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Transmembrane proteins (TMPs) are pivotal components of plant defence

mechanisms, serving as essential mediators in the response to biotic stresses.

These proteins are among the most complex and diverse within plant cells,

making their study challenging. In spite of this, relatively few studies have focused

on the investigation and characterization of TMPs in plants. This is particularly

true for grapevine. This review aims to provide a comprehensive overview of

TMP-encoding genes involved in grapevine immunity. These genes include Lysin

Motif Receptor-Like Kinases (LysM-RLKs), which are involved in the recognition

of pathogens at the apoplastic level, Plant Respiratory Burst Oxidase Homologs

(Rbohs), which generate reactive oxygen species (ROS) for host defense, and

Sugars Will Eventually be Exported Transporters (SWEETs), which play a role in

nutrient allocation and stress responses. Furthermore, the review discusses

the methodologies employed to study TMPs, including in vivo, in vitro and in

silico approaches, highlighting their strengths and limitations. In vivo studies

include the assessment of TMP function in whole plants or plant tissues, while

in vitro experiments focus on isolating and characterizing either specific

TMPs or their components. In silico analyses utilize computational tools to

predict protein structure, function, and interactions. By identifying and

characterizing genes encoding TMPs involved in grapevine immunity,

researchers can develop strategies to enhance grapevine resilience and lead to

more sustainable viticulture.
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1 Introduction

Transmembrane proteins (TMPs) are integral components of

lipid bilayer membranes in living organisms that function as first

barriers to the outside world. They constitute half of the

components in cell membranes (Goossens and De Winter, 2018)

and are among the most complex and diverse proteins within plant

cells, making them difficult to study (Corradi et al., 2019; Barrera

et al., 2019). From a structural point of view, TMP differ from other

membrane proteins in their folding, which allocates them across the

membrane. The protein can cross the membrane with a single

passage (bitopic) or a multiple passage (polytopic). The segments

that cross the membrane are folded with the typical alpha-helix

structure, with the peculiarity of having the side chains of amino

acids in contact with the lipid portion of the membrane. Another

structural organization of the transmembrane portion, although less

frequent, is the beta-barrel type architecture, observed in

mitochondria, chloroplasts, and Gram-negative bacteria. In any

case, the hydrophobicity of the amino acid side chain is an expected

feature in the transmembrane regions, related to the need to adapt

to the apolar environment of the lipid region of the membrane.

Transmembrane regions are alternated in the amino acid sequence

by polar regions that remain in the polar environment outside the

membrane, and function as simple connection loops as

independent domains with a fold like water-soluble proteins. The

alternation of polar and apolar regions is a typical feature that may

allow integral membrane proteins to be recognized by the analysis

of chemical-physical properties along the amino acid sequence.

Typical signal peptides can also be recognized. The mechanism of

the embedding in the lipid membrane is the object of many studies

and is still poorly understood (Argudo, 2024).

In plants, TMPs take over numerous critical functions like

solute transport (active/passive) (Pellizzaro et al., 2015), signal

transduction (Kemmerling et al., 2011; Mohd-Radzman et al.,

2015; Song et al., 2015; Imin et al., 2018) and cell-cell recognition

(Langhans et al., 2017). Because of these functions, they participate

in many physiological and pathological processes such as growth,

development (Clark et al., 1997; van der Knaap et al., 1999; Osakabe

et al., 2005; ten Hove et al., 2011) and photosynthesis (Liu and Last,

2015; Okumura et al., 2016). TMPs can also respond to

environmental stresses by triggering physiological adaptation that

enhance plant resilience (Kraffe et al., 2007). Over recent years,

researcher has focused on elucidating TMPs roles in plant

immunity, particularly in pathogen detection, signal transduction,

and defense activation (Gull et al., 2019). Extensive studies have

now identified and characterized numerous TMPs involved in

plant-pathogen interactions (Table 1) (Kumara et al., 2022).

These TMPs function as Pattern Recognition Receptors (PRRs)

on the plant membrane, detecting microbial molecules termed

Microbe/Pathogen-Associated Molecular Patterns (MAMPs/

PAMPs) — including bacterial flagellin, EF-Tu, and fungal chitin

— and plant-derived molecules such as oligogalacturonides,

categorized as Damage-Associated Molecular Patterns (DAMPs).

This detection trigger Pattern-Triggered Immunity (PTI). The

predominant classes of plant PRRs are the cell surface Leucine-
Frontiers in Plant Science 02
Rich Repeat domain (LRR) Receptor Kinases (LRKs) and LRR

Receptor Proteins (LRPs), which feature ligand-binding (e.g.,

LRR) and transmembrane domains (e.g., LysM). Additionally,

Receptor-Like Kinase (RLKs) feature an intercellular kinase

domain essential for signal transduction that leads to robust

antimicrobial responses through mitogen-activated protein kinase

(MAPK) cascades (Yamada et al., 2017). Pathogens can suppress

the PTI by releasing effector proteins into the host cells.

Additionally, in Effector-Triggered Immunity (ETI), plants

counteract pathogen effector proteins through intracellular

nucleotide-binding leucine-rich repeat receptors (NB-LRR),

leading to defensive responses like leaf necrosis, cell death, and

reactive oxygen species (ROS) release – symptoms of a

hypersensitive response (HR) (Yuan et al., 2021b). TMPs enhance

ETI by amplifying signal transduction and modifying ion fluxes,

underscoring their vital role in plant defense mechanisms.

Recent studies support the inclusion of TMPs in sustainable

disease control strategies of crops, such as grapevine (Vitis

vinifera). It is the most economically significant fruit crop

cultivated worldwide that is threatened by several pathogens, such

as powdery mildew (Erysiphe necator) and botrytis (Botrytis

cinerea), which not only significantly reduce fruit yield and

quality but also impact the global viticulture sector. It is

indicative that viticulture consumes 70% of all agrochemicals used

in the European Union, with associated environmental and health

risks (Hollomon, 2015). Despite the challenges in identifying TMPs

due to their high hydrophobicity (Tusnády et al., 2004; Nakao et al.,

2020), emerging techniques are enhancing our understanding of

grapevine immunity. This could have profound implications for

viticulture, offering strategies to improve grapevine resilience

against pathogens, supporting sustainable agriculture and crop

protection efforts.

This review synthesizes the current research on TMPs identified

in V. vinfera and knowledge on their role in response to the most

significant threats to grapevine. We first provide an overview of

these genes and then examine various methodologies used to

investigate TMP structure, function and regulation, highlighting

their advantages and limitations. Our aim is to identify research

gaps and suggest future research directions, providing a robust

framework to enhance our understanding of crop immunity and

promote sustainable agricultural practices.
2 TMP-encoding genes involved in
grape biotic stress response

To date, our understanding of TMPs involved in biotic stress in

grapevines remains limited. Notably, only three of them have been

studied for their involvement in pathogen infection reaction,

namely the Lysin-Motif Receptor-Like Kinase (LysM-RLK)

(Table 2), the plant respiratory burst oxidase homolog (Rboh)

(Table 3), and the Sugar Will Eventually Be Exported Transporter

(SWEET) (Table 4; Figure 1) (Baker et al., 2012; Cheng et al., 2013;

Brulé et al., 2019). The following paragraph will delve into the

current knowledge on each of these gene families, examining their
frontiersin.org
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specific roles in plant defence mechanisms and their potential

applications in enhancing grapevine resistance to biotic stresses.
2.1 Lysin motif receptor like kinases

Lysin Motif Receptor Like Kinases (LysM-RLKs) represent one

of the major classes of PRRs (Gust et al., 2012). Upon binding to

PAMPs/MAMPs, LysM-RLKs initiate signalling cascades that lead

to the activation of defense responses in plants. These responses
Frontiers in Plant Science 03
may include the production of ROS, activation of defense genes, and

reinforcement of the PTI (Buendia et al., 2018) (Figure 1). Beyond

their function in immunity, they participate in symbiotic

interactions, specifically recognizing signals from beneficial

microbes like mycorrhizal fungi and rhizobia. Through this

recognition, LysM-RLKs facilitate the formation of symbiotic

partnerships, resulting in increased nutrient absorption,

heightened stress resilience and overall enhancement of plant

growth and development (Chiu and Paszkowski, 2020; Cope

et al., 2023). Their proteins contain an extracellular ligand-
TABLE 1 List of transmembrane genes characterized in plants and involved in defense pathways.

Gene Gene Bank ID Defense
pathway

Role in immunity Species Reference

Fls2 834676 PTI Recognizes flagellin A. thaliana Gómez-Gómez and
Boller, 2000

Efr 832170 PTI Recognizes EF-Tu A. thaliana Zipfel et al., 2006

CERK1 821717 PTI Recognizes chitin A. thaliana Miya et al., 2007

LYK4, LYK5 816909
817923

PTI Recognizes peptidoglycan/chitin A. thaliana Willmann et al., 2011

LYK7 101258329 PTI Recognizes peptidoglycan/chitin S. lycopersicum Zeng et al., 2012

PEPR1, PEPR2 843639
838353

PTI Recognizes DAMPs A. thaliana Yamaguchi et al., 2006

Xa21 107276510 PTI Recognizes Xanthomonas patterns O. sativa Song et al., 1995

RPK2 821240 PTI Signaling A. thaliana Kinoshita et al., 2010

GHR1 827842 PTI Calcium signaling A. thaliana Hua et al., 2012

Ve1 543659 ETI Recognizes Verticillium effector S. lycopersicum Fradin et al., 2009

Bak1 829480 Both PTI and ETI Co-receptor A. thaliana Li et al., 2002

BIR2 822474 Both PTI and ETI Modulates BAK1 A. thaliana Blaum et al., 2014

CRN 831170 Both PTI and ETI Signaling A. thaliana Muller et al., 2008

CLV1, CLV2 843915
842849

Immune overlap Recognizes PAMPs A. thaliana Clark et al., 1997

PERK1,
PERK2, PERK4

822051
28719311
816362

Cell integrity Interact with defence pathways A. thaliana Babu et al., 2008

SWEET1
SWEET11,
SWEET12,
SWEET13,
SWEET14,
SWEET10

838744
824035
832431
835152 828604
83515

Sugar transport Plant-pathogen interactions A. thaliana Chen et al., 2010

AHA4 823950 Ion transport Influencing stomatal closure A. thaliana Vitart et al., 2001

RBOHA,
RBOHB
RBOHD
RBOHE
RBOHF
RBOHG
RBOHH
RBOHI
RBOHJ

842710
837430
835179
838506
842710
828612
836123
826725
823724

ROS production in
immune responses

Recognizes Phytophthora infestans
and P. syringae.

A. thaliana Torres et al., 2002;
Sagi and Fluhr, 2006;
Cheng et al., 2013

SDIR1 100246103 ABA pathway Enhances the production of ABA V. vinifera Tak and Mhatre, 2013
PTI, pathogen triggered immunity; ETI, effector triggered immunity.
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binding domain, a transmembrane domain, and an intracellular

kinase domain (Figure 2). The extracellular domain includes one to

three LysM domains, each approximately forty amino acids long,

with a conserved baab structure, crucial in detecting and

responding to external stimuli (Bellande et al., 2017, Zhang X.C.

et al., 2009). Between the LysMs of all plants are found highly

conserved cysteine pairs separated by one amino acid (CXC) that

participates to the structural stability of the domain (Figure 2). The

transmembrane region ensures the protein correct positioning

within the cell membrane, supporting its overall functionality

(Tombuloglu et al., 2019). Lastly, the intracellular kinase domain

typically encompasses conserved motifs or residues necessary for

ATP hydrolysis (Tanaka et al., 2013) and catalyzes reactions crucial
Frontiers in Plant Science 04
for downstream signalling (Zeng et al., 2012). LysM-RLKs were first

discovered in A. thaliana (Shiu and Bleecker, 2001) and

subsequently in other plant species, including V. vinifera

(Table 2). LysM-RLKs can be divided into two major classes, the

LYKs (Lysin Motif Receptor Kinase) in which the kinase domain is

active and the LYRs (LysM-containing Receptor-like Protein) with

an inactive pseudokinase domain (Schwessinger et al., 2011). In

2007, Miya et al. discovered CERK1, an RLK that is essential

in the recognition and transmission signals from the chitin

oligosaccharide elicitor in A. thaliana. Subsequent studies have

highlighted LYK4 and LYK5 as pivotal for chitin signalling in this

species (Wan et al., 2008; Shimizu et al., 2010; Cao et al., 2014; Xue

et al., 2019). In particularly, AtLYK5 binds strongly to chitin and is

proposed to form dimers with AtLYK4 upon ligand binding (Cao

et al., 2014). However, neither receptors can transduce signals

independently; AtLYK5 must interact with AtCERK1/LYK1,

which carries a functional kinase domain (Xue et al., 2019). A

comparable molecular complex model involving the LysM-RLK

OsCERK1 and the LysM proteins OsCEBIP, OsLYP4, and OsLYP6

has been suggested for chitin perception in rice (Shimizu et al.,

2010). Recently, research on grapevine has confirmed the

involvement of LysM-RLKs in immune response activation (Brulé

et al., 2019; Roudaire et al., 2023). The latest annotation of the

grapevine genome indicates the presence of 16 VvLYK genes, which

encode 16 LysM-RLKs proteins (Roudaire et al., 2023). Among the

orthologs of AtCERK1/LYK1, only VvLYK1-1 and VvLYK1-2 have

been demonstrated to facilitate the perception of PAMPs/MAMPs

in grapevine. As in A. thaliana and rice, VvLYK1-1 and VvLYK5-1

interact only after chitin recognition (Brulé et al., 2019). Roudaire

et al. (2023) observed an up-regulation of VvLYK5-1 in grapevine

leaves after E. necator attack, indicating its involvement in chitin

perception. Interestingly, both VvLYK5-1 and VvLYK5-2 lack most

of the amino acids necessary for kinase activity, like AtLYK5,

implying that the functional kinase domain is absent in VvLYK5-

1 and VvLYK5-2. Consequently, it is proposed that VvLYK5
TABLE 4 Number of SWEET family members characterized in
plant species.

Plant Species Number of
SWEET Genes

References

A. thaliana 17 Chong et al., 2014

Oryza sativa 21 Yuan and Wang, 2013

Vitis vinifera 19 Chong et al., 2014

Zea mays 24 Zhu et al., 2022

Glycine max 52 Patil et al., 2015

Solanum lycopersicum 29 Filyushin et al., 2023

Brassica rapa 27 Wang et al., 2018

Citrus sinensis 18 Yin et al., 2023

Medicago truncatula 25 Hu et al., 2019

Solanum tuberosum 35 Manck-Götzenberger
and Requena, 2016

Triticum aestivum L. 59 Qin et al., 2020
TABLE 2 Number of LysM-RLK family members characterized in
plant species.

Plant Species Number of
LysM-RLKs Genes

References

A. thaliana 5 Zhang H. et al., 2009;
Arrighi et al., 2006

Oryza sativa 11 Hayafune et al., 2014

Medicago truncatula 6 Arrighi et al., 2006

Lotus japonicus 20 Ruman and
Kawaharada, 2023

Glycine max 13 Yao et al., 2023

Vitis vinifera 6 Roudaire et al., 2023

Brassica rapa 8 Abedi et al., 2021

Citrus sinensis 9 Li et al., 2021

Solanum tuberosum 10 Nazarian-Firouzabadi
et al., 2019

B. juncea 4 Yang et al., 2020

Brassica napus 16 Abedi et al., 2021

Malus domestica 4 Zuo et al., 2017
TABLE 3 Number of Rboh family members characterized in
plant species.

Plant Species Number of
Rboh Genes

References

A. thaliana 10 Zimmermann et al., 2004

Oryza sativa 9 Kaur and Pati, 2016

Glycine max 17 Liu et al., 2019

Zea mays 9 Zhang et al., 2023

Solanum melongena L. 8 Du et al., 2023

Vitis vinifera 8 Cheng et al., 2013

Medicago truncatula 14 Marino et al., 2011

Brassica rapa 14 Li et al., 2019

Capsicum annuum 8 Zhang et al., 2021

Tricutum aestivum 17 Wang et al., 2018
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may interact with a co-receptor to transmit signals, thereby

activating chitin-induced immunity (Roudaire et al., 2023).

Chitin is a well-known PAMP recognized by LYK proteins

in plant cells infected by fungi. However, chitin perception

mechanisms in grapevine remain unexplored, particularly

regarding the genetic diversity of LysM-RLK genes among various

grapevine cultivars. Xue et al. (2019) demonstrated that A. thaliana

perceives chitin via a receptor complex composed of LYK1, LYK4

and LYK5. It would be interesting to investigate if a similar tripartite

chitin receptor complex involving VvLYK1-1, VvLYK4-2 and

VvLYK5-2 exists in V. vinifera. Resolving the entire mechanism

of chitin and chitosan perception in grapevine holds significant

agricultural importance, as this knowledge, could enhance disease

resistance breeding program, promoting sustainable grape

production practices.
2.2 Plant respiratory burst oxidase
homolog genes

Plant cells respond to biotic stress by accumulating reactive

oxygen species (ROS), a critical component of PTI and ETI. One

key ROS, hydrogen peroxide (H2O2), primarily forms through the

conversion of superoxyde, a reaction catalysed by the enzyme

respiratory burst oxidase homolog (Rboh) protein in the apoplast

(Liu et al., 2016; Navathe et al., 2019). Rboh proteins are integral

membrane proteins characterized by six conserved transmembrane

helices. They feature two EF-hand calcium-binding domains in
Frontiers in Plant Science 05
their N-terminal region, regulated directly by Ca²+ ions. The C-

terminal region consists of a hydrophilic domain with binding sites

for flavin adenine dinucleotide (FAD) and NADPH, oriented

towards the cytosol. In the apoplast, heme groups facilitate

electron transport across the membrane to O2, the electron

acceptor, through FAD (Mahalingam et al., 2021) (Chapman

et al., 2019) (Figure 1). When plants encounter pathogens, they

produce ROS via Rboh activity as part of their defense mechanisms

(Mittler, 2017; Mansoor et al., 2022; Ali et al., 2023). The Rboh gene

family, which is conserved across both angiosperms and

gymnosperms, include several subgroups that have been well-

characterized (Zhang et al., 2023). The rice rbohA gene, the first

Rboh gene identified in plant, shares homology with the mammalian

gene gp91phox (Groom et al., 1996). Since this discovery, Rbohs genes

have been identified across various plant species, with a variable

number of family members (Table 3). In grapevine, 7 Rboh proteins

have been identified, with VvRbohA, VvRbohC1 and VvRbohD

localized in the plasma membrane and the others predicted to be in

the chloroplast thylakoid membrane. These proteins have N-

terminal sequences containing two potential Ca2+-binding EF-

hand motifs, critical for their regulation (Figure 3) (Cheng et al.,

2013). Notably, VvRbohD shows significant up-regulation after

powdery mildew inoculation, highlighting its potential role in

biotic stress responses (Cheng et al., 2013; Rivas et al., 2023). In

other species, such as eggplant, it has been shown that SmRbohB

significantly increases ROS production upon Verticillium dahliae

treatment, restricting pathogen growth and highlighting its potential

as a gene for stress tolerance (Du et al., 2023). These results mark
FIGURE 1

Overview of signalling mediated by plant after pathogen infection. After a plant is infected by a pathogen, triggers a signaling process. This begins
with the recognition of Pathogen/Microbe-Associated Molecular Patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) (A), which
interact dynamically with co-receptors and receptor-like cytoplasmic kinases (RLCKS). Transphosphorylation occurs within the PRR complexes,
initiating downstream signaling. These signals, originating from PRRs, are transmitted through phosphorylation cascades involving mitogen-activated
protein kinases (MAPKs) and calcium-dependent protein kinases (CDPKs). This signaling pathway ultimately affects downstream targets like the
NADPH oxidase RBOHD (B) during Pattern-Triggered Immunity (PTI). Additionally, many pathogens rely on glucose from host plants as a carbon
source for their growth before they can successfully invade. Upon invading plants, pathogens release TAL effectors into host plant cells. These
effectors prompt the expression of plant SWEETS (C), either directly or indirectly through the activation of transcription factors. As a result, sugar
flows into the apoplast, providing nutrition for the pathogens.
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early steps in studying Rboh gene functions in grape, pointing to the

need for further research to fully understand their contributions to

stress resistance.
2.3 Sugars will eventually be exported
transporters genes

The Sugar Will Eventually be Exported Transporter (SWEET)

genes engage in sugar transport and distribution in plants, playing a

significant role in plant physiology (Eom et al., 2015). These genes are

part of the MtN3/saliva family and consist of seven transmembrane

a-helices (TM1 to TM7). An ancient duplication resulted in their

unique 3-1-3 configuration, forming a central channel for sugar
Frontiers in Plant Science 06
transport. Both the N-terminal and C-terminal ends of the SWEET

protein are cytoplasmatic (Chen et al., 2010) (Figure 4). SWEET

genes are highly conserved across different plant species and

categorized into four clades, each specializing in the transport of

specific sugars: hexoses (Clades I and II), sucrose (Clade III), and

fructose (Clade IV). These proteins are expressed in various tissues –

leaves, seeds, roots, and flowers – and regulate important

physiological processes such as pollen development, fruit ripening,

and leaf senescence (Chen et al., 2012; Gautam et al., 2022; Ko et al.,

2022). Their expression can be induced by biotic stresses (Zhu and

Gong, 2014; Zhu et al., 2019). In various plant species, including V.

vinifera, SWEET homologs have been identified as susceptibility

genes, acting as targets of effector proteins during host-microbe

interactions. Indeed, some pathogens hijack SWEET genes to
FIGURE 2

(A) AlphaFold prediction of the structure of the LysM-RLKS (LYK) proteins performed with ChimeraX AlphaFold, each LysM domain is represented in
different colour: LysM1 (red), LysM2 (yellow) and LysM3 (green). (B) Sequence alignment of conserved LysM domains located within N-terminal
domain of LYKs protein.
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manipulate sugar flow and create nutrient-rich environments for

their invasion and growth (Baker et al., 2012). On the other hand,

some SWEETs can also function as resistance genes, promoting

resistance to certain pathogens (Kang et al., 2023). AtSWEET1

from A. thaliana was the first SWEET protein to be identified in

plants (Chong et al., 2014). Later, SWEETs were identified in many

other plant species (Table 4) such as M. truncatula (Hu et al., 2019),

O. sativa (Yuan and Wang, 2013), S. tuberosum (Manck-

Götzenberger and Requena, 2016), T. aestivum (Qin et al., 2020)

and G. max (Patil et al., 2015). Research has shown that different

SWEET genes in plants are upregulated in response to powdery

mildew infection, indicating their crucial role in biotic stress

resistance. Chong et al. (2014) characterized the SWEET family in

grape genome with VvSWEET4 particularly upregulated after B.

cinerea infection. More recently, Zhong et al. (2024) identified

notable differences in VvSWEET gene expression between resistant

(Shangyou, Beihong, Beimei and Gold Finger) and susceptible (Red

Globe, Gebixinxiu, Thompson Seedless and JingXiangyu) grape

varieties. VvSWEET1 and VvSWEET10b exhibited elevated

expressions in the latter, while VvSWEET3 was more expressed in

the former, suggesting a potential role for these genes in the response

to B. cinerea infection. Chen et al. (2010) found an induction in

AtSWEET12 during powdery mildew infection in A. thaliana, while

Pan et al. (2024) observed significant upregulation of AsSWEET1a,

3a, 11, and 16 in Avena sativa. Additionally, Chong et al. (2014)

highlighted thew role of AtSWEET4 in resistance to B. cinerea,

demonstrating that atsweet4 knockout mutants exhibited resistance.

Given the significant role of soluble sugar content in determining the

yield and economic value of grape berries, the efficient sugar

partitioning is crucial in grapevine. These findings underline the

potential of SWEET genes in crop improvement strategies aimed at

enhancing yield and stress resistance through biotechnological

manipulation of sugar transport mechanisms.
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3 Methods used to examine
transmembrane proteins

Understanding the structure and function of TMPs is crucial for

unraveling their roles in various biological processes and guiding

targeted breeding programs. However, studying these integral

membrane proteins presents unique challenges, such as low

expression levels and the difficulties associated with detergent-

based structural studies (Thoma et al., 2018). To overcome these

hurdles, researchers have developed a suite of assays that, when

used in combination, can provide a comprehensive understanding

of TMP structure, function, and regulation across various

physiological contexts (Boulos et al., 2023). In this section, we

delve into in vitro, in vivo and in silico techniques that can be

employed to study TMPs in plants offering researchers a valuable

resource for selecting the most appropriate strategies in TMP

research. A summary of the techniques considered with strengths

and limitations is reported in Table 5.
3.1 In vitro techniques

In vitro techniques are experimental methods conducted

outside of a living organism, typically in a controlled laboratory

setting, used to simplify complex systems and make it easier to

identify and analyze specific structures or interactions. The main in

vitro techniques for TMP studies include the X-ray diffractometry,

the Nuclear Magnetic Resonance (NMR), and the electron cryo-

microscopy (Cryo-EM). Additionally, other in vitro techniques can

be used to study protein functions and interactions, such as the

isothermal titration calorimetry, the surface plasmon resonance and

the fluorescence polarization. Hereunder, we provide a critical
FIGURE 3

AlphaFold prediction of the structure of the RBOHs proteins performed with ChimeraX AlphaFold, each EF-hand domain is represented in different
colour: EF-domain1 (cyan) and EF-hand domain2 (blue). (A) The 3D model of VvRbohA (B) the 3D model of VvRbohC1 (C) the 3D model of VvRbohD
(D) Sequence alignment of conserved two EF-hand domains located within N-terminal extension.
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analysis of their principles, applications, strengths, and limitations

for TMPs investigation.

3.1.1 X-ray diffractometry
X-ray diffractometry is a technique used to determine the 3D

structure of proteins by diffracting X-rays through protein crystals.

The diffraction of the X-rays provides exceptional resolution (<1.5 Å),

enabling precise determination of atomic positions. While this
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technique is widely employed in grape protein research, it has not

been applied to the study of grape TMPs yet. One of the primary

limitations of X-ray diffractometry is the difficulty in obtaining highly

purified proteins in crystalline form, especially for TMPs. The main

challenge is that purifying and crystallizing TMPs is difficult because

they do not fold correctly in normal aqueous (water-based)

environments, which traditional crystallization methods depend on.

Special approaches are required to work with TMPs since they behave
FIGURE 4

(A) AlphaFold prediction of the structure of the SWEETS proteins performed with ChimeraX AlphaFold, Each domain which comprises three
transmembrane helices (3-TMs) is represented in different colour: The first domain is purple, the second domain is pink and the fourth transmembrane
helix (TMH), which is less conserved and divides the SWEET protein into two domains is white. (B) Sequence alignment of the seven transmembrane
domains of SWEET proteins.
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TABLE 5 In vitro, in vivo and in silico techniques mainly used for protein structure and interaction studies.

Techniques Advantages Limitations

In vitro

X-ray diffractometry Gold standard in protein structure Structural information
High resolution image
Widespread applicability

Need high-quality crystals
Potential radiation damage
Failed for complex protein Instrumentation and cost

NMR spectroscopy Structural information
Non-destructive and non-invasive
No requirement for crystallization

Sensitivity
Size limitations
Instrumentation and cost
Sample conditions

Electron cryo microscopy Structural information
No requirement for crystallization
Native state preservation
Large protein application

High cost and expertise
Potential radiation damage
Failed for small protein

Isothermal Titration Calorimetry Gold standard in protein interaction
Interaction information
Label-free technique
Quantitative and direct measurement
No binding models assumptions
Suitable for small and large molecules
Protein and DNA interactions

Lower sensitivity for weak interactions
Selection of appropriate experimental conditions
Only for 1:1 interaction

Surface plasmon resonance Interaction information
Real-Time monitoring
Label-Free technique
Quantitative analysis
High sensitivity

Sample complexity
Mass sensitivity
Information about conformational changes

Fluorescence polarization Interaction information
Sensitivity
Real-Time measurements
Quantitative information

Failed for big protein Selection of appropriate experimental
conditions
Instrumentation

In vivo

Fluorescence resonance energy
transfer (FRET)

Interaction information
Real-Time monitoring
High sensitivity
Quantitative information
Non-invasive

Spectral overlap
Intracellular mobility
Selection of appropriate experimental conditions

Yeast two hybrid (Y2H) Interaction information
High-throughput screening
Genome-wide studies trough libraries

Selection of appropriate experimental conditions False
positives and negatives
Can fail for TMP

Mating-based split biquitin
system (mbSUS)

High sensitivity
High specificity
Versatility
Suggested for TMP

Selection of appropriate experimental conditions
False positives

Bimolecular fluorescence
complementation (BiFC)

Interaction information
Cellular localization information
Non-invasive
Direct visualization

Artifacts
Influence of fusion proteins

In silico

Topology prediction Localization information
Orientation information
Predictions of Alpha-helical topology
Predictions of Beta-barrel topology

Overall accuracy max ∼80%
Erroneous prediction of signal peptides in TMPs
Non-standard topological features

AI-based prediction methods and
deep learning

3D structure from aa sequence
High confidence prediction of loop regions and intracellular N-
and C-terminal regions

low confidence for very flexible regions
low confidence for TM connecting segments

Protein function prediction Interaction formation
Discernment between native and unreliable complex models
Membrane protein systems building simulation

Availability of 3D protein structure
No flexibility allowed for model partners
F
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Their advantages and limitations are also reported.
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differently from water-soluble proteins. A successful strategy for

determining the structure of TMPs is the use of detergents

(Tate, 2010). This approach has been effective in determining the

crystallographic structure of a CMP-sialic acid transporter from Zea

mays (Nji et al., 2019) and a multidrug efflux transporter from

Camelina sativa (Tanaka et al., 2017).

3.1.2 Nuclear magnetic resonance
NMR can determine the 3D structure of proteins in solution,

revealing the arrangement of atoms and chemical bonds. Proteins are

typically dissolved in a suitable solvent and placed in a strong

magnetic field, causing the nuclei of atoms to align. Radio

frequency (RF) pulses are then applied to the sample, perturbing

the alignment of the nuclei. As the nuclei relax back to their

equilibrium state, they emit detectable NMR signals, which are

processed and analyzed to reconstruct the protein structure. While

NMR is widely used for studying proteins, its application to

transmembrane proteins (TMPs) is limited (Yeh et al., 2020),

similar to X-ray diffractometry. This limitation arises from the size

and structural characteristics of TMPs, as NMR typically requires

smaller proteins and a significant amount of sample due to its

sensitivity constraints (Xu et al., 2007). These factors make

studying large TMPs challenging. However, NMR has the

advantage of being able to simulate the membrane environment in

solution, making it potentially valuable for TMP research. Despite

these advantages, no NMR studies have been published specifically

on grape TMPs. However, a few studies have focused on portions of

TMPs in plants. For instance, a fully functional C-terminally

truncated twin-arginine translocase (Tat) from A. thaliana,

consisting of 53 amino acids, was investigated using solution-state

NMR in micelles and lipid bilayers (Pettersson et al., 2018). Another

example is the chloroplast outer envelope channel OEP21 from

Pisum sativum, a protein of 187 amino acids, whose structure was

solved using solution NMR, revealing a beta-barrel pore structure

(Günsel et al., 2023).

3.1.3 Electron cryo-microscopy
In the past 10 years, cryo-EM has emerged as a revolutionary

technique in structural biology, enabling researchers to visualize

biological molecules, including TMPs, at near-atomic resolution

(Wang, 2022; Castells-Graells et al., 2023). This technique involve

the use of biological samples rapidly frozen in a thin layer of

vitreous ice to preserve their native state and the frozen sample is

then imaged using an electron microscope. Electrons interact with

the sample, creating multiple 2D projection images that are

collected from different orientations of the sample to reconstruct

the 3D structure of the molecule. In 2019, the number of membrane

proteins structurally resolved by cryo-EM surpassed those resolved

by X-ray diffractometry (Garcıá-Nafrıá and Tate, 2021), indicating

that cryo-EM has become the most effective technique for resolving

the 3D structures of even large proteins, typically those exceeding 50

kDa in size. In relation to plant TMPs, over 200 structures have

been deposited in databases in the past five years. The majority of

these involve channel structures, such as potassium, calcium,

chloride, and glutamate receptor-like channels (Dickinson et al.,
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2021), as well as transporters, including ABC and sodium

transporters (Huang et al., 2024; Ying et al., 2024).

3.1.4 Isothermal titration calorimetry
Isothermal titration calorimetry (ITC) is widely used for

characterizing the binding of small compounds to larger

macromolecules as DNA or proteins. It has become the gold

standard for studying molecular interactions in solution

measuring the heat released or absorbed during protein-ligand

interactions by a microcalorimeter. This instrument has two cells

that need to be maintained at the same temperature: one containing

only buffer and the other containing the sample. By gradually

adding small amounts of ligand, any interaction with the target

sample will cause a detectable heat variation. This method allows

researchers to define a complete thermodynamic profile of the

interaction, providing data on enthalpy and entropy changes,

binding constants, and reaction stoichiometry. Overall, ITC has

the advantage of providing direct and quantitative measurements

and is highly versatile in the types of reactions it can study.

However, it has lower sensitivity for weak interactions and is

most applicable to 1:1 interactions (Falconer, et al., 2021). ITC

has already been used to study the interactions of medical

compounds with three major classes of membrane proteins: G-

protein coupled receptors, ion channels, and transporters

(Draczkowski et al., 2014). In plants, it has been employed for

several purposes, for example to test the binding capability of the

Ferredoxin-NADP+ reductase to the cytochrome b6f complex from

Spinacia oleracea and Z. mays in the electron transport chain of

oxygenic photosynthesis (Cramer, 2022) or to test the interaction

between the alkaline isoform of the PR-5 protein, purified from

soybean hulls, and the CM-pachyman or bilayer vesicle to explain

its antimicrobial activity (Liu et al., 2016).

3.1.5 Surface plasmon resonance
Surface plasmon resonance (SPR) spectroscopy enables the real-

time characterization of binding affinity and kinetics for membrane

protein-ligand interactions, using relatively small amounts of

membrane protein in a native or native-like environment. The

SPR technique typically requires the target molecule to be

immobilized on a sensor chip while the analyte in solution flows

over the sensor surface. The binding of biomolecules results in a

signal that depends on changes in the refractive index at the sensor

surface (Patching, 2014). The advantages of SPR include real-time

kinetic measurements, high sensitivity, and the ability to provide

binding affinities and association/dissociation rates for label-free

molecules. However, limitations include weak signals when

analyzing small molecules, the need for high-purity analytes, and

complications from protein conformational changes (Dobrovodský

and Di Primo, 2023). Additionally, non-specific signals may require

inhibitors or competitive molecules, complicating data analysis, and

careful experimental control is needed to prevent unwanted analyte

binding to the sensor surface. SPR is widely applied to study a broad

range of membrane proteins and can also be used for various

biomolecular interactions, including protein-DNA, protein-protein,

protein-carbohydrate, protein-RNA, and protein-lipid interactions.
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In plants, SPR has been employed to investigate G-protein-coupled

receptor (GPCR) transmembrane proteins and molecular

interactions involved in various aspects of plant development,

such as protein-carbohydrate interactions, protein-chaperone

interactions, phytohormone signaling detection, and plant-virus

diagnostics (Jain et al., 2016).

3.1.6 Fluorescence polarization
Fluorescence polarization (FP) is a non-disruptive technique

that allows rapid, quantitative analysis of enzyme activities and

molecular interactions by measuring the binding of a fluorescently

labeled ligand to a larger molecule. A freely rotating small molecule

with a fluorescent probe emits depolarized light. When it binds to a

larger target, its rotation slows, causing the emitted light to become

more polarized. FP detects these changes in light polarization (Hall

et al., 2016). In its variant, single-molecule fluorescence polarization

(SMFP), the technique also reveals the structural basis of protein

activity and tracks conformational changes between distinct states

(Forkey et al., 2000). The ability to study molecular processes in

solution, along with time-course readability and a homogeneous

assay format, makes FP particularly suitable for high-throughput

screening. However, FP has limitations. It is highly dependent on

the size difference between the interacting molecules and on the

choice of fluorescent label. If the size difference is too small, the

method may not perform reliably. Additionally, the fluorescent

probe can interfere with ligand binding or create nonspecific

interactions. Low-affinity interactions can also skew results, as

high concentrations of unlabelled protein can lead to artificial

crowding effects (Dharadhar et al., 2019). FP has been used to

study transmembrane GPCRs, avoiding the need for radioactive

methods previously required to monitor binding events (Burke

et al., 2003). High-throughput FP assays have also been developed

to quantify biotin and biotin-binding proteins in Nicotiana

tabacum leaf extracts (Martin et al., 2008) and to screen ligands

of the jasmonate COI1–JAZ co-receptor in Arabidopsis thaliana

(Takaoka et al., 2019).
3.2 In vivo techniques

Unlike in vitro methods, in vivo approaches enable for

observation of proteins in their natural state within living cells,

revealing their dynamic interactions and functional roles. The

techniques we have explored in depth include Fluorescence

Resonance Energy Transfer (FRET), the Yeast Two-Hybrid (Y2H)

system, and Bimolecular Fluorescence Complementation (BiFC).

These methods are emphasized due to their accessibility and their

effective combination for achieving optimal results, marking

considerable progress in structural biology.

3.2.1 Fluorescence resonance energy transfer
FRET is a powerful technique used to study interactions

proteins (Förster, 1948). It relies on the non-radiative energy

transfer between a donor and an acceptor fluorophore, which

occurs when they are in proximity (typically within 1-10 nm).
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When the donor fluorophore, absorbing light at a specific

wavelength, is excited, it can transfer energy to the acceptor

fluorophores if they are within the critical FRET distance; this

leads to fluorescence emission from the acceptor while the donor

fluorescence intensity decreases (Periasamy, 2001). FRET is a

versatile technique widely used across various biological systems

such as plant (Bücherl et al., 2014), mammalian (Mitchell et al.,

2017), yeast (Skruzny et al., 2019) and bacteria (Majoul, 2004).

Among numerous studies, Fliegmann et al. (2016) employed FRET

to reveal the formation of a complex between MtLYR3 andMtLYK3

at the plasma membrane in N. benthamiana leaf cells. Similarly,

Roudaire et al. (2023) used FRET to demonstrate a chitin-

dependent interaction between VvLYK5-1 and VvLYK1-1.

Despite FRET efficiency decreasing rapidly as the distance

between the donor and acceptor increases, the popularity of

FRET is due to its advantages. These include high sensitivity,

real-time analysis capabilities, and its non-invasive nature,

eliminating the need for disrupting cellular processes.

3.2.2 Yeast two hybrid
Y2H system is a method used for the analysis of protein-protein

interactions in yeast. This assay is based on the ability of

transcription factors to positively regulate a responsive gene for

the growth on selective medium and to be organized into two

separable functional domains such as the DNA-binding domain

(BD) and the activation domain (AD) (Bai and Elledge, 1997).

These domains can be separated and combined in a reversible way.

If physically separated, the BD and AD cannot transcript the

responsive gene (Causier, 2004); when recombined, they

reconstitute an active transcription factor (Paiano et al., 2018). In

the Y2H, given two proteins of interest, named “bait” and “prey”,

two vectors are produced fusing the BD to the bait and the AD to

the prey. After expression of the two proteins in yeast cells, if the

pray and bait interact, BD and AD will combine reconstituting an

active transcription factor and the yeast will grow on the selective

media (Paiano et al., 2018). The Y2H technique is a versatile and

widely used method for studying protein-protein interactions in

plant (Shimizu et al., 2010) and human (Smirnova et al., 2022).

However, it has limitations, particularly with membrane proteins

due to their localization. Furthermore, Y2H may not be suitable for

analyzing interactions that require specific cofactors or post-

translational modifications not present in the yeast system.

Additionally, it can be sensitive to false positives or negatives. A

strategy to overcome the challenges associated with studying TMPs

is to use their N-terminal and C-terminal portions as reported by

Smirnova et al. (2022) in a study about human protein interaction.

Another adaptation of Y2H for the study of TMPs is the split-

ubiquitin system. In this method, ubiquitin is split into two halves

and the bait and prey are fused to them. Their interaction

reassembles ubiquitin, triggering the release of a transcription

factor that then activates the expression of a reporter gene

(Thaminy et al., 2004). Through this method, Wang et al. (2020)

highlighted the interaction of VviABCG14 with VviABCG7,

suggesting a role in cytokinin transport, important hormones

involved in many aspects of plant growth and development. Y2H
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is advantageous for studying protein-protein interactions by

enabling the screening of large protein libraries to identify new

protein partners. For example, Liu et al. (2020) used Y2H to

construct a cDNA library from grape leaves infected with P.

viticola, the causal agent of downy mildew. They screened for the

targets of pathogenic factors in host grapes, providing insight into

the molecular mechanisms of P. viticola infection. In conclusion,

Y2H is known for its user-friendly nature and its ability to detect

protein-protein interactions. When coupled with a complementary

technique (co-immunoprecipitation, BiFC, FRET), it becomes even

more powerful in providing detailed insights into the biological

processes under study.

3.2.3 Mating-based split-ubiquitin system
The mbSUS system is a powerful tool for studying protein-

protein interactions similar to Y2H system and is particularly used

for membrane proteins. It involves splitting the ubiquitin protein

into two parts: Cub (C-terminal ubiquitin) and Nub (N-terminal

ubiquitin). One protein of interest is fused to Cub, while the other is

fused to Nub. When these proteins interact, the two halves of

ubiquitin reassemble, triggering the expression of a reporter gene.

This system has been set up in Arabidopsis to study the interactome

of K+ channels (Obrdlik et al., 2004), afterwards it has been

successfully employed to study protein-protein interactions in

various plant species such as grape, as exhaustively reviewed by

Xing et al., 2016. In grapevine, mbSUS has effectively been used to

investigate the interactions of two VpCDPKs that directly interact

with VpMAPK3/6 and VpACS1/2, which promot the expression of

many defense-associated genes in response to powdery mildew

infection (Hu et al., 2021). While mbSUS is a robust tool, it is

important to note that its limitations, including false positives and

negatives, and the fact that the yeast environment may not perfectly

mimic plant cell conditions. Furthermore, Y2H-like assays face

significant challenges when studying cytoplasmic proteins that

require nuclear translocation for their function (Cuadrado and

Van Damme, 2024). To overcome these limitations, careful

experimental design and validation of results are crucial. By

combining mbSUS with other techniques, such as co-

immunoprecipitation, BiFC or the cytoplasmic specific Cytotrap

(Mohan et al., 2023), researchers can gain a more comprehensive

understanding of protein-protein interactions in grapevine.

3.2.4 Bimolecular fluorescence complementation
BiFC is a method used to detect protein-protein interactions in

living cells. This assay is based on the reconstitution of a fluorescent

protein in vivo, named reporter, that is truncated in two non-

fluorescent halves. These halves are then fused to the proteins of

interest (the bait and the prey). When these proteins interact, the

two halves of the fluorescent protein reconstitute into a functional

fluorescent protein, emitting fluorescence that can be detected using

fluorescence microscopy. The inverted fluorescence microscope

enables the detection and localization of the fluorescent signal

within the cell. Moreover, the emitted fluorescence intensity

corresponds proportionally to the strength of the interaction.

Higher fluorescence levels signify close or direct interactions,
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while lower levels suggest interactions within a complex (Morell

et al., 2008). BiFC assays have been employed in high-throughput

screens to reveal new protein-protein interactions in yeast (Sung

and Huh, 2007), plant (Peiró et al., 2014) and mammalian cells

(Grau et al., 2017). Utsugi et al. (2015) used BiFC to confirm the

interaction between HvTIP1-2 and HvTIP3 in onion. They showed

that when HvTIP1-2, which has established water transport

capability, interacts with HvTIP31, which does not exhibit such

activity, they form heterotetramers that enhance water

permeability. Xue et al. (2019) used BiFC to evidence a direct

physical interaction between LYK1 and LYK4 in A. thaliana. BiFC

offers several advantages, including its ability to provide real-time,

spatially resolved information about interactions in living cells

without the need for complex biochemical assays. The simplicity

and adaptability of BiFC make it suitable for high-throughput

screening applications, allowing researchers to analyze multiple

protein interactions all together. It is also a valuable tool for the

study of membrane protein interactions (Garcıá-Murria et al., 2020;

Barriga et al., 2021; Duart et al., 2021).
3.3 In silico techniques

In silico methodologies are a useful tool to work around the

difficulties associated with traditional in vitro or in vivo approaches

and to bridge the gap between knowledge of TMPs structures and

properties. In silico techniques can be applied on two diverse levels:

directly on the protein sequence, to predict the most probable

topology or the most favored 3-D structure, or directly to the

structure (experimental or predicted). In this latter case, the in silico

methodologies are employed principally to predict protein function

or protein behavior; therefore, they make it possible to simulate

protein-protein interactions, protein-ligand interactions or

generally membrane system model behaviors. In the following

paragraphs, a description of the principal methods applied for in

silico predictions and of their applicability is presented.
3.3.1 Topology and function prediction of
transmembrane proteins

Prediction methods have been developed to provide valuable

structural insights into TMPs, addressing their biological roles and

the challenges associated with experimentally determining their

three-dimensional structures. Topology prediction methods focus

on two key aspects: the localization of transmembrane regions and

their orientation. The hydrophobicity of buried amino acids is used

to predict transmembrane regions, while the “positive-inside” rule

aids in determining the orientation of these segments (Von Heijne,

1992). Various networks have been designed to predict TMPs, each

employing different approaches. Some networks, such as TMpred

and DAS, analyze local properties of amino acid sequences using a

sliding window approach to detect sub-sequences that span the

membrane. Others, like PHD, utilize a neural network and can also

be classified as local methods. In contrast, global prediction

methods such as TMHMM 2.0 and HMTOP employ Hidden

Markov Models to determine the most statistically probable
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topology for the entire protein. Additionally, hybrid approaches,

including MEMSAT 1.5, Toppred22, and TMAP, combine elements

of both local and global prediction strategies (Möller et al., 2001).

Before the advent of AI, several limitations in prediction techniques

were identified (Tsirigos et al., 2018). However, recent

advancements in AI-based approaches have increased the

accuracy of these predictions. For instance, MemBrain 3.0

integrates a transmembrane helix prediction module with an

orientation prediction module, utilizing a support vector machine

classifier and an MMA strategy (Feng et al., 2020). These methods

generally perform well for predicting alpha-helical or beta-barrel

topologies but still struggle with non-standard topological features.

Martinez-Navarro et al. (2024) analyzed full-length amino acid

sequences using hybrid approaches to study the domain

architecture of the TMP LecRLKs in Vitis vinifera. These

methodologies are also applied to indirectly determine the cellular

localization of gene products. For example, in a study on the LAR

protein, which plays a key role in flavonoid synthesis in A. thaliana,

the absence of a transmembrane region suggested a cytoplasmic

localization of the protein (Han et al., 2018). To gain a deeper

understanding of protein function, various computational and

experimental approaches have been employed. Among these, the

assessment of Gene Ontology (GO) terms has been extensively used

to functional similarity between proteins. GO terms provide

insights into a protein cellular localization, involvement in

biological processes, and molecular functions. Since interacting

proteins often share similar pathways, processes, functions, or

cellular compartments these methods are particularly effective for

categorizing interactions based on the similarity of their associated

GO terms (Grassmann et al., 2024). Protein-protein interaction

networks further provide valuable insights into the functional

relationships between proteins of the same family and with other

cellular proteins. For example, the probable functions of Rboh

proteins in Aquilaria species were predicted on the basis of

assignment of GO terms. These terms revealed interactions with

various signaling components, such as receptor kinases, calcium

sensors, and transcription factors (Begum et al., 2024). Overall,

these prediction approaches offer several benefits, such as

determining protein localization and orientation, along with

accurate predictions for both alpha-helical and beta-barrel

topologies. However, they are also prone to certain limitations,

particularly the frequent misprediction of signal peptides in TMPs.

3.3.2 AI-based prediction methods and
deep learning

Shortly after the first experimental determinations of protein

three-dimensional structures, computational methods were

developed to predict protein folding based exclusively on amino

acid sequences. Over the past 70 years, continuous advancements in

these methods have been made, particularly with the integration of

AI and deep learning techniques, which have led to significant

innovations. These advancements have garnered recognition within

the scientific community for producing predictions that closely

resemble the quality of experimentally determined structures

(Bordin et al., 2023). Among the leading deep learning methods
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for protein structural modelling are AlphaFold2 (Jumper et al.,

2021) and ESMFold, a large language model for protein sequences

(Lin et al., 2023). Nguyen et al. (2024) compared structures resolved

through experimental methods with predictions obtained from

these deep learning approaches. The findings indicate that high-

confidence predictions are achieved in many regions of the proteins,

while lower confidence is observed in areas lacking a defined

structure and exhibiting significant flexibility, such as the

connecting segments between TMPs. Specifically, the study

evaluated the structural modeling of ion channels generated by

these methods against experimental Cryo-EM structures. It was

found that AlphaFold2 successfully predicted the majority of the

hNaV1.8 domains with very high confidence scores (pLDDT > 90).

In contrast, RoseTTAFold2 predicted most TMP regions with lower

confidence (50 < pLDDT < 70) but accurately modeled the pore

domain. Meanwhile, ESMFold demonstrated good confidence in

predicting the voltage-sensing domains, pore domain, and

extracellular loop regions (70 < pLDDT < 90). Currently, a search

for protein models from V. vinifera in the AlphaFold database yields

183 modeled structures corresponding to sequences reviewed in

SwissProt. In contrast, the Transmembrane Protein Structure

Database (TmAlphaFold) (Dobson et al., 2023) provides 64

results, of which 51 exhibit excellent evaluations of their

corresponding models. Overall, these methodologies bridge the

gap between available sequences and resolved structures, enabling

the prediction of protein 3D structures directly from amino acid

sequences. While these methods offer several advantages, including

the ability to simulate interaction formation and effectively build

TMP systems, they also face limitations, such as the availability of

3D protein structures and challenges in predicting TMPs.

3.3.3 Protein function prediction
Computational methods for studying proteins are invaluable for

predicting three-dimensional structures and simulating protein-

protein interactions, protein-ligand interactions, and molecular

dynamics. Reliable molecular interaction simulations require that

a protein’s three-dimensional structure be either experimentally

determined or predicted with high confidence. Various docking

software is available for investigating protein interactions, including

GRAMM-X (Tovchigrechko and Vakser, 2006), ClusPro (Comeau

et al., 2004), HDOCK (Yan et al., 2020), ZDOCK (Pierce et al.,

2014), LZerD (Christoffer et al., 2021), and HADDOCK (Van

Zundert et al., 2016). While these tools facilitate protein-protein

docking, they typically do not account for the explicit flexibility of

the modelled partners, although some can address this limitation

through energy minimization. In silico methods are particularly

useful for predicting membrane-associated protein assemblies. For

instance, LightDock combines efficient rigid-body docking with

artificial intelligence algorithms and employs flexible refinement

using HADDOCK to resolve potential clashes at the interface (Roel-

Touris et al., 2020). Other approaches, like JabberDock (Rudden

and Degiacomi, 2021), utilize spatial and temporal influence density

maps derived from short molecular dynamics simulations, while

MPDock (Alford et al., 2015) leverages existing Rosetta sampling

and scoring methods. A novel approach, AlphaFold-Multimer
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(Evans et al., 2021), is specifically trained for multimeric inputs with

known stoichiometry, significantly improving the accuracy of

predicted interfaces compared to the original single-chain

AlphaFold. Selecting the most suitable method for protein

interaction predictions is closely tied to the specific properties of

the proteins being studied. The CAPRI competition, which stands

for Critical Assessment of PRedicted Interactions, provides a

valuable resource for guiding this choice by evaluating the success

rates of various methods (Vakser, 2014). A notable example is Voss

et al. (2023), who utilized AlphaFold-Multimer to predict the

dimerization of EDS1 in Vitis vinifera. Their findings suggest that

VvEDS1 dimers may serve as reservoirs for forming heterodimers

with other proteins crucial for immune signaling in plants,

demonstrating the significant impact of AI on understanding

host-microbe interactions. Simulation tools offer several

advantages, including tailored options for membrane-protein

interactions and membrane remodeling (Goossens and De

Winter, 2018). However, the lack of a uniform simulation method

and the reliance on rigid body models can limit the accuracy of the

resulting predictions.
4 Conclusion

Despite significant advancements in the identification and study

of TMPs in plant growth, development, and stress responses,

further research is necessary to fully understand their roles in

grapevine defense against biotic stress. Existing studies have

underscored the importance of specific TMPs such as LYKs,

Rboh and SWEET in this context. However, the precise

mechanisms underlying TMP-mediated intracellular signal

transduction remain unclear, particularly in terms of how

receptors transmit signals and the detailed pathways involved.

Additionally, different TMPs involved in defense mechanisms

have been identified in other plant species (see Zhou et al., 2022),

and expanding research to them in grapevine could help uncover

conserved mechanisms and contribute to a broader understanding

of TMP functions in grape immunity. Emerging technologies

present unique opportunities to resolve these gaps with greater

accuracy. CRISPR/Cas9 technology, for instance, offers a promising,

transgene-free method for precisely editing TMP-related genes, and

has already been successfully applied in grapevine research.

Furthermore, advanced molecular imaging techniques and high-

resolution mass spectrometry can provide critical insights into the

mechanisms of TMP action and interaction dynamics, shedding

light on their functional roles within plant cells. The study of TMPs

would also benefit from the integration of multi-omics approaches,

such as proteomics and transcriptomics (such as single-cell
Frontiers in Plant Science 14
RNASeq), to construct a more comprehensive understanding of

the signaling pathways and interaction networks involved in biotic

stress responses. As more TMPs are discovered, deeper exploration

of their structural, regulatory, and functional diversity will be

essential for advancing our understanding of their multifaceted

roles in grape biology.
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