
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Angelo Cardellicchio,
National Research Council (CNR), Italy

REVIEWED BY

Saqib Ali Nawaz,
Hainan University, China
Cosimo Patruno,
National Research Council (CNR), Italy

*CORRESPONDENCE

Manoj Karkee

manoj.karkee@wsu.edu

RECEIVED 17 October 2024
ACCEPTED 29 November 2024

PUBLISHED 19 December 2024

CITATION

Divyanth LG, Khanal SR, Paudel A,
Mattupalli C and Karkee M (2024)
Efficient detection of eyes on potato
tubers using deep-learning for robotic
high-throughput sampling.
Front. Plant Sci. 15:1512632.
doi: 10.3389/fpls.2024.1512632

COPYRIGHT

© 2024 Divyanth, Khanal, Paudel, Mattupalli
and Karkee. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 19 December 2024

DOI 10.3389/fpls.2024.1512632
Efficient detection of eyes on
potato tubers using deep-
learning for robotic high-
throughput sampling
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Molecular-based detection of pathogens from potato tubers hold promise, but the

initial sample extraction process is labor-intensive. Developing a robotic tuber

sampling system, equipped with a fast and precise machine vision technique to

identify optimal sampling locations on a potato tuber, offers a viable solution.

However, detecting sampling locations such as eyes and stolon scar is challenging

due to variability in their appearance, size, and shape, along with soil adhering to

the tubers. In this study, we addressed these challenges by evaluating various

deep-learning-based object detectors, encompassing You Look Only Once

(YOLO) variants of YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv9, YOLOv10, and

YOLO11, for detecting eyes and stolon scars across a range of diverse potato

cultivars. A robust image dataset obtained from tubers of five potato cultivars (three

russet skinned, a red skinned, and a purple skinned) was developed as a benchmark

for detection of these sampling locations. The mean average precision at an

intersection over union threshold of 0.5 (mAP@0.5) ranged from 0.832 and 0.854

with YOLOv5n to 0.903 and 0.914 with YOLOv10l. Among all the tested models,

YOLOv10m showed the optimal trade-off between detection accuracy (mAP@0.5

of 0.911) and inference time (92 ms), along with satisfactory generalization

performance when cross-validated among the cultivars used in this study. The

model benchmarking and inferences of this study provide insights for advancing

the development of a robotic potato tuber sampling device.
KEYWORDS
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1 Introduction

Potato is a high-value specialty vegetable grown in the United

States and is worth about $5 billion per year (USDA National

Agricultural Statistics Service, 2024). Potato is a vegetatively

propagated crop where the risk of transmitting pathogens from

one season to the next is typically greater compared to crops grown

from true botanical seeds such as corn, soybean, or wheat. To

maintain supply of healthy seed potatoes, there is a significant need

to transition from traditional visual identification of diseases and

serological methods of pathogen detection to a high throughput,

sensitive, and specific molecular-based pathogen indexing approach

(Mattupalli et al., 2022a; 2022b). Hence, a high-throughput

workflow was developed, which involved sampling potato tubers

onto Whatman FTA Plantsaver® Cards (FTA), a format that

eliminates the need for shipping bulky tubers to a laboratory. A

crucial part of this workflow is the involvement of manual labor to

sample four tuber tissue cores (one core from the terminal eye on

the apical end of a tuber, and two cores arbitrarily from any two

eyes on the longitudinal axis of a tuber, and a fourth core from the

point of attachment of a tuber to the stolon) onto FTA cards that

maximizes detection of potato pathogens such as potato virus Y

(Figure 1). The samples on FTA cards are preserved at room

temperature and then shipped to the laboratory for subsequent

detection of pathogens using molecular approaches. However, this

sampling process is physically strenuous, involving repetitive hand

actions and requires about 8.5 person-hours to sample 400 tubers.

As the potato industry moves towards adopting high-throughput

molecular diagnostic approaches for detecting pathogens, there is

an impending need to automate the tuber sampling process to save
Frontiers in Plant Science 02
time and labor costs. However, physically demanding manual labor

involved in the sampling process raises concerns about potential

labor shortages and underscores the need for efficient and

automated solutions. The integration of advanced computer

vision and robotic technologies offers a compelling opportunity to

automate the sample collection process. Such a prototype

integrating a machine-vision subsystem for precise detection and

localization of sampling locations on tubers, coupled with a

manipulation subsystem and an end-effector for efficient sampling

operations is shown in Figure 2.

The variability in the appearance of potato tubers and presence

of soil adhering to tubers make it challenging to detect eyes and

stolon scars. Conventional image processing-based object detection

methods are very biased towards such factors (Ruiz et al., 2011;

Wang et al., 2019; Wosner et al., 2021). Moreover, a robust model

accounting for variations in color, texture, and morphological

attributes is crucial for effectively detecting desired sampling

locations across diverse potato cultivars. In recent years, deep-

learning-based convolutional neural networks (CNNs) have made

remarkable progress in object detection (Jiao et al., 2019; Sharma

and Mir, 2020; Bhatti et al., 2022; Nawaz et al., 2022; Zaidi et al.,

2022; Xiao et al., 2023; Nain et al., 2024). Due to their ability to be

trained end-to-end without the need for explicit feature extraction,

CNNs are better equipped to identify specific patterns in the image

that are crucial for accurate eye and stolon scar detection. Deep

learning object detectors fall into two categories: a) two-stage

detectors, involving a preprocessing step for object proposals

followed by classification; and b) single-stage detectors that are

end-to-end without region proposals (Sharma and Mir, 2020;

Soviany and Ionescu, 2018).
FIGURE 1

Potato tuber tissue sampling workflow (A) Desired sampling locations on a potato tuber indicated by four white arrows; (B) Manual sampling of
potato tuber tissues onto FTA cards; (C) An FTA card containing samples from 25 potato tubers (four cores per tuber); (D) Nucleic acids from tuber
tissue cores released onto the FTA card using a mechanical press; (E) FTA cards in envelopes ready to be shipped to a laboratory for downstream
PCR-based pathogen detection.
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Single-stage detectors, such as You Only Look Once (YOLO),

are known for their computational efficiency, faster inference, and

suitability for real-time applications, especially on resource-

constrained embedded devices (Carranza-Garcıá et al., 2020;

Dang et al., 2023; Verma et al., 2021). Originally proposed by

Redmon et al. (2015), YOLO has evolved through several versions,

including YOLO9000, YOLOv3, YOLOv4, Scaled-YOLOv4,

YOLOv5, YOLOR, YOLOv6, YOLOv7, YOLOv8, YOLOv9,

YOLOv10, and YOLO11. Each iteration introduces architectural

improvements to tackle specific challenges in object detection (Jiang

et al., 2022; Terven et al., 2023; Morbekar et al., 2020). While several

studies have employed YOLO-based models for agricultural tasks

like fruit detection (Rathore et al., 2023), weed identification (Dang

et al., 2023), and disease detection (Morbekar et al., 2020), limited

research has been dedicated to the precise identification of small,

intricate features such as eyes and stolon scars on potato tubers.

These features are crucial for targeted, robotic sampling of tubers

but present unique challenges due to their variability in size, shape,

and appearance, particularly across different cultivars.

Therefore, this research focused on addressing the lack of

effective, high-throughput methods for detecting these specific

features, which has not been thoroughly explored in the context of

automated sampling for pathogen detection. This study evaluates and

benchmarks a range of YOLO-based object detectors (from YOLOv5

to YOLO11) specifically for this purpose, testing their accuracy,

speed, and robustness on five potato cultivars. By identifying the

most suitable model, our findings provide a foundation for its

integration into high-throughput robotic tuber sampling

frameworks, thereby enhancing the precision and efficiency of the

tuber sampling process. The primary contributions of this

research are:
Fron
• A comprehensive comparison of YOLO-based object

detectors to assess their effectiveness at detection sampling

locations (eyes and stolon scars) on potato tubers, focusing

on detection speed, accuracy, and robustness.
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• Creation of a robust image dataset comprising tubers from

five potato cultivars with different skin colors, which serves

as a benchmark for the development of a robotic tuber

sampling system.
2 Materials and methods

2. 1 Potato tuber images dataset

The dataset comprised images of different potato cultivars,

including Umatilla Russet, Russet Burbank, and Ute Russet

(russet skin), Ciklamen (red skin), and Purple Pelisse (purple

skin) (Figure 3). Image acquisition was conducted in a controlled

indoor setup using a conveyor belt system with an imaging chamber

(0.75 m × 0.5 m × 0.6 m H×W×). The chamber was constructed

from aluminum profiles, with reflective aluminum lining along the

inner walls to enhance light uniformity. The image acquisition

setup features an accessible design, allowing easy adjustments to the

camera’s height relative to the conveyor belt for optimal image

capture. To ensure consistent lighting conditions, a 5000-6500K

white light source was employed, complemented by the reflective

properties of the inner chamber walls to evenly distribute light

across the tuber surface. This setup ensured uniform illumination,

minimizing shadows and glare. The image acquisition utilized only

the RGB channels from the Microsoft Kinect V2 RGB-D camera

sensor (Microsoft Inc., Redmond, WA, USA), as shown in Figure 4.

The images were collected by flipping the tubers to expose the

alternate sides, ensuring a comprehensive dataset capturing the

variations in eye distribution and appearance across the entire

potato surface. The workflow of this study is illustrated in Figure 5.

A total of 300 tuber images were collected for each skin color,

resulting in a dataset comprising 900 images. Among these, 70% of

the images from each tuber skin color were randomly allocated for

training the models, while the remaining 30% of the images were
FIGURE 2

A prototype of the robotic tuber sampling platform. The camera captures tuber images that are used for detection of eyes and stolon scar on the
tuber. The sampling tool performs sampling on the identified instances and places the tuber cores on the FTA card.
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FIGURE 4

The image acquisition setup used for collecting potato tuber images dataset.
FIGURE 3

Example images of potato tubers used to develop models for the detection of eyes and stolon scar. The yellow polygons denote the bounding
boxes of the eyes. Red ovals denote regions that exhibit attributes similar to the eyes.
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reserved as test set. The images were then annotated for the eyes and

stolon scar using the hasty.ai software (Hasty Inc., Berlin,

Germany). This interface provided a wide range of advanced

annotation tools such as the object detection assistance that

facilitated the creation of ground truths quickly. Sample images

from the dataset are provided in Figure 3. Furthermore, data

augmentations based on image geometry, including flipping about

x- and y-axis, translation ( ± 25%), scaling ( ± 25%), mosaic, and

rotations ( ± 30°), as well as image intensity such as brightness

variation (with coefficients of 0.7, 0.8, 0.9, 1.1, 1.2, and 1.3), HSV

variation (with fractions of H = 0.015; S = 0.7; V = 0.4), and

Gaussian blurring (with a standard deviation of 1.5) were

performed on the images in the training set, while preserving and

replicating the bounding box (ground-truth) information in the

augmented images. These augmentations were carefully chosen to

reflect real-world conditions that the tuber sampling robot will

potentially encounter, enhancing detection accuracy and resilience

across various field conditions. For example, brightness and HSV

variations enhance model robustness to different lighting

environments, while Gaussian blurring prepares the model to

handle potential motion blur from the vision system mounted on

a moving sampling end-effector.
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2.2 Deep-learning-based object detectors

Deep-learningobject detectors typically consistof twokeynetwork

components: a backbone responsible for extracting image features

from high-dimensional input, and a head component dedicated to

regressing the coordinates of identified objects’ bounding boxes and

predicting their respective classes (Sharma andMir, 2020). The YOLO

object detectors employ a single-stage head, performing simultaneous

classification and localization of semantic objects through dense

sampling (Redmon et al., 2015). The neck part of the network, which

includes some intermediary layers positioned between the backbone

and the head, is designed to gather feature maps from different stages.

The advancements in the YOLO family object detectors primarily

revolve around enhancing the backbones, refining feature integration

models, andoptimizing the network training techniques, including the

hyper-parameters (Diwan et al., 2023).

YOLOv3 aimed to strike a balance between speed and accuracy

for real-time object detection, surpassing its predecessors (Redmon

and Farhadi, 2017, 2018). It utilized the Darknet-53 network as its

backbone for efficient feature extraction from input images.

Notably, YOLOv3 included a simplified variant, YOLOv3-tiny,

whose backbone was based on the Darknet-19 architecture. The
FIGURE 5

Workflow of the study outlining the development and evaluation process of identifying optimal object detection models for detecting eyes and
stolon scars on potato tubers.
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YOLOv4 model (Bochkovskiy et al., 2020) was introduced in 2020,

bringing significant advancements to the YOLO framework. This

version featured the CSPNet (Wang et al., 2020) backbone and

introduced spatial pyramid pooling (SPP) (He et al., 2014) and path

aggregation network (PAN) block (Liu et al., 2018) necks. YOLOv4

aimed to enhance detection accuracy through innovative training

methods, including the bag of freebies such as CutMix (Yun et al.,

2019) and DropBlock regularization (Ghiasi et al., 2018), and bag of

specials like mish activation and distance-IoU-based non-

maximum suppression (DIoU-NMS) (Zheng et al., 2020).

Notably, YOLOv4-large scaled for cloud GPUs achieved state-of-

the-art detection accuracy on the COCO dataset (Lin et al., 2014).

In 2021, Wang et al. (2021) presented the Scaled-YOLOv4, which

extended the capabilities of YOLOv4 for deployment on various

computing devices. The model was based on the cross-stage partial

network for effective model scaling. YOLOR (Wang et al., 2021)

integrated implicit and explicit knowledge to learn a general, unified

representation for multiple tasks, such as joint object detection and

multi-label image classification. It achieved comparable accuracy to

Scaled-YOLOv4 but demonstrated a significant increase in

inference speed.

Further, YOLOv5 was released by Ultralytics LLC, that claimed

superiority over its predecessors in performance. A notable

modification in YOLOv5 was the integration of the anchor box

selection process. YOLOv6 (Li et al., 2022) was released in 2022,

which featured a set of renovated designs, especially in network

architecture, label assignment, and loss functions. These changes

aimed to optimize the model for industrial deployment, reflecting

the ongoing evolution of the YOLO framework. Then, YOLOv7

(Wang et al., 2023) implemented an extended efficient layer

aggregation network, utilizing various trainable bag-of-freebies

methods, including planned re-parameterization and coarse-to-

fine lead guided label assignment. YOLOv7 notably surpassed the

performance of previous object detectors in both speed and

accuracy on the COCO dataset. Further, YOLOv8 was proposed

by the Ultralytics community and validated for superior accuracy

on Microsoft COCO and Roboflow 100 datasets. YOLOv8’s

developer-friendly attributes, such as an intuitive Command Line

Interface (CLI) and a well-organized Python package enhance the

overall ease of implementation (Khare et al., 2023; Reis et al., 2023).

YOLOv9 introduced several model variants, including YOLOv9n,

YOLOv9s, YOLOv9m, YOLOv9c, and YOLOv9x, achieving mean

average precision (mAP) scores from 39.5% to 54.4% on the MS-

COCO dataset (Wang et al., 2024b). Building on these

improvements, YOLOv10 included variants like YOLOv10n,

YOLOv10s, YOLOv10m, YOLOv10b, YOLOv10l, and YOLOv10x

(Wang et al., 2024a). It achieved mAP scores ranging from 38.5% to

54.4%, with significant reductions in latency. YOLO11, the latest

iteration in the YOLO series of object detection models, builds upon

the advancements of YOLOv8 by introducing key architectural

innovations and parameter optimizations, such as the C3k2 (Cross

Stage Partial with kernel size 2) block, SPPF (Spatial Pyramid

Pooling - Fast), and C2PSA (Convolutional block with Parallel

Spatial Attention) (Jocher and Qiu, 2024). These components
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significantly improve feature extraction, contributing to faster and

more accurate detection performance.

In this study, we selected seven state-of-the-art YOLO object

detectors described above, namely, YOLOv5, YOLOv6, YOLOv7,

YOLOv8, YOLOv9, YOLOv10, YOLO11, and their variants to

develop models for detection of eyes on potato tubers. To

optimize deployment in real-time, YOLO variants with less than

40 million parameters were chosen, prioritizing models that provide

a balance between computational efficiency and accuracy. The

YOLO detectors selected for this study utilized open-source

software packages developed by their creators.
2.3 Modelling and experimentation

The original image annotations which were in JavaScript Object

Notation (JSON) format were imported to the Roboflow software

(Roboflow Inc., Des Moines, IA, USA) and converted to YOLO

format labels. The models were trained via transfer learning by fine-

tuning the weights learnt using the COCO dataset (Lin et al., 2014).

The input size of the image was set to 640 × 640 pixels, as dictated

by the YOLO architectures. The models were trained for 100 epochs

with a mini-batch size of 16 images using the PyTorch framework.

The learning rate of the networks was adjusted using the cosine

annealing method, whereas the other hyperparameter options used

the default values of the respective models’ official implementations.

The models were trained and evaluated using Alienware 15 R3

system with Nvidia GeForce GTX 1060 8GB GPU on an Ubuntu

operating system. Furthermore, the models were evaluated for their

overall performance and cultivar-wise cross-validation using the

image datasets obtained from different cultivars.
2.4 Performance evaluation metrics

The performance of the YOLO models for detection of tuber

eyes was assessed based on their detection accuracy, complexity of

the model, computational cost, and inference time, as

described below.

The performance of the models for detecting eyes on tubers was

evaluated using metrics including precision (P), recall (R), and

mean average precision (mAP, which includes mAP@0.5 and

mAP@0.5:0.95). If the true positives, false positives, true

negatives, and false negatives are represented by TP, FP, TN, and

FN, respectively, then P and R were defined as (Equations 1, 2):

P =  
TP

TP + FP
(1)

R =  
TP

TP + FN
(2)

The AP is defined as the area under the precision-recall (P-R)

curve, generated by plotting precision (P) on the vertical axis and

recall (R) on the horizontal axis (Equation 3). AP serves as a
frontiersin.org
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comprehensive metric, determining the overall efficacy of the model

to detect eyes on potato tubers. Intuitively, mean average precision

(mAP) is calculated as the mean of AP values for each class objects

in the dataset. Given that the detection model in this study is

designed for single-class object detection, the mAP is simply the AP

of that specific class. The mAP@0.5 represents the mAP value at an

intersection over union (IoU) threshold of 0.5, whereas the mAP@

0.5:0.95 represents the average mAP over different IoU thresholds,

from 0.5 to 0.95 with steps of 0.05.

APc =  
Z 1

0
P(Rc)dRc (3)

The complexity can be measured as the number of parameters

in the model, which plays a crucial role for real-time deployment.

Larger models with a high number of parameters demand more

memory space and resources. The number of parameters also

directly impacts the memory requirements, computation costs,

and inference times. The inference time, representing the

duration for a trained model to make predictions on an input

image, is one of the key considerations for real-time deployment.

The inference time for each YOLO detector was determined by

averaging the time required to predict all images within the test set.
Frontiers in Plant Science 07
3 Results

3.1 Performance of YOLO models

Based on the cut-off set for the number of parameters in the

network (i.e., 40 million), nineteen different YOLO architectures

[YOLOv5n, YOLOv5s, YOLOv5m, YOLOv6n, YOLOv6s,

YOLOv6m, YOLOv7 (base model), YOLOv8n, YOLOv8s,

YOLOv8m, YOLOv9s, YOLOv9m, YOLOv9c, YOLOv10s,

YOLOv10m, YOLOv10l, YOLO11s, YOLO11m, YOLO11l (where

n = nano, s = small, m = medium, c = compact, and l = large)] were

evaluated for their performance detecting eyes and stolon scars. The

models exhibited encouraging training performance with

convergence at about 0.80–0.90 mAP@0.5 achieved within 50

epochs. However, there was no significant improvement in the

accuracies after this point, confirming that training for 100 epochs

is sufficient for this study. The eye detection performance of all the

models is presented in Table 1. The average results from three

independent runs of each model were recorded. In general, all the

nineteen models showed appreciable accuracies with mAP@0.5 in

the range of 0.854–0.914 and precision values in the range of 0.832–

0.903. The best and the least performing models in terms of
TABLE 1 Potato tuber eyes and stolon scar detection performance of the YOLO object detectors on the test dataset.

YOLO model Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv5n 0.832 0.752 0.854 0.495

YOLOv5s 0.862 0.788 0.876 0.529

YOLOv5m 0.839 0.754 0.864 0.501

YOLOv6n 0.845 0.769 0.862 0.512

YOLOv6s 0.875 0.811 0.884 0.531

YOLOv6m 0.841 0.772 0.868 0.510

YOLOv7 0.883 0.817 0.894 0.536

YOLOv8n 0.832 0.759 0.857 0.489

YOLOv8s 0.852 0.784 0.875 0.525

YOLOv8m 0.858 0.787 0.884 0.527

YOLOv9s 0.849 0.774 0.873 0.516

YOLOv9m 0.853 0.774 0.878 0.529

YOLOv9c 0.875 0.821 0.886 0.533

YOLOv10s 0.862 0.807 0.883 0.523

YOLOv10m 0.901 0.810 0.911 0.547

YOLOv10l 0.903 0.815 0.914 0.549

YOLO11s 0.860 0.791 0.877 0.524

YOLO11m 0.867 0.785 0.882 0.529

YOLO11l 0.871 0.798 0.884 0.532
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precision, recall, mAP@0.5, and mAP@0.5:0.95 were the YOLOv10l

and YOLOv5n respectively. In general, the performance of different

YOLO architectures followed the order: YOLOv10 > YOLOv7 >

YOLOv9 > YOLOv6 > YOLO11 > YOLOv8 > YOLOv5, however,

the differences in performance were marginal. The YOLOv10

models, particularly YOLOv10l, achieved the highest precision at

0.903, indicating that they are the most precise at identifying eyes

and stolon scar. This was closely followed by YOLOv10m and

YOLOv7, with precision values of 0.901 and 0.883, respectively. In

contrast, the YOLOv5 and YOLOv8 models generally have lower

precision, with YOLOv5n and YOLOv8n at around 0.832. On the

other hand, the highest recall was observed with YOLOv9c at 0.821,

suggesting it is the most effective at identifying all relevant

instances. YOLOv7 and YOLOv10 models also show strong recall,

with YOLOv7 achieving 0.817 and YOLOv10l at 0.815.

Seventeen out of the nineteen models produced mAP@0.5:0.95

greater than 50%, while YOLOv10m and YOLOv10l recordedmAP@

0.5 over 90%. YOLOv6s, YOLOv7, YOLOv9c, and YOLO11l

demonstrated similar overall performance to YOLOv10m and

YOLOv10l models in terms of precision, recall, and mAP while

exhibiting smaller gaps in mAP@0.5 and mAP@0.5:0.95, which

suggested that these models achieved better generalization to

different IoU thresholds. Some example images with the predictions

of the best performing models, i.e., YOLOv7, YOLOv10m, and

YOLOv10l, are shown in Figure 6. The predictions yielded by these

models were visually appreciable for russets, red, and purple skinned

cultivars, demonstrating the efficacy of the selected object detectors for

eyes and stolon scar detection on potato tubers. The confidence scores

of the YOLOv10l model were higher than those of YOLOv10m,which

in turn outperformed YOLOv7, reflecting a direct correlation of the

trend with the models’ respective precision values. This trend

highlights the improved performance of larger models to accurately

identify objects and suggests that model complexity plays a key role in

enhancing detection reliability.

YOLOv10’s lightweight classification heads are designed to

maintain efficiency without sacrificing accuracy. The YOLOv10m

model, with significantly fewer parameters (15.4 million) compared

to other medium-scale models like YOLOv5m (21.2 million),

YOLOv6m (34.9 million), YOLOv8m (25.9 million), and

YOLOv9m (20 million), strikes a balance between model

complexity and task-specific requirements. This streamlined

architecture allows YOLOv10m (mAP@0.5 = 0.911) to

outperform its smaller counterpart, YOLOv10s (mAP@0.5 =

0.883) at detecting eyes and stolon scar on the tubers. Thus, in

the YOLOv10 series, the medium-scale model effectively leverages

its computational power to enhance performance, demonstrating a

clear advantage over the small-scale model. Moreover, the

performance difference between YOLOv10m and YOLOv10l was

marginal, with YOLOv10l performing only slightly better.
3.2 Potato cultivar-specific cross-validation
performance of the YOLO models

Different potato cultivars can exhibit variations in size, shape,

and skin color posing challenges for object detection models. Cross
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validation among distinct cultivars serves to assess a model’s

capacity to generalize to new types of tubers not encountered

during training. During cross-validation, all images of one

cultivar were used as the test set while tuber images of the other

two cultivars were used for training. Table 2 presents the validation

results of the top-performing models in terms of mAP@0.5 score.

The cross-validation performances were lower compared to when

images from every cultivar were included in the dataset (as shown in

the last column of Table 2). Particularly, the models exhibited the

poorest performance identifying eyes and stolon scar on Purple

Pelisse cultivar tubers. The comparable mAP observed during

cross-validation for russet and red skin cultivars suggests that the

features learned from one can effectively aid in the recognition of

eyes in the other. This finding also indicates that the models have

learned a robust feature representation that is transferable between

russet skin and red skin potato cultivars. YOLOv7 achieved the

highest mAP@0.5 of 0.781 for russets, 0.809 for ‘Ciklamen’, and

0.742 for ‘Purple Pelisse’. Among the YOLOv10 models,

YOLOv10m achieved an mAP@0.5 of 0.762 for russet, 0.783 for

‘Ciklamen’, and 0.701 for ‘Purple Pelisse’. The YOLOv10l variant

showed slight improvements, with an mAP@0.5 of 0.772 for russet,

0.796 for ‘Ciklamen’, and 0.723 for ‘Purple Pelisse’. These results

showed the effectiveness of the YOLOv10 architecture, especially to

accurately distinguish subtle features. In contrast, the YOLOv5 and

YOLOv8 models exhibited relatively lower generalizability, as

indicated by their reduced performance during cross-validation.

Balancing the models’ detection capability, complexity, and

inference time is crucial for achieving real-time performance

during practical deployment. The subplots in Figure 7 depict the

trade-offs between these factors by plotting inference time and

number of parameters against detection performance measured in

terms of mAP@0.5. While these inferences were performed on

high-performing hardware, a similar trend can be expected in

embedded systems. Notably, there is a linear positive relationship

between the inference time and the number of parameters in the

models, a trend consistent with findings from previous studies

(Junos et al., 2021; Mirhaji et al., 2021; Kohli et al., 2022; Dang et al.,

2023). Among the nineteen models, YOLOv7 had the highest

inference time of about 218ms, followed by YOLOv6m (178ms)

and YOLOv10l (174ms). YOLOv10m stood out with a strong

balance of high accuracy (mAP@0.5 = 0.901) and a lower

inference time of 92ms, making it the model with the lowest

latency among those with high accuracy.
4 Discussion

The assessment of nineteen different versions of the YOLO

architectures (YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv9,

YOLOv10, YOLO11) for combined eye and stolon scar detection

from potato tubers provided crucial insights pivotal for advancing

the development of a robotic tuber sampling device. Subsequent

evaluation in terms of precision, recall, and mAP@0.5 demonstrated

that YOLOv10 models outperformed other architectures, closely

followed by YOLOv7 and YOLOv9. Notably, YOLOv10m stood out

with significantly fewer parameters and lower inference time as it was
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also comparable in terms of detection results. The nano-scale models of

the YOLO versions (YOLOv5n, YOLOv6n, YOLOv8n) showed the

least performance as compared to small- and medium-scale networks

(Table 1). This suggests that these models are too small to capture the

complex attributes of tuber eyes and stolon scar and differentiate them

from other similar structures such as mud, soil aggregates, and surface

inequalities present on the tuber surface, leading to diminished

performance and generalization capability. Furthermore, they are
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more prone to overfitting and capturing noise in the training data

rather than generalizing to new unseen potato tubers.

It is interesting to note that in some YOLO architectures, such

as YOLOv5 and YOLOv6, the medium-scale models did not

outperform their small-scale counterparts. For instance, YOLOv6s

achieved a higher mAP@0.5 of 0.884, compared to YOLOv6m’s

mAP@0.5 of 0.868. Similarly, within the YOLOv5 series, the small-

scale model YOLOv5s outperformed the medium-scale YOLOv5m,
FIGURE 6

Examples of potato tuber images with the ground-truth (red boxes) and predicted bounding boxes (blue boxes) of the eyes and stolon scar.
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with mAP@0.5 of 0.876 versus 0.864, respectively. For other

architectures like YOLOv8, YOLOv9, and YOLO11, the

performance improvement from small-scale to medium-scale

models was negligible. The increase in mAP@0.5 was only 1.02%

for YOLOv8 (from YOLOv8s to YOLOv8m), 0.57% for YOLOv9

and YOLO11 (from YOLOv9s to YOLOv9m and YOLO11s to

YOLO11m). These marginal improvements contrast with results

observed by other researchers using benchmark datasets like

COCO, as well as findings from other studies where medium-

scale models generally outperformed small-scale models (Dang

et al., 2023; Reis et al., 2023; Wang et al., 2024a, 2024). These

observations suggest that the specific dataset and task being
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addressed in this study may not fully utilize the additional

capacity of medium-scale models. The size and complexity of the

dataset might not be sufficient to leverage the increased model

capacity, leading to a scenario where smaller models, which are

more efficient and faster, perform equally well or even better to

detect eyes and stolon scar on potato tubers.

Figure 7A depicts there is a considerable trade-off between the

mAP@0.5 and inference time that needs to be considered during

model selection. For instance, YOLOv7, despite having the highest

mAP@0.5 of 0.894, also has the longest inference time at 218ms.

Similarly, models like YOLOv10l and YOLOv9c, which achieve

high mAP@0.5 scores of 0.904 and 0.886, respectively, also come
TABLE 2 Cultivar-wise cross-validation results (mAP@0.5) of YOLO detectors for detection of eyes on potato tubers.

YOLO model Russets Ciklamen Purple Pelisse Overall

YOLOv5s 0.735 0.721 0.651 0.876

YOLOv5m 0.740 0.759 0.650 0.864

YOLOv6s 0.768 0.798 0.709 0.884

YOLOv6m 0.773 0.796 0.717 0.868

YOLOv7 0.781 0.809 0.742 0.894

YOLOv8s 0.749 0.720 0.643 0.875

YOLOv8m 0.759 0.751 0.642 0.884

YOLOv9m 0.752 0.768 0.675 0.878

YOLOv9c 0.764 0.780 0.690 0.886

YOLOv10m 0.762 0.783 0.701 0.901

YOLOv10l 0.772 0.796 0.723 0.904

YOLO11s 0.741 0.735 0.624 0.877

YOLO11m 0.759 0.744 0.653 0.882

YOLO11l 0.760 0.763 0.668 0.884
The images of the specified cultivar were used to test the model that was trained using images of the other two cultivars. The overall mAP@0.5 are the same values as in Table 1, provided here for
comparison with the cross-validation results.
FIGURE 7

The inference time (ms) (A) and number of parameters (millions) (B) versus mAP@0.5 for different YOLO object detectors for detecting eyes on
potato tubers. The models belonging to the same YOLO detector are labeled with the same marker shapes and color.
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with comparatively higher inference times (174ms for YOLOv10l

and 160ms for YOLOv9c). On the other hand, the nano-versions of

the YOLO detectors, such as YOLOv6n and YOLOv8n, are the most

computationally efficient, with inference times under 80ms.

However, this efficiency comes at the expense of detection

performance. Interestingly, models with a moderate number of

parameters, such as YOLOv6s and YOLOv10m, offer a promising

balance (Figure 7B). YOLOv6s achieves an impressive mAP@0.5 of

0.884 with an inference time of just 90ms, closely matching the

accuracy of YOLOv7 but with significantly fewer parameters and a

lower inference time. Similarly, YOLOv10m, with an mAP@0.5 of

0.901, provides high accuracy while requiring almost half the

inference time compared to its larger counterpart, YOLOv10l.

Henceforth, models like YOLOv6s and YOLOv10m offer a

balanced solution for deployment in the robotic sampling device

with high accuracy and moderate inference times.

The cultivar-specific cross validation revealed notable disparities

in the model’s ability to accurately detect eyes and stolon scar across

different potato cultivars. Among the evaluated models, the YOLOv7,

YOLOv10, and YOLOv6 variants emerged as the most robust in

terms of generalizability across different tuber cultivars for eye and

stolon scar recognition. Models developed based on images obtained

from russet and red potato cultivars showed poor performance when

tested on tuber images of Purple Pelisse cultivar. We hypothesize this

effect to be due to the appearance of eyes in hues of purple or violet,
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which blended more with the surrounding tuber skin color. Another

significant drawback of the current YOLO models is the combined

detection of the eye and stolon scar as a single class. Identifying the

stolon scar accurately is crucial, as it provides essential tissue and

biological information necessary for high-throughput diagnosis.

When both features are treated as a single class, there’s a high

likelihood of missing the stolon scar during robotic sampling as the

system would just sample four locations among all the detections,

resulting in suboptimal sampling decisions. The models’ performance

in multi-class detection has been notably poor due to the similar

visual characteristics of the eye and stolon scar. This underscores the

need for a more sophisticated dataset and training and inference

strategies that enables the vision system to recognize these features as

distinct entities. This involves enhancing image diversity by including

more images of tubers oriented to clearly reveal the stolon scar on the

surface. Additionally, incorporating a broader variety of potato

cultivars will enable the model to learn the distinct features

associated with each class more effectively. This approach will

improve the model’s ability to differentiate between the eye and

stolon scar, leading to more accurate detection outcomes.

As discussed earlier, the tuber sampling operation necessitates

minimal false positive errors from the object detection model. The

sampling process only requires a tuber core from stolon scar and

three eyes per tuber distributed across the entire tuber surface.

Consequently, increasing the confidence score threshold of the
FIGURE 8

Eye detection results of the YOLOv10m model across different confidence score thresholds (CST) on sample tuber images obtained from tubers of
‘Ciklamen’ (first row), ‘Purple Pelisse’ (second row), and russet cultivars (third row).
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detection model can lead to very high precision, representing the

proportion of correctly predicted positive instances among all

instances predicted as positive (Figure 8). The sampling process

will be performed iteratively prioritizing the instances with the

highest prediction confidence while accounting for proximity of

other detected eyes, ensuring that representative tissue is collected

from across the entire tuber surface. The findings of this study offer

valuable guidance for optimizing the selection and deployment of

YOLO models for developing a robotic tuber sampling device for

the potato industry.
5 Conclusion

The comprehensive evaluation of nineteen different versions of

YOLO architectures for detection of eyes on potato tubers provided

valuable insights for the development of a robotic tuber sampling

device. Our findings demonstrate that while all models showed

appreciable accuracies, YOLOv10l and YOLOv10m models

emerged as the top performers in terms of precision, recall, and

mAP scores, closely followed by YOLOv7. Particularly noteworthy

is the performance of YOLOv10m, which achieved competitive

accuracy with significantly fewer parameters and lower inference

time compared to YOLOv7, making it a promising candidate for

practical deployment. While certain models exhibit robust

performance across a range of cultivars, disparities in detection

accuracy were observed, particularly in the cultivar with purple

skin. This underscores the need for continued refinement and

adaptation of detection models to accommodate the variability

inherent among different potato cultivars.
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