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SerpensGate-YOLOv8: an
enhanced YOLOv8 model for
accurate plant disease detection
Yongzheng Miao1,2†, Wei Meng1,2*† and Xiaoyu Zhou1,2

1School of Information Science and Technology, Beijing Forestry University, Beijing, China,
2Engineering Research Center for Forestry-Oriented Intelligent Information Processing, Beijing, China
Plant disease detection remains a significant challenge, necessitating innovative

approaches to enhance detection efficiency and accuracy. This study proposes

an improved YOLOv8 model, SerpensGate-YOLOv8, specifically designed for

plant disease detection tasks. Key enhancements include the incorporation of

Dynamic Snake Convolution (DySnakeConv) into the C2F module, which

improves the detection of intricate features in complex structures, and the

integration of the SPPELAN module, combining Spatial Pyramid Pooling (SPP)

and Efficient Local Aggregation Network (ELAN) for superior feature extraction

and fusion. Additionally, an innovative Super Token Attention (STA) mechanism

was introduced to strengthen global feature modeling during the early stages of

the network. The model leverages the PlantDoc dataset, a highly generalizable

dataset containing 2,598 images across 13 plant species and 27 classes (17

diseases and 10 healthy categories). With these improvements, the model

achieved a Precision of 0.719. Compared to the original YOLOv8, the mean

Average Precision (mAP@0.5) improved by 3.3%, demonstrating significant

performance gains. The results indicate that SerpensGate-YOLOv8 is a reliable

and efficient solut ion for plant disease detect ion in real-world

agricultural environments.
KEYWORDS

plant disease detection, YOLOv8, complex environment, deep learning in agriculture,
agricultural productivity
1 Introduction

Facing significant challenges in plant disease detection and management within global

agriculture, developing a highly accurate and efficient plant disease detection system is

crucial for ensuring food safety and enhancing agricultural productivity. Traditional

methods, which mainly rely on manual observation, are not only inefficient but also

heavily dependent on the observer’s experience, making them unsuitable for large-scale

agricultural production (Su et al., 2021; Vamsidhar et al., 2019).

Various published research papers have used image processing and deep learning-

based techniques to classify infected plant leaves based on species and the diseases acquired.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1514832/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1514832/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1514832/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1514832&domain=pdf&date_stamp=2025-01-20
mailto:mnancy@bjfu.edu.cn
https://doi.org/10.3389/fpls.2024.1514832
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1514832
https://www.frontiersin.org/journals/plant-science


Miao et al. 10.3389/fpls.2024.1514832
Aboneh et al. used pre-trained CNN models—InceptionV3,

ResNet50, VGG16, and VGG19—to classify diseases in wheat

plants. The dataset used is self-collected, and the images were

captured in a natural environment (Wang et al., 2021). Due to

this, improved accuracy was achieved under similar circumstances

(Aboneh et al., 2021) Mohanty et al. used the GoogLeNet

architecture and trained their model on Plant Village Dataset

along with web-scraped images from Bing and Google. The vast

variety of images present in the dataset leads to desirable results

under laboratory conditions (Mohanty et al., 2016). Tete et al. have

used various ANN-based classification techniques to compare

results obtained based on recognition speed for a varying number

of clusters present (Tete and Kamlu, 2017). Shrivastava and his

team leveraged the AlexNet framework for feature extraction and

then used a Support Vector Machine (SVM) approach to diagnose

diseases in rice plants. The dataset they worked with consisted of

images personally gathered from the Indira Gandhi Agricultural

University in Raipur. Due to the dataset’s limited size, the model

suffered from overfitting, a flaw apparent in their findings. This

constraint is echoed in the study’s performance indicators

(Shrivastava et al., 2019). On a different note, Mohanty and

colleagues utilized the GoogLeNet framework for their research,

training their model with the Plant Village Dataset enriched with

images obtained through web scraping from Bing and Google. The

extensive array of images in their collection led to favorable results

in controlled experiments (Mohanty et al., 2016). Furthermore, Tete

and associates investigated several classification techniques based

on Artificial Neural Networks (ANN), examining how the number

of clusters affects the speed of recognition. Their analysis provides

valuable insights into the efficacy of various methods (Tete and

Kamlu, 2017). Researchers have applied image processing and

machine learning to identify and categorize plant diseases (Bao

et al., 2022). Castelao Tetila et al. used six traditional machine

learning approaches to detect infected soybean leaves captured by

an Unmanned Aerial Vehicle (UAV) from various heights,

validating the impact of color and texture features on the

recognition rate (Castelão Tetila et al., 2017). Maniyath et al.

suggested a classification architecture based on machine learning

for detecting plant diseases (Ramesh et al., 2018).Ferentinos utilized

simple leaf images of healthy and infected plants to construct

convolutional neural network models for plant disease

identification and diagnosis using deep learning (Ferentinos,

2018). Fuentes et al. employed “deep learning meta-architectures”

to identify diseases and pests on tomato plants by utilizing a camera

to capture images at varying resolutions, successfully detecting nine

distinct types of tomato plant diseases and pests (Fuentes et al.,

2017). Tiwari et al. introduced a dense convolutional neural

network strategy for detecting and classifying plant diseases from

leaf pictures acquired at different resolutions, addressing many

inter-class and intra-class variances in images under complicated

circumstances (Tiwari et al., 2021). Several other studies have

utilized deep learning and image processing techniques to identify

tea leaf diseases. Hossain et al. discovered an image processing

method capable of analyzing 11 features of tea leaf diseases and used

a Support Vector Machine (SVM) classifier to identify and classify

the two most common tea leaf diseases, namely, brown blight
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disease and algal leaf disease (Hossain et al., 2018). Sun et al.

improved the extraction of tea leaf disease saliency maps from

complicated settings by combining Simple Linear Iterative Cluster

(SLIC) and Support Vector Machine (SVM) (Sun et al., 2019). Hu

et al. developed a model for analyzing the severity of tea leaf blight

in natural scene photos, calculating the Initial Disease Severity

(IDS) index by segmenting disease spot locations from tea leaf

blight leaf images using the SVM classifier (Hu et al., 2021).

Moreover, notable architectures like AlexNet (Krizhevsky et al.,

2012), VGGNet (Simonyan and Zisserman, 2014), GoogLeNet

(Szegedy et al., 2015), InceptionV3 (Szegedy et al., 2016), ResNet

(He et al., 2016), and DenseNet (Huang et al., 2017) have been used

for plant disease identification.

In the context of object detection, the YOLO (You Only Look

Once) algorithm, a widely used method in computer vision,

processes images in real time via a single forward pass of a neural

network, performing both object recognition and bounding box

regression in one step. This efficiency allows it to process up to 60

frames per second. YOLO divides an image into a grid of cells and

predicts bounding boxes along with class probabilities for each cell

(Xue et al., 2023).To improve accuracy, YOLO uses anchor boxes of

varying sizes and aspect ratios, which enhances its suitability for

detecting multiple objects across various regions of an image (Jiang

et al., 2022; Kirar, 2024).

Earlier versions of the YOLO family have been successfully

applied in various domains, including for fruit identification in

harvesting robots (Kuznetsova et al., 2020; Yan et al., 2021), vehicle

and ship detection (Zhao et al., 2023; Song et al., 2023), and face

detection (Ayo et al., 2022). Lidahua et al (Dahua et al., 2024) used

an improved YOLOv7 for detecting apple surface defects. The

enhanced model increased the detection mAP@0.5 by 2

percentage points compared to the original YOLOv7.

To address this challenge, this study utilized the PlantDoc

dataset developed by the Indian Institute of Technology,

comprising 13 plant species across 30 different states,

representing both diseased and healthy conditions, which reflects

the complexity of real-world agricultural environments (Singh et al.,

2020). The YOLOv8 model’s C2F module was enhanced by

integrating Dynamic Snake Convolution (DySnakeConv) (Qi

et al., 2023; Xie et al., 2020), which significantly enhances the

model’s capacity to detect fine details in elongated and twisted

structures. Additionally, the traditional SPPF module was replaced

with the SPPELAN technique (Wang et al., 2024), combining

Spatial Pyramid Pooling (SPP) (He et al., 2015) and Efficient

Local Aggregation Network (ELAN) (Wang et al., 2022), which

significantly enhanced the model’s feature extraction and

aggregation capabilities. This enhancement not only improved

both the accuracy and robustness of the model but also lowered

computational costs and accelerated inference speed. Moreover, the

study introduced an innovative Super Token Attention (STA)

(Huang et al., 2023) mechanism, which significantly enhanced the

network’s ability to capture global features at early stages (Ding

et al., 2022).

Ultimately, the improved YOLOv8 model was compared with

other existing models to assess the effectiveness of the proposed

improvements (Aliyu et al., 2020; Fu et al., 2021; Liu and Wang,
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2020). The experimental results demonstrated that the enhanced

YOLOv8 algorithm exhibited superior recognition performance in

detecting plant diseases from images. Compared to the original

model, the mean Average Precision (mAP@0.5) increased by 3.3%.

These results demonstrate that the proposed plant disease image

detection model exhibits excellent performance in various tests,

offering an efficient solution for plant disease detection through the

application and further refinement of these technologies.
2 Materials and methods

2.1 Data acquisition

The data used for modeling in this study were obtained from the

PlantDoc dataset. Developed by researchers at the Indian Institute

of Technology, the PlantDoc dataset represents a major

advancement in the application of computer vision to agricultural

challenges, particularly in the detection of plant diseases. This

dataset fulfills the critical need for large-scale, in-field data, which

is crucial for enhancing vision-based disease detection technologies.

The PlantDoc dataset comprises a comprehensive collection of

2,569 images, spanning 13 plant species and covering 30 distinct

classes that reflect a spectrum of health conditions, from diseased to

robust states. This meticulously curated dataset is the result of over

300 human-hours dedicated to annotating images sourced from a

vast array of internet resources. It is designed to capture the

complexity of real-world agricultural environments, highlighting

diverse backgrounds and varying light conditions typical to farming

regions, particularly in countries like India. The dataset has been

tailored for practical application, ensuring compatibility with the

lower-end mobile devices predominantly utilized by the local

farming community.
2.2 Data preprocessing

In this study, the dataset was meticulously divided into training,

validation, and test sets, with an 8:1:1 allocation. The training set

contains 2,055 images, while the validation and test sets each

contain 256 images. This distribution was designed to ensure a

balanced representation of data across various stages of model

development, while also meeting the requirements for model

training and evaluation.
2.3 Improved YOLOv8 Model-
SerpensGate YOLOv8

Obstructions from branches, leaves, and fruits often complicate

the detection of plant diseases. Although existing deep-learning-

based convolutional neural network models (Bi et al., 2022) achieve

high accuracy, they remain constrained by high computational

complexity and slow detection speeds. To address these

challenges, this study introduces improvements to the YOLOv8

model (Redmon et al., 2016), with specific optimizations for plant
Frontiers in Plant Science 03
disease detection in complex agricultural environments, ensuring

accurate identification and monitoring.

The enhanced plant disease detection model based on YOLOv8

is illustrated in Figure 1. The model introduces modifications to the

C2f module by adding more skip connections, removing

convolutional operations in certain branches, and incorporating a

split operation. These changes enrich feature information while

reducing computational complexity, achieving a balance between

efficiency and performance.

SerpensGate-YOLOv8 builds upon YOLOv8 by optimizing the

ELAN (Efficient Layer Aggregation Networks), enabling richer

feature extraction and precise detection of plant diseases in

complex agricultural scenarios. The model’s input size is

640×640×3, and the input plant disease images undergo multiple

convolutional operations and feature extraction. Through a

combination of downsampling and feature concatenation, three

basic feature maps are generated.

The top feature map is processed through Conv and C2f

modules before being passed into deeper network layers to merge

with features extracted from shallow layers. Meanwhile, the middle

and lower feature maps are further refined using SPPELAN and

DySnakeConv modules, ensuring effective feature extraction and

integration across multiple network layers. After completing the

top-down feature fusion, the network performs bottom-up feature

fusion to further optimize feature representation.

The model produces three output feature maps of different sizes

(20×20, 40×40, and 80×80). These multi-scale feature maps allow

the detection of plant disease regions of varying sizes, effectively

handling the multi-scale and complex morphological characteristics

of plant diseases. This capability enhances the accuracy and

robustness of plant disease detection. By predicting objects of

different sizes using feature maps of corresponding scales, the

model is well-equipped to process objects of varying sizes within

the image.

In the SerpensGate-YOLOv8 object detection framework, the

Backbone, Neck, and Head are the key components. Before entering

the Backbone, the image data undergoes basic preprocessing steps,

such as data augmentation. The Backbone is crucial for extracting

features from target regions in input images. After passing through

the Backbone, the data undergoes sequential processing through

modules such as Conv, C2f-DySnakeConv, and SPPELAN.

Subsequently, the STA attention mechanism further enhances

these features, amplifying the weights of the target regions to

extract more meaningful insights.

The Neck is responsible for feature fusion. Within the network

architecture, three branches of different scales feed into the Neck,

including the main branch enhanced by the STA mechanism. After

feature fusion in the Neck, these three feature branches are passed

to the Head for classification and detection of target features. The

core function of the Neck is to integrate features of varying scales,

improving the accuracy of target detection. Compared to the

original YOLOv8, this model incorporates significant

improvements in both the Neck and Backbone structures.

Detailed modifications are annotated in the figure.

This study integrates innovative detection methods, including

the Super Token Attention (STA), Dynamic Snake Convolution
frontiersin.org
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(DSConv), and Spatial Pyramid Pooling and Efficient Layer

Aggregation Network (SPPELAN) modules. The STA mechanism

decomposes visual information into “super tokens,”effectively

reducing computational complexity while capturing global

contextual information. This mechanism allows the model to

focus on critical regions affected by plant diseases, enhancing

robustness to complex backgrounds and improving the quality of

feature representation. DSConv dynamically adjusts the shape and

orientation of convolutional kernels, specializing in capturing

irregular boundaries and intricate textures associated with plant

diseases. This method demonstrates superior performance in

detecting small or partially occluded diseased regions,

significantly improving boundary detection accuracy and the

model’s adaptability. SPPELAN employs multi-scale feature

extraction and fusion mechanisms to accurately detect disease

regions of various scales. By integrating local and global

information through its multi-branch structure, SPPELAN

reduces computational complexity via feature compression,

enhancing both efficiency and accuracy.

The integration of these advanced modules not only strengthens

the model’s ability to process complex image data but also ensures

robust performance in diverse agricultural environments. These

modules work synergistically to develop an automated system

capable of significantly improving the precision of detecting,

identifying, and classifying plant diseases. By enhancing

diagnostic accuracy, this system saves valuable time for farmers,
Frontiers in Plant Science 04
increases agricultural productivity, and ultimately improves their

quality of life.
2.3.1 Super token attention mechanism
The Super Token Attention (STA) mechanism (Huang et al.,

2023) introduces a novel method to enhance the efficiency of global

context modeling in Vision Transformers. This mechanism

comprises three core processes: Super Token Sampling (STS),

Multi-Head Self-Attention (MHSA), and Token Upsampling,

each contributing to substantial reductions in computational

complexity and improvements in performance.

In the STS process, we adapt the soft k-means based superpixel

algorithm in SSN (Jampani et al., 2018) from the pixel space to the

token space. Given the visual tokens X ∈ RN�C (where N =

H �W is the token number), each token Xi ∈ R1�C is assumed

to belong to one of m super tokens S ∈ Rm�C , making it necessary

to compute the X − S association map Q ∈ RN�m. First, we sample

initial super tokens S0 by averaging tokens in regular grid regions. If

the grid size is h� w, then the number of super tokens is m =
H
h � W

w . Then we run the sampling algorithm iteratively with the

following two steps:

Token & Super Token Association. In SSN (Jampani et al.,

2018), the pixel-superpixel association at iteration t is computed as

Qt
ij = e− ‖Xi−S

t−1
j ‖2 : (1)
FIGURE 1

Model structure diagram.
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Different from SSN (Jampani et al., 2018), we apply a more

attention-like manner to compute the association map Qt , defined as

Qt = Softmax  
XSt−1⊤ffiffiffi

d
p

� �
, (2)

where d is the channel number C.

Super Token Update. The super tokens are updated as the

weighted sum of tokens, defined as

S = (Q̂ t)⊤X, (3)

where Q̂ t is the column-normalized Qt . The computational

complexity of the above sampling algorithm is

W(STS) = 19NC, (4)

where the complexities for obtaining initial super-tokens,

computing sparse associations and updating super tokens are NC,

9NC and 9NC, respectively. We provide the details of the sparse

computation of STA in Figure 2.
2.3.2 Improvement of the backbone
In 2023, Yaolei Qi and colleagues introduced the DySnakeConv

module (Qi et al., 2023), which demonstrated outstanding

performance in recognizing tubular structures such as blood

vessels and roads, tasks of comparable complexity to detecting

plant diseases in agricultural applications. The DySnakeConv

module specifically constrains the receptive field, ensuring the

accuracy of convolutional deformations in alignment with the

network’s overall loss metrics. Unrestricted convolutional

flexibility could result in the loss of critical structural details in

plant images. To address this issue, a continuity constraint was

incorporated into the convolutional kernel design, allowing each

position to reference the previous one while freely selecting the

movement direction. This feature is essential for maintaining

continuity in feature detection, particularly crucial for accurately

identifying subtle plant diseases in diverse agricultural

environments (Ma et al., 2021).

In the backbone architecture of the neural network, YOLOv8

employs the C2f module (Chen et al., 2023) as the primary

component, specifically optimized to integrate low-level and high-
Frontiers in Plant Science 05
level feature information for plant disease detection. The C2f

module employs a densely residual structure to perform a series

of convolutional operations, subsequently merging the information

through splitting and splicing, effectively adjusting the channel

count based on scaling coefficients to optimize computational

efficiency and model capacity. This improvement significantly

enhances the ability to extract features from elongated and

complex lesions typical of plant diseases. DySnakeConv adapts to

input feature maps, focusing on capturing complex and tortuous

local features based on the morphology of the disease. By

dynamically aligning with the actual morphology of lesions,

DySnakeConv ensures more accurate and efficient detection of

plant diseases, particularly those with irregular or changing

forms.To further enhance the architecture, the Dynamic Snake

Convolution (DySnakeConv) technique was integrated into the

C2f module (Yu et al., 2017). In the original YOLOv8 feature

fusion network, the C2f module had a fixed input size, supporting

only input resolutions identical to those of the training images.

Additionally, its reliance on fully connected layers for predictions

introduced certain limitations in processing efficiency. To address

these issues, the redesigned C2f_DySnakeConv module

incorporates the DySnakeConv convolution, enabling adaptability

to input images of varying sizes. This enhancement significantly

improves the model’s capacity to handle diverse inputs while

boosting the performance and speed of target detection.The

C2f_DySnakeConv module introduces the following key

improvements: 1.Replacement of traditional convolutional layers:

The traditional convolutional layers were replaced with

DySnakeConv layers, which dynamically adjust the kernel

positions based on input image features. The module consists of

two traditional convolutional (Conv) layers and two DySnakeConv

layers. 2.Enhanced feature extraction: DySnakeConv is employed to

capture diverse features of the target images, ensuring better

adaptability to complex patterns. These enhancements greatly

improve the ability to extract features from elongated and

complex lesions commonly observed in plant diseases.

DySnakeConv adapts to input feature maps, focusing on

capturing intricate and tortuous local features based on the

morphology of the disease. Layered computation across different

feature levels not only optimizes resource utilization but also
FIGURE 2

Super Token Attention.
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enables the effective detection of diverse targets. Using the Snake

Model—a closed curve representing the lesion boundary—

DySnakeConv dynamically adjusts through convolutional

operations to closely align with the actual morphology of lesions.

This capability is particularly advantageous for detecting plant

diseases characterized by irregular, complex, or evolving patterns,

thus enhancing the overall accuracy and effectiveness of the

network in plant disease imaging. For a detailed description of

the DySnakeConv module’s design and functionality, refer to

the Figure 3.

2.3.3 Improvement of the neck
The SPPELAN is an innovative network structure that

effectively combines the advantages of Spatial Pyramid Pooling

(SPP) and Efficient Layer Aggregation Network (ELAN). SPP, as a

spatial pyramid pooling method, captures information at different

scales, significantly enhancing the robustness of the model. On the

other hand, ELAN improves the model’s representational capacity

by efficiently integrating features from different layers of a deep

neural network.

More specifically, SPP can handle inputs of varying sizes

through its multi-level pooling, which incorporates pooling

operations of various sizes (such as 1x1, 2x2, 4x4). This

hierarchical pooling structure allows it to capture image features

from multiple scales and ensures the output of a fixed-size feature

vector. This is achieved by performing pooling over different

regions at each level, then flattening and concatenating

these features.

On the other hand, ELAN improves the efficiency of feature

utilization by establishing direct connections between different

network layers. These cross-layer connections enable features

from lower layers to be transmitted directly to higher layers,

enhancing the flow and reuse of information. During the feature

fusion process, ELAN may also employ attention mechanisms or

other strategies to dynamically adjust the weights of features from

different layers to optimize the effectiveness of feature fusion.

By integrating SPP and ELAN, the SPPELAN architecture

captures more contextual information at various scales, thereby

improving the accuracy of plant disease detection. This design not
Frontiers in Plant Science 06
only enhances the model’s ability to handle agricultural images of

varying sizes and resolutions but also optimizes the flow and

integration of information within the network, making it

particularly effective in identifying subtle and complex disease

patterns in plants. The hierarchical pooling of SPP ensures the

detection of disease features at different scales, such as small lesions

or widespread discoloration, while the cross-layer connections in

ELAN facilitate the seamless fusion of high-level semantic features

and low-level spatial details. These capabilities significantly boost

the model’s performance in the challenging task of plant disease

identification. For a visual representation and clearer understanding

of the SPPELAN module structure, refer to Figure 4.
2.3.4 Model input
In the development of the plant disease detection model, the

input image size was standardized to 640×640 pixels to

accommodate SerpensGate-YOLOv8. This size was chosen to

balance the demands for real-time processing and model

accuracy, ensuring that the model not only preserves crucial

image information but is also suitable for deployment on edge

devices. Regarding data augmentation strategies, the approach used

in SerpensGate-YOLOv8 is closely aligned with that of YOLOv5.

However, a significant modification was made in the last 10 epochs

of training for SerpensGate-YOLOv8: the Mosaic augmentation was

discontinued (Castelão Tetila et al., 2017)
2.3.5 Network Structure and Parameters
Table 1 provides detailed insights into the network architecture

and specific parameters of SerpensGate YOLOv8, enabling readers

to gain a thorough understanding of its structural intricacies and

design nuances.
2.4 Model train and evaluation

During the dataset annotation process, particular emphasis was

placed on the accuracy and consistency of labels to ensure the

development of robust models for plant disease recognition and
FIGURE 3

DSconv module structure diagram.
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FIGURE 4

DSconv module structure diagram.
TABLE 1 Network structure and parameters of SerpensGate-YOLOv8.

Layers From N Params Module Arguments

0 -1 1 464 Conv [3, 16, 3, 2]

1 -1 1 4672 Conv [16, 32, 3, 2]

2 -1 1 18888 C2f [32, 32, True]

3 -1 1 18560 Conv [32, 64, 3, 2]

4 -1 2 134800 C2f [64, 64, True]

5 -1 1 73984 Conv [64, 128, 3, 2]

6 -1 2 507024 C2f [128, 128, True]

7 -1 1 295424 Conv [128, 256, 3, 2]

8 -1 1 982088 C2f_DySnakeConv [256, 256, True]

9 -1 1 1313280 SPPELAN [256, 256, 1024]

10 -1 1 262562 StokenAttention [256]

11 -1 1 0 Upsample [None, 2, ‘nearest’]

12 [-1, 6] 1 0 Concat [1]

13 -1 1 148224 C2f [384, 128, 1]

14 -1 1 0 Upsample [None, 2, ‘nearest’]

15 [-1, 4] 1 0 Concat [1]

16 -1 1 37248 C2f [192, 64, 1]

17 -1 1 36992 Conv [64, 64, 3, 2]

18 [-1, 12] 1 0 Concat [1]

19 -1 1 156416 C2f [448, 128, 1]

20 -1 1 147712 Conv [128, 128, 3, 2]

21 [-1, 9] 1 0 Concat [1]

22 -1 1 493056 C2f [384, 256, 1]

23 [16, 19, 22] 1 757162 Detect [30, [64, 128, 256]]
F
rontiers in Plant Science
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Summary: 329 layers, 4982500 parameters, 4982322 gradients, 9.7 GFLOPs.
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severity assessment. These nuanced variations in the dataset

annotation underscore the customized approach taken for this

specific task.

The plant disease detection model constructed in this study falls

under the category of target detection. After completing the model’s

construction, key performance indicators such as Precision, Recall,

F1-score, and mAP50 are used to assess its performance. Notably,

AP refers to Average Precision. The specific formulas used to

calculate these performance metrics are presented below. Here,

TP, FP, FN, and TN correspond to true positive, false positive, false

negative, and true negative, respectively. The variable C denotes the

total number of categories, while APi represents the Average

Precision value for the i-th category.

Precision =
TP

TP + FP
� 100% (5)

Recall =
TP

TP + FN
(6)

F1 − score = 2� Recall� Precision
Recall + Precision

(7)

mAP = o
C
i=1  APi
C

(8)

where TP, FP, FN, and TN represent true positive, false positive,

false negative, and true negative, respectively. C denotes the total

number of categories, and APi represents the AP value of the i-

th category.
3 Experimental results

3.1 Experimental environment

To validate the effectiveness of the proposed methodology, an

experimental setup was established using Ubuntu 18.04 as the

operating system and Pytorch 2.2.1+cu121 as the deep learning

framework. YOLOv8n was selected as the baseline network model.

Detailed specifications of the experimental environment are

presented in Table 2.
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To ensure fairness and consistency across model evaluations, all

ablation experiments and comparative model training processes

were conducted without the use of pre-training weights. Consistent

hyperparameters were applied throughout the training across all

experiments, ensuring uniform conditions for comparison. Table 3

details the exact hyperparameters employed during these processes.
3.2 Ablation experiment

To thoroughly evaluate the enhancement in model performance,

we defined four different configurations: the benchmark Model A,

enhanced Model A + B (STA), enhanced Model A + B + C (neck,

STA), and enhanced Model A + B + C + D (neck, STA, DSconv).

These improvements and their impact were quantitatively analyzed

based on metrics such as precision rate (P), recall rate (R), average

precision (AP), mean value of average precision (mAP), number of

parameters, and model size. The experimental results highlight the

performance of these models on the test set, with detailed

information presented in Tables 2 and 3.
3.3 Comparison of modeling results of
classical object detection methods

Firstly, a comparative analysis of various classical methods based

on the plant disease dataset was performed to determine the optimal

modeling approach. The detailed modeling results are presented in

Table 4. Table 4 presents the results of our model in comparison with

previous work on the PlantDoc dataset. Shill et al (Shill and Rahman,

2021). achieved mean Average Precision (mAP) scores of 53.08% and

55.45% using YOLOv3 and YOLOv4, respectively. Li et al. tested

YOLOv5s (Li et al., 2022), nanodet-plus, and their own improved
TABLE 2 Hardware and software configuration for training.

Environmental
Parameter

Specification

Operating System Ubuntu 18.04

Deep Learning Framework PyTorch

Programming Language Python 3.8

CPU Intel(R) Core(TM) i9-12,900K, 16 cores, 24
threads, 3.19 GHz

GPU GeForce RTX 3090Ti (24GB)

System Memory 32GB
TABLE 3 Training parameter setting table.

Parameters Setup

Epochs 500

Batch Size 8

Optimizer SGD

NMS IoU 0.7

Initial Learning Rate
Final Learning Rate
Momentum

1×10−2

1×10−4

0.937

Weight-Decay
Image Scale

5×10−4

0.5

Image Flip Left-Right 0.5

Mosaic 1.0

Image Translation 0.1

a (Wise-IoU) 1.9

b (Wise-IoU) 3

Close Mosaic Last 10 epochs
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YOLOv5 model, achieving mAP scores of 53.5%, 55.3%, and 58.2%

on the PlantDoc dataset, respectively.

The relatively low precision, recall, and mean Average Precision

(mAP) observed are attributed to the characteristics of the dataset.

The images within the dataset feature objects set against natural

backgrounds, which hampers the model’s ability to generalize across

varying backdrops. Furthermore, the presence of multiple objects

within these images introduces further challenges for object detection.

The dataset utilizes images with dimensions of 416x416 pixels,

making it particularly difficult to detect smaller objects effectively.

As shown in Table 4, a qualitative comparison indicates that

YOLOv8 has significant advantages in constructing plant disease

detection models. While its performance surpasses other methods,

its parameter size has only slightly increased compared to YOLOv5

(Zhang et al., 2022). Therefore, this study will focus on improving

subsequent models based on YOLOv8.
3.4 Modeling results of the plant disease
detection model based on the
improved YOLOv8

In Section 3.2, we explore the plant disease detection model

based on the PlantDoc dataset. This section demonstrates the

effectiveness of SerpensGate-YOLOv8 in identifying and

classifying plant diseases. This section details the plant disease

detection model built using SerpensGate-YOLOv8, with specific

results shown in Table 5.
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After training our model, we used 239 images from each

category in the dataset for testing.Below are the top ten results

with the highest mean Average Precision (mAP) across all

categories. Table 6 details the specific performance of our model

on both the training and testing sets.

Due to the complexity of the plant disease detection data

collected in this study, the primary issue faced during model

training is overfitting. Therefore, we have plotted the relevant

curves during the training and validation process and provided

specific results.

As shown in Figure 5, during the training and validation phases,

the loss curve exhibits an initial rapid decline followed by a

gradual stabilization, while the performance metrics such as

Precision, Recall, and mAP demonstrate a trend of rapid initial

improvement and subsequent stabilization. This indicates that in

the process of developing a plant disease detection model using

SerpensGate-YOLOv8, there is no overfitting, and the model

exhibits satisfactory convergence.

To visually demonstrate the performance of the SerpensGate-

YOLOv8 plant disease detection model in target category

recognition, this study has created a confusion matrix for the

model, which is displayed in Figure 6.

According to the confusion matrix shown in Figure 6, the model

is employed to differentiate between healthy plants and specific

plant diseases. The matrix shows that the model exhibits high

accuracy in identifying healthy plants, with 8 out of the top 10

highest recognition rates being for healthy plants. Additionally, the

model also shows high accuracy in detecting certain diseases, such

as corn rust leaf and apple rust leaf, as indicated by the darker colors

on the diagonal, which indicates a high recognition rate in

these categories.

However, some categories remain challenging, such as tomato

yellow virus and tomato Septoria leaf spot. Due to the similarities in

color and texture features of these diseases, the model tends to

misclassify these diseases. For instance, the similarity in growth

stages and symptom presentations between tomato Septoria leaf

spot and tomato late blight, combined with external environmental

factors such as changes in lighting conditions, can increase the

visual similarity between these two diseases, thereby impacting

the model’s classification accuracy. These issues are reflected

in the confusion matrix by the increased off-diagonal elements,

indicating discrepancies between predictions and actual

classifications. Therefore, further optimization of feature

extraction and classification algorithms during model training is

required to reduce the misclassification rate. After thoroughly

discussing the performance shown in the confusion matrix on the

PlantDoc dataset, we used Gradient-weighted Class Activation

Mapping (Grad-CAM) to visually inspect the attention regions of

the two models. Figures 7, 8 illustrates the category confusion

between the two models.

In this study, we conducted experiments using both pre- and

post-improvement models for plant disease detection. We found

that these models exhibit varying performance in handling large

categories, with particular challenges in distinguishing between
TABLE 4 Comparison results on PlantDoc.

Methods mAP
(IoU=50%)

Recall(%) Parameters(M)

M YOLOv4 (Shill
and Rahman, 2021)

0.5545 56.0 –

YOLOv3 0.5308 57 15.3

YOLO v4 0.5545 61 62

YOLOv5s
(Jocher, 2020)

0.5350 53.0 7.1

Improved YOLOv5 0.5820 55.0 8.4

nanodet-plus
(RangiLyu, 2021)

0.5530 54.2 8.4

yolov8 0.6160 64.2 11.2
TABLE 5 Results of plant disease detection model construction.

Metric Value

F1 Score 0.6120

Precision 0.7200

Recall 0.6620

mAP50 0.6490
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background and foreground. By classifying and identifying different

plant leaves such as apple scab leaves, apple rust leaves, and

blueberry leaves, we observed significant differences in detection

effectiveness. For example, the detection of apple scab leaves was

satisfactory, whereas the detection of tomato late blight leaves was

less effective. To explore the reasons for these performance

differences, we introduced the Grad-CAM technique in the

experiments. This technique allows us to interpret model

behavior by visualizing the regions of interest where the model’s

attention shifts. Grad-CAM calculates weights using the gradients
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of class confidence scores computed during backpropagation. These

weights encode detailed class-specific information and are crucial

for understanding the model’s decision-making process. Especially

when detecting different types of plant leaves, such as apple rust

leaves and tomato leaves, Grad-CAM reveals the precise regions

where the model focuses its attention.

When using the YOLOv8 model, the performance was poor,

with restricted focus on similar targets, particularly in cases of

occlusion and small targets. In contrast, the improved model

developed in this study demonstrated the best Grad-CAM
TABLE 6 Performance comparison of training and testing sets (Top 10).

Category Labels Training Set Testing Set

P R mAP@0.5 mAP@0.95 P R mAP@0.5 mAP@0.95

Strawberry Leaf 30 0.918 1.000 0.995 0.833 0.916 1.000 0.995 0.832

Grape Leaf 8 0.835 0.875 0.955 0.819 0.821 0.875 0.955 0.804

Raspberry Leaf 17 0.657 1.000 0.964 0.827 0.656 1.000 0.957 0.831

Corn Rust Leaf 10 0.816 1.000 0.931 0.740 0.762 1.000 0.931 0.740

Peach Leaf 10 0.763 0.900 0.917 0.706 0.631 0.900 0.918 0.694

Apple Rust Leaf 11 0.697 0.627 0.774 0.510 0.642 0.636 0.767 0.508

Corn Leaf Blight 12 0.712 0.823 0.777 0.674 0.662 0.833 0.767 0.665

Apple Leaf 10 0.455 0.700 0.733 0.566 0.442 0.700 0.722 0.556

Soybean Leaf 20 0.717 0.650 0.779 0.697 0.688 0.650 0.776 0.694

Blueberry Leaf 22 0.635 0.727 0.696 0.519 0.604 0.727 0.673 0.503
FIGURE 5

Training and validation process curves of the plant disease detection model.
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visualization effects. We observed that some models concentrated

on the edges, while others focused on the whole area. The deep red

areas were distinctly visible, corresponding precisely to the target

category. When detecting apple scab leaves and tomato late blight

leaves, this model was able to fully cover the target areas in the

image, showing high sensitivity to small and partially occluded

targets. The experimental results indicate that the larger the plant

disease target, the more complete the features learned by the

network, and the better the model’s performance. This model has

a significant advantage in detection accuracy across various

categories. Additionally, the model’s processing speed analysis

showed an average preprocessing time of 0.4ms per image and an

inference time of 5.9ms, demonstrating that the model’s response

speed is acceptable for practical applications.

The detection samples selected in Figure 9 are all from the test

set. Across various environments, the model demonstrates strong

detection capabilities, and its robustness meets practical

engineering needs. However, in detection tasks involving small

and densely clustered plant diseases, the model inevitably

encounters some missed detections and false positives. For

example, due to the similarity in color and texture between

certain disease spots and surrounding healthy leaves when
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viewed from an overhead perspective, there is an increased

likelihood of false detections; if the diseased areas on the plants

are too small, they might be mistaken for background and

overlooked by the model.
4 Discussion

This study introduces the SerpensGate framework to effectively

enhance the YOLOv8 model, demonstrating significant

improvements in the task of plant disease detection. Firstly,

compared to the traditional YOLOv8 model, SerpensGate-

YOLOv8 shows notable advancements across multiple

performance metrics. Our model achieved a 3.3% increase in

mean Average Precision (mAP@0.5), reaching 64.9%. This

improvement is primarily attributed to the integration of the

Dynamic Snake Convolution (DySnakeConv) and Super Token

Attention (STA) mechanisms. These innovative technologies

greatly enhance the model’s ability to detect fine, elongated, and

twisted structural details while also significantly improving its

global feature capture, particularly excelling in handling plant

diseases in complex agricultural environments.
FIGURE 6

Confusion matrix of the plant disease detection model.
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Additionally, the introduction of the SPPELAN technique

significantly improves the model’s multi-scale feature extraction

and information aggregation capabilities. SPPELAN combines the

advantages of spatial pyramid pooling for capturing multi-scale

information and efficient layer aggregation for better information

flow and reuse. This not only improves the model’s accuracy but
Frontiers in Plant Science 12
also optimizes inference speed, validating the necessity of multi-

scale processing in plant disease detection.

Despite these advancements, the study still faces several

challenges. The imbalance in dataset categories affects the model’s

generalization ability for rare diseases, resulting in suboptimal

performance in certain classes. Furthermore, misclassification
FIGURE 7

Grad-CAM visualization.
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issues persist between morphologically similar diseases (such as

tomato yellow leaf curl virus and tomato leaf spot), indicating that

further optimization of feature extraction and classification

algorithms is needed. Lastly, environmental interferences, such as

lighting variations and leaf occlusion, continue to impact model

performance. Future research should aim to enhance the model’s

robustness to these factors to further improve its performance.
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In summary, the SerpensGate-YOLOv8 model provides an

effective technological approach for plant disease detection. While

it has made significant progress in terms of performance, it is still

necessary to address existing limitations by expanding the dataset

and optimizing algorithms. These improvements will further

enhance the model’s applicability and reliability in real-world

agricultural scenarios.
FIGURE 8

Grad-CAM visualization.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1514832
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Miao et al. 10.3389/fpls.2024.1514832
5 Conclusions

The SerpensGate-YOLOv8 model proposed in this

study significantly improves detection accuracy and efficiency

in plant disease detection tasks through the integration of

Dynamic Snake Convolution (DySnakeConv), SPPELAN

technology, and the Super Token Attention (STA) mechanism.

This model not only overcomes the limitations of traditional

convolutional neural networks in handling complex shapes but

also optimizes the feature extraction and aggregation processes,

resulting in a significant enhancement in overall performance. It

achieves a mAP value of 0.649 without significantly increasing

computational costs.
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Compared to traditional models, SerpensGate-YOLOv8

demonstrates excellent robustness and applicability in complex

agricultural environments, offering strong technical support

for smart agriculture. Despite the model’s adaptability, real-world

challenges such as occlusion, background blurring, and changes in

lighting conditions remain. Therefore, future research will focus on

expanding the dataset size, improving data annotation techniques,

and further optimizing the algorithm to improve the model’s

generalization capability and real-world performance.

Future work will concentrate on reducing the model’s size to

improve its feasibility for real-world deployment, while continuing

to optimize detection accuracy and facilitating the broader

application of plant disease detection in smart agriculture.
FIGURE 9

Images of both healthy plants and diseases detected using our model.
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Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning for image-
based plant disease detection. Front. Plant Sci 7, 215232. doi: 10.3389/fpls.2016.01419

Qi, Y., He, Y., Qi, X., Zhang, Y., and Yang, G. (2023). “Dynamic snake convolution
based on topological geometric constraints for tubular structure segmentation,” in
frontiersin.org

https://paperswithcode.com/dataset/plantdoc
https://paperswithcode.com/dataset/plantdoc
https://doi.org/10.3390/technologies9030047
https://doi.org/10.1038/s41598-022-06181-z
https://doi.org/10.1038/s41598-022-06181-z
https://doi.org/10.1007/s11036-020-01640-1
https://doi.org/10.1007/s11036-020-01640-1
https://doi.org/10.1109/LGRS.2017.2743715
https://doi.org/10.1145/3603273
https://doi.org/10.1016/j.compag.2018.01.009
https://doi.org/10.1007/s11119-020-09754-y
https://doi.org/10.3390/s17092022
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s11119-020-09782-8
https://doi.org/10.1007/s11119-020-09782-8
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.1016/j.compag.2022.107345
https://doi.org/10.1186/s13007-020-00624-2
https://doi.org/10.1186/s13007-020-00624-2
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.3389/fpls.2024.1514832
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Miao et al. 10.3389/fpls.2024.1514832
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2023. (Paris: Paris Convention Center), 6070–6079.

Ramesh, S., Hebbar, R., Niveditha, M., Pooja, R., Shashank, N., Vinod, P., et al.
(2018). “Plant disease detection using machine learning,” in 2018 International
conference on design innovations for 3Cs compute communicate control (ICDI3C)
(MVJCE, Bengaluru: IEEE), 41–45.

RangiLyu. (2021). NanoDet-Plus: Super fast and high accuracy lightweight anchor-
free object detection model. Available online at: https://github.com/RangiLyu/
nanodet.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2016. (Las Vegas, Nevada), 779–788.

Shill, A., and Rahman, M. A. (2021). “Plant disease detection based on yolov3 and
yolov4,” in 2021 international conference on automation, control and mechatronics for
industry 4.0 (ACMI).

Shrivastava, V. K., Pradhan, M. K., Minz, S., and Thakur, M. P. (2019). Rice plant
disease classification using transfer learning of deep convolution neural network. Int.
Arch. Photogrammetry Remote Sens. Spatial Inf. Sci 42, 631–635.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S., and Batra, N. (2020). “Plantdoc: A
dataset for visual plant disease detection,” in Proceedings of the 7th ACM IKDD CoDS
and 25th COMAD, 2020. (Hyderabad, India), 249–253.

Song, Y., Hong, S., Hu, C., He, P., Tao, L., Tie, Z., et al. (2023). Meb-yolo: An efficient
vehicle detection method in complex traffic road scenes. Computers Materials Continua
75. doi: 10.32604/cmc.2023.038910

Su, D., Qiao, Y., Kong, H., and Sukkarieh, S. (2021). Real time detection of inter-row
ryegrass in wheat farms using deep learning. Biosyst. Eng 204, 198–211. doi: 10.1016/
j.biosystemseng.2021.01.019

Sun, Y., Jiang, Z., Zhang, L., Dong, W., and Rao, Y. (2019). Slic_svm based leaf
diseases saliency map extraction of tea plant. Comput. Electron. Agric 157, 102–109.
doi: 10.1016/j.compag.2018.12.042

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (Boston, MA, USA), 1–9.
Frontiers in Plant Science 16
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., andWojna, Z. (2016). “Rethinking the
inception architecture for computer vision,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (Las Vegas, Nevada), 2818–2826.

Tete, T. N., and Kamlu, S. (2017). Plant disease detection using different algorithms.
RICE, 103–106.

Tiwari, V., Joshi, R. C., and Dutta, M. K. (2021). Dense convolutional neural
networks based multiclass plant disease detection and classification using leaf
images. Ecol. Inf 63, 101289. doi: 10.1016/j.ecoinf.2021.101289

Vamsidhar, E., Rani, P. J., and Babu, K. R. (2019). Plant disease identification and
classification using image processing. Int. J. Eng. Adv. Technol 8, 442–446.

Wang, C.-Y., Liao, H.-Y. M., and Yeh, I.-H. (2022). Designing network design
strategies through gradient path analysis. arXiv preprint arXiv:2211.04800.

Wang, C.-Y., Yeh, I.-H., and Liao, H.-Y. M. (2024). Yolov9: Learning what you want
to learn using programmable gradient information. arXiv preprint arXiv:2402.13616.

Wang, J., Yu, L., Yang, J., and Dong, H. (2021). Dba_ssd: A novel end-to-end object
detection algorithm applied to plant disease detection. Information 12, 474.
doi: 10.3390/info12110474

Xie, X., Ma, Y., Liu, B., He, J., Li, S., and Wang, H. (2020). A deep-learning-based
real-time detector for grape leaf diseases using improved convolutional neural
networks. Front. Plant Sci 11, 751. doi: 10.3389/fpls.2020.00751

Xue, Z., Xu, R., Bai, D., and Lin, H. (2023). Yolo-tea: A tea disease detection model
improved by yolov5. Forests 14, 415. doi: 10.3390/f14020415

Yan, B., Fan, P., Lei, X., Liu, Z., and Yang, F. (2021). A real-time apple targets
detection method for picking robot based on improved yolov5. Remote Sens 13, 1619.
doi: 10.3390/rs13091619

Yu, F., Koltun, V., and Funkhouser, T. (2017). “Dilated residual networks,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (Honolulu, HI,
USA), 472–480.

Zhang, D.-Y., Luo, H.-S., Wang, D.-Y., Zhou, X.-G., Li, W.-F., Gu, C.-Y., et al. (2022).
Assessment of the levels of damage caused by fusarium head blight in wheat using an
improved yolov5 method. Comput. Electron. Agric 198, 107086. doi: 10.1016/
j.compag.2022.107086

Zhao, W., Syafrudin, M., and Fitriyani, N. L. (2023). Cras-yolo: A novel multi-
category vessel detection and classification model based on yolov5s algorithm. IEEE
Access 11, 11463–11478. doi: 10.1109/ACCESS.2023.3241630
frontiersin.org

https://github.com/RangiLyu/nanodet
https://github.com/RangiLyu/nanodet
https://doi.org/10.32604/cmc.2023.038910
https://doi.org/10.1016/j.biosystemseng.2021.01.019
https://doi.org/10.1016/j.biosystemseng.2021.01.019
https://doi.org/10.1016/j.compag.2018.12.042
https://doi.org/10.1016/j.ecoinf.2021.101289
https://doi.org/10.3390/info12110474
https://doi.org/10.3389/fpls.2020.00751
https://doi.org/10.3390/f14020415
https://doi.org/10.3390/rs13091619
https://doi.org/10.1016/j.compag.2022.107086
https://doi.org/10.1016/j.compag.2022.107086
https://doi.org/10.1109/ACCESS.2023.3241630
https://doi.org/10.3389/fpls.2024.1514832
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	SerpensGate-YOLOv8: an enhanced YOLOv8 model for accurate plant disease detection
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition
	2.2 Data preprocessing
	2.3 Improved YOLOv8 Model-SerpensGate YOLOv8
	2.3.1 Super token attention mechanism
	2.3.2 Improvement of the backbone
	2.3.3 Improvement of the neck
	2.3.4 Model input
	2.3.5 Network Structure and Parameters

	2.4 Model train and evaluation

	3 Experimental results
	3.1 Experimental environment
	3.2 Ablation experiment
	3.3 Comparison of modeling results of classical object detection methods
	3.4 Modeling results of the plant disease detection model based on the improved YOLOv8

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


