5n-Pose 5.4 7.3 263.2 5.5 80.1 68.5 79 83 77

YOLOv6n-Pose 4.2 11.8 277.8 8.8 83.9 65.9 78.7 82.5 76.3

YOLOv8n-Pose 3.08 8.3 294.1 6.4 78.0 53.1 78 81.8 76.5

Gold-YOLO 5.6 12.1 137.5 12.0 77.2 62.8 77.2 —— ——

YOLOv9t-Pose 2.02 7.8 178.6 4.8 77.1 74.4 79.9 84.2 78.8

YOLOv10n-Pose 2.65 8 131.6 5.6 76.1 72.7 80.4 83.5 77.5

YOLOv11n-Pose 2.65 6.6 185.2 5.7 76.1 73.8 81.1 84.9 79.5

Pepper-YOLO 1.9 5.9 500 4.3 76.5 72.6 81.9 87.6 80.4

PY (iou=0.55) 1.9 5.9 500 4.3 75.5 73.2 82.2 88.1 80.7

PY (iou=0.60) 1.9 5.9 500 4.3 76.9 71.3 82.0 87.8 80.6
f

PY, Pepper YOLO; C50, class mAP50; P50, Pose mAP50; P95, Pose mAP50-95.
Bold values indicate the highest (or best) performance values among the compared results.
FIGURE 6

Detection results of different models for green peppers and the three keypoints. (A) Pepper-YOLO, (B) YOLOv10n-Pose, (C) YOLOv9t-Pose,
(D) YOLOv8n-Pose, (E) YOLOv6n-Pose, (F) YOLOv5n-Pose.
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the other algorithms exhibited both missed detections and false

positives when detecting green peppers in complex environments,

while Pepper-YOLO stands out as the most accurate in these

challenging conditions.

In Table 2, Pepper-YOLO demonstrates exceptional performance

and robustness inbothobjectdetectionandkeypoint localization tasks.

Compared to other models, Pepper-YOLO has the smallest parameter

count (1.9M) and lower computational cost (5.9 GFLOPs), enabling it

to achieve excellent processing speed, reaching 500 FPS. Despite

having fewer parameters, it maintains high accuracy in Pose mAP50

and Pose mAP50-95, achieving 87.6% and 80.4%, respectively,

outperforming YOLOv11n-Pose (P50 = 84.9%), YOLOv10n-Pose

(P50 = 83.5%), and YOLOv9t-Pose (P50 = 84.2%). Additionally,

Pepper-YOLO exhibits strong robustness at different IoU thresholds

(e.g., IoU = 0.55 and 0.60), with minimal variation in P50 and P95,

demonstrating its stability under varying environmental conditions.

Overall, Pepper-YOLO’s excellent performance in computational

efficiency, detection accuracy, and robustness makes it an ideal real-

time object detection model for green pepper.

In Table 3, the detection scheme using three keypoints (including

the picking point, the top, and the bottom of the pepper) significantly

improves the detection accuracy compared to the single picking point

scheme. Both YOLOv10n-Pose and Pepper-YOLO show better

performance with the three-point scheme, especially in terms of

pose accuracy (P50 and P95). For Pepper-YOLO, with the three-

point detection scheme, C50 increases from 80.7% to 81.9%, P50 rises

from 78.0% to 87.6%, and P95 improves from 76.7% to 80.4%. This

improvement indicates that adding more keypoints effectively

enhances the accuracy and robustness of detection, particularly in

pepper localization and pose estimation. In contrast, YOLOv10n-

Pose shows only a slight improvement with the three-point scheme

and still performs worse than Pepper-YOLO. Overall, the three-point

detection scheme demonstrates a clear advantage in improving

detection accuracy and robustness, and the superior performance

of Pepper-YOLO in this configuration makes it a more reliable real-

time object detection model.
3.5 Comparison experiment on the
accuracy of pepper picking
point recognition

To evaluate the effectiveness and superiority of Pepper-YOLO

in predicting the three key points of green peppers, we compared it
Frontiers in Plant Science 10
with five other algorithms. As is well-known, different models may

encounter missed detections and detection errors during the

process. To ensure fairness, we selected 417 green pepper

instances from a total of 738 peppers, all of which were correctly

detected by every model, for comparative experiments. Table 4

presents the pixel errors along the x-axis and y-axis for the “pick,”

“top,” and “bottom” key points of the green pepper, along with the

total average Euclidean distance error and the standard deviation of

the Euclidean distance. Additionally, the scatter plot distribution of

the pixel errors for the three predicted key points by Pepper-YOLO

is shown in Figure 7. Figures 7A–C represent the scatter plots of the

pixel errors for the picking point, calyx point, and tip point of

the green pepper, respectively. In these figures, the x-axis denotes

the horizontal error distance of the key points, while the y-axis

represents the vertical error distance. The red dashed line indicates

the average horizontal error, and the blue vertical line shows the

average vertical error. Moreover, in Figure 7D, the different colored

horizontal and vertical lines represent the average distance errors

along the X and Y axes for different models in predicting the picking

points of the green pepper.

From Table 4, it can be observed that although Pepper-YOLO’s

average pixel distance on the X-axis for the “Pick” and “Bottom” key

points is not as low as that of Yolov8n-Pose and YOLOv5n-Pose, its

average pixel distance on the Y-axis outperforms all other models.

Specifically, Pepper-YOLO achieves an average Euclidean pixel

distance of 12.58 pixels, 8.21 pixels, and 13.65 pixels for the three

key points, respectively. Furthermore, when calculating the

standard deviation of the Euclidean pixel distance, Pepper-YOLO

exhibits the lowest standard deviation for all three key points,

indicating the smallest precision variance. Figures 7A–C show

that most key points are concentrated below or to the left of the

average distance error lines, indicating that the predicted points are

generally below the average error threshold. In Figure 7D, a

comparison of the average pixel errors in picking point

localization across six algorithms is presented, demonstrating that

Pepper-YOLO achieves the highest accuracy for the picking point.

In practical harvesting tasks, the width of the robotic arm’s end-

effector can range between 2-5 cm, allowing for some deviation in

the picking point’s position. Based on practical experience, a pixel

distance error of up to 30 pixels is acceptable for successful

harvesting (Chen et al., 2024b). In summary, Pepper-YOLO’s

prediction accuracy for the three key points meets the

requirements for practical green pepper harvesting tasks.
4 Discussion

To address the challenges of chili pepper harvesting in complex

agricultural environments, this study introduces the innovative Pepper-

YOLO algorithm, which demonstrates exceptional performance in

green chili pepper detection and picking point localization.

Compared to existing state-of-the-art (SOTA) object detection

algorithms, Pepper-YOLO achieves significant improvements in both

accuracy and real-time performance, especially in handling complex

scenarios such as peppers blending with the background, occlusions,

lighting variations, and diverse fruit postures.
TABLE 3 The detection comparison results of one point and three
points were collected.

Models P R C50 (%) P50 (%) P95 (%)

YOLOv10n-Pose (1 point) 81.0 69.0 79.3 77.5 76.2

YOLOv10n-Pose (3 points) 76.1 72.7 80.4 83.5 77.5

Pepper-YOLO (1 point) 73.5 75.4 80.7 78.0 76.7

Pepper-YOLO (3 points) 76.5 72.6 81.9 87.6 80.4
C50, class mAP50; P50, Pose mAP50; P95, Pose mAP50-95.
Bold values indicate the highest (or best) performance values among the compared results.
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FIGURE 7

Distance between the three predicted points and the ground truth. (A) Pixel error statistical graph of the Pick keypoints for Pepper-YOLO, (B) Pixel
error statistical graph of the Top keypoints for Pepper-YOLO, (C) Pixel error statistical graph of the Bottom keypoints for Pepper-YOLO, (D)
Comparison of the average pixel error of the six models.
TABLE 4 Results of comparative experiment of three points detection.

Models

Points Average distance(pixel) Standard
deviation (pixel)

X-axis Y-axis Euclidean
distance

Pepper-YOLO

Pick
Top

6.2
3.55

9.49
6.58

12.58
8.21

12.31
11.22

Bottom 6.49 10.66 13.65 13.40

YOLOv10-Pose

Pick
Top

6.21
3.37

9.85
7.48

12.74
8.9

14.30
13.67

Bottom 6.92 10.53 13.99 17.2

YOLOv9t-Pose

Pick
Top

6.62
4.19

9.92
7.64

13.12
13.12

14.30
14.48

Bottom 7.44 11.66 15.1 19.82

YOLOv8n-Pose

Pick
Top

6.0
3.58

10.21
7.27

12.94
8.96

14.66
14.21

Bottom 6.61 10.81 13.99 16.38

YOLOv6n-Pose

Pick
Top

7.01
4.05

10.1
8.29

13.63
10.11

14.84
13.76

Bottom 7.44 11.93 15.33 18.74

YOLOv5n-Pose

Pick
Top

6.25
3.58

9.99
7.94

12.93
9.46

13.85
14.21

Bottom 6.47 11.49 14.41 17.47
F
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Bold values indicate the highest (or best) performance values among the compared results.
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The core strength of Pepper-YOLO lies in its custom

improvements based on the YOLOv8n-Pose model, particularly

with the introduction of a reversible dual pyramid backbone

network, which effectively integrates high-level and low-level

features. This enhances the model’s ability to handle complex

backgrounds and occlusions. Additionally, the integration of

RepNCSPELAN4 feature fusion technology and the C2fCIB

module further improves Pepper-YOLO’s ability to detect multi-

scale targets, particularly in precisely locating pepper picking points.

Compared to YOLOv8n-Pose, Pepper-YOLO’s localization accuracy

increased by nearly 6 percentage points (as shown in Table 2). Even

in heavily occluded scenarios, Pepper-YOLO can accurately detect

and locate green chili pepper picking points (as illustrated in

Figure 6), whereas traditional models often miss detections or

generate false positives due to the complex background. Moreover,

Pepper-YOLO uses three RepNCSPELAN4 structures, with output

channels of 360, 240, and 240. In an experiment to capture higher-

level semantic information, we attempted to adjust the third

RepNCSPELAN4’s output channel to 360, but this led to a decline

in overall accuracy. This suggests that an excess of features caused

information redundancy or interference from irrelevant features,

which affected feature selection and reduced accuracy.

We observed that the accuracy of keypoints localization has

consistently been lower than that of category detection, with

some keypoints showing significant errors, as shown in Figure 7.

In complex scenes, multiple peppers within the camera’s field of

view often overlap, causing significant overlap in the bounding

boxes as well, as illustrated in Figure 8. Before calculating the

error using Equations 8, 9, the intersection-over-union (IoU)

metric was used to match predicted boxes with ground truth

boxes. However, due to the overlap of bounding boxes, this

process sometimes resulted in incorrect matches between

predicted and ground truth boxes. This erroneous matching

increased the keypoint localization errors. Since the purpose of

this study is to enable precise harvesting, where peppers are

picked one by one, we propose a prioritized annotation strategy

to address this issue. The strategy involves annotating only the
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peppers in the front when there is overlap between instances.

Additionally, for instances where the pixel error exceeds 100,

a second round of detection or a change in camera angle could

help re-predict keypoint locations more accurately.

Notably, Pepper-YOLO achieves a lightweight design while

maintaining high accuracy. Compared to YOLOv5n-Pose, its

parameter count is reduced by 64.8%, and its model complexity is

lowered by 19.2%. When compared to YOLOv8n-Pose, Pepper-

YOLO reduces the parameter count by 38.3% and model

complexity by 28.9%, all while improving detection accuracy. This

low-resource model is particularly important for use in low-cost

devices such as agricultural robots, where it can meet real-time

detection demands and achieve precise operations in hardware-

constrained environments. The reduced resource consumption

makes it an ideal solution for enabling efficient and accurate real-

time performance on low-cost agricultural robots and similar devices.
5 Conclusions

In this study, we successfully developed an improved

lightweight Pepper-YOLO model, specifically designed for

simultaneously detecting green peppers and their picking points

in complex agricultural environments. First, we restructured the

backbone network using a reversible multi-layer feature fusion

module, allowing Pepper-YOLO to ensure lossless information

transfer between different feature layers, significantly enhancing

the model’s ability to handle occlusions and complex backgrounds.

Second, by integrating RepNCSPELAN4 into the feature fusion

process, the model’s multi-scale feature representation capabilities

were greatly enhanced, enabling more accurate detection of peppers

at different scales. Lastly, replacing the CIB module with the C2fCIB

module optimized the recognition of large pepper features.

Experimental results show that Pepper-YOLO achieved 81.1%

accuracy in detecting green peppers and 88.1% accuracy in

identifying picking points, with low Euclidean distance errors for

picking point localization. Importantly, the model achieved this
FIGURE 8

Overlapping phenomenon exists in the annotation boxes of peppers in complex scenes.
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performance while reducing parameters by 38.3% and decreasing

model complexity by 28.9%, resulting in a compact 4.3MB model,

making it highly suitable for deployment on low-cost

agricultural robots.

While the improved model is capable of real-time detection of

green peppers and picking point localization in complex

environments, its generalization to different pepper varieties and

varying lighting conditions needs further validation. Future work

will focus on expanding the data range to include more pepper

varieties and diverse lighting conditions.
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