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Hyperspectral image classification in remote sensing often encounters

challenges due to limited annotated data. Semi-supervised learning methods

present a promising solution. However, their performance is heavily influenced

by the quality of pseudo labels. This limitation is particularly pronounced during

the early stages of training, when the model lacks adequate prior knowledge. In

this paper, we propose an Iterative Pseudo Label Generation (IPG) framework

based on the Segment Anything Model (SAM) to harness structural prior

information for semi-supervised hyperspectral image classification. We begin

by using a small number of annotated labels as SAM point prompts to generate

initial segmentation masks. Next, we introduce a spectral voting strategy that

aggregates segmentation masks from multiple spectral bands into a unified

mask. To ensure the reliability of pseudo labels, we design a spatial-

information-consistency-driven loss function that optimizes IPG to adaptively

select the most dependable pseudo labels from the unified mask. These selected

pseudo labels serve as iterative point prompts for SAM. Following a suitable

number of iterations, the resultant pseudo labels can be employed to enrich the

training data for the classification model. Experiments conducted on the Indian

Pines and Pavia University datasets demonstrate that even a simple 2D CNN

based classification model trained with our generated pseudo labels significantly

outperforms eight state-of-the-art hyperspectral image classification methods.
KEYWORDS

hyperspectral image classification, remote sensing, semi-supervised learning, Segment
Anything Model, pseudo label generation
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1 Introduction

With the continuous advancement of remote sensing

technology, hyperspectral imagery has garnered increasing

attention due to its rich spectral information. For instance,

Mérida-Garcıá et al. (2024) analyzed wheat gene dissection using

hyperspectral images, and Nagy et al. (2024) employed machine

learning algorithms to estimate maize chlorophyll content.

Hyperspectral image classification presents critical challenges and

remains a fundamental component for the effective application of

hyperspectral technology. Despite significant progress in deep

learning, hyperspectral image classification techniques often rely

heavily on extensive pixel-level annotations, which are both time-

consuming and labor-intensive to obtain. To address these

challenges, recent studies have proposed various methods to

enhance the quality of hyperspectral data. For example, Han et al.

(2024) addressed the issue of incomplete spectral coverage by

utilizing spectral libraries to improve spectral resolution,

effectively enriching spectral information from low-resolution or

incomplete data. Additionally, Wu et al. (2024) introduced a novel

network for super-resolution tasks, focusing on multi-scale

background feature enhancement, enabling the effective recovery

of high-resolution remote sensing images from low-resolution

inputs. These advances have significantly improved the accuracy

and reliability of hyperspectral image classification. However, they

still fail to address the inherent challenge of limited labeled data. To

tackle this issue, semi-supervised learning has emerged as a

powerful approach in hyperspectral image classification,

leveraging the combination of a small set of labeled data and a

large amount of unlabeled data to optimize model’s performance.

Current semi-supervised learning methods for hyperspectral

image classification typically generate pseudo labels from unlabeled

pixels during training, which are then integrated into the

classification network as additional training samples. A prevalent

approach is the self-training scheme (Marconcini et al., 2009),

which generates highly confident predictions to augment the

available labeled data. Furthermore, Zhang et al. (2014) adapted a

co-training process that incorporates both original spectral

signatures and 2D Gabor features for classification in scenarios

with extremely limited labeled samples. Haut et al. (2018)

introduced a Bayesian CNN framework assisted by active learning

for semi-supervised hyperspectral image classification, which

iteratively strengthens the small set of labeled samples by

selecting and annotating the most informative unlabeled data.

Although semi-supervised learning approaches can increase the

classification accuracy through generating pseudo labels, the

credibility of these labels is often compromised due to the lack of

prior knowledge in the early stages, leading to noise that negatively

degrades the classification network’s performance.

In recent years, large language models have made remarkable

advancements in natural language processing. Notably, models like

GPT-3 (Patel et al., 2023), with billions of parameters, have

demonstrated impressive capabilities in zero/few-shot learning. In

the realm of computer vision, pre-trained visionlanguage models

such as LLaVa (Liu et al., 2024) have exhibited exceptional zero-
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shot generalization performance across various visual tasks.

Additionally, the Segment Anything Model (SAM) (Kirillov et al.,

2023) showcases the ability to perform category-agnostic

segmentation by utilizing visual cues such as boxes, points, or

masks. Recent research has focused on distillation (Julka and

Granitzer, 2023) techniques tailored for specific task scenarios

and developing adapters (Huang et al., 2024), underscoring

SAM’s adaptability and potential for customization. However, due

to the spectral band specificity inherent in hyperspectral images,

these large vision models often struggle to achieve satisfactory

results when directly applied to hyperspectral image classification.

In this paper, we propose an Iterative Pseudo Label Generation

(IPG) framework based on SAM to produce high-confidence pseudo

labels. The iterative refinement of mask predictions for a given

category is illustrated in Figure 1, demonstrating a notable increase

in the confidence of predicted labels as input constraints become

more accurate. Specifically, the spectral bands are divided into

multiple groups, with every three adjacent bands forming a group,

which are then input into the SAM model. A small number of

annotated labels are used as point prompts for SAM to generate

initial segmentation masks. To enhance accuracy, we introduce a

spectral voting strategy to merge segmentation masks generated from

multiple groups of spectral bands into a unified mask. Furthermore, a

spatial-information-consistency-driven loss function is employed to

optimize the IPG framework, enabling the dynamic generation of

reliable pseudo labels from the unified mask. These pseudo labels

iteratively serve as point prompts for SAM, with the final pseudo

labels utilized for hyperspectral image classification.

The main contributions of this study are outlined as follows:
• We propose a SAM-based Iterative Pseudo Label

Generation (IPG) framework for semi-supervised

hyperspectral image classification, utilizing the structural

prior knowledge of large models to generate reliable

pseudo labels.

• To align the spectral channels of hyperspectral images with

the input requirements of the SAM model, we divide the

spectral bands into multiple groups, each comprising three

adjacent bands. A spectral voting strategy is then employed

to merge the segmentation masks generated from these

groups into a unified representation, facilitating precise

pixel-level classification.

• To enhance the reliability of pseudo labels derived from SAM

segmentation masks, we develop a spatial-information-

consistency-driven loss function. This function minimizes

the feature distance between the generated pseudo labels and

annotated labels in the spatial dimension, ensuring higher

consistency and accuracy.
2 Proposed method

The proposed Iterative Pseudo Label Generation (IPG)

framework leverages the Segment Anything Model (SAM) to
frontiersin.org
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iteratively refine pseudo labels for hyperspectral image

classification. The process begins by decomposing hyperspectral

images into a series of three-channel spectral bands. A limited set of

annotated labels is then used to create initial point prompts for

SAM, which generates segmentation masks for these spectral bands.

These masks are aggregated using a spectral voting strategy to

improve the pseudo labels’ reliability. Subsequently, a spatial-

information-consistency-driven loss function is applied to identify

high-confidence pseudo labels. These refined pseudo labels are

iteratively fed back as new point prompts, enabling SAM to

produce increasingly accurate labels with each iteration.

For clarity, an overview of the IPG framework is presented in

Figure 2. In the context of hyperspectral image classification, the

classification model’s performance can be significantly enhanced

through data augmentation using the pseudo labels generated by

our IPG framework. Specifically, we concatenate these pseudo labels

with the hyperspectral images, effectively expanding the training

dataset and enriching the supervision information available for

model training.

The following subsections provide an in-depth exploration of

the IPG framework’s three core components (i.e., pseudo label

generation, spectral voting, and consistency-driven loss function),

and describe its application in hyperspectral image classification.
2.1 SAM-based iterative pseudo
label generation

At the beginning, the input hyperspectral image is decomposed

into a series of three-channel images along the channel dimension,

enabling the integration of this hyperspectral image into the SAM

image encoder module for segmentation purposes. To be specific,

denote the input image by M ∈ RH�W�C , which is decomposed

along the channel dimension, establishing a sequence of three-

channel images Q ∈ R(C−2)�H�W�3. That is, every three adjacent

spectral channels inM compose a three-channel image, and thus we

will obtain (C − 2) images.

Afterwards, each three-channel image in the sequence is

matched with labels for each category in the training set. Then,

the matched labels are initialized as the point prompts of SAM.

Following a category-wise processing manner, the current category

label serves as the foreground, while the remaining category labels

are considered as background for predicting the mask of the current

category. Setting a confidence threshold, we designate labels with

confidence scores above the threshold as foreground and continue

to designate the remaining labels as background iteratively

optimizing the generated labels. Taking point a as an example,

the threshold is set as follows:

y(i)a = 1  ½p(i)a ≥ th� − 1  ½p(i)a ≤ tl�, (1)

where y(i)a represents the predicted label for a in category i, and

p(i)a denotes the confidence score of the prediction. The parameters

th and tl are the confidence thresholds. According to the equation, a
value of y(i)a = 1 indicates the foreground, while y(i)a = −1 denotes

the background.
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2.2 Spectral voting

When splitting the hyperspectral image M ∈ RH�W�C to Q ∈
R(C−2)�H�W�3 along the spectral dimension and cyclically

predicting masks, category confusion may arise. To better

leverage spectral information and mitigate this issue, we propose

a spectral voting strategy. Assuming there are K categories of objects

in the hyperspectral image, the prediction head of SAM generates

an output tensor comprising (C − 2) × K masks. For each pixel a

and category i, let N (a,i) denote the number of binary classification

predictions corresponding to category i.

Specifically, if the prediction for the jth image in the current

category is positive, N (a,i) increases by 1. Otherwise, it remains 0.

Subsequently, compute the total number of predictions for that

pixel across all categories T(a) by

T(a) = o
C−2

j=1
Ni(a, i) : (2)

After k rounds of processing, choose the category with the

highest total prediction count as the final category for that pixel:

~y(a) = arg max
i
T   (a, i), (3)

where ~y(a) means the final category for pixel a. By employing

this process, each pixel undergoes (C − 2) predictions for every

category and is ultimately assigned to the category with the highest

total prediction count.
2.3 Spatial-information-consistency-driven
loss function

To optimize the point prompts, we introduce a spatial-

information-consistency-driven loss function. Specifically, in the

context of the label generation process for the ith category, the

feature set of the point prompts is represented as Fi = {fi1,…,fij,…,

fin}. The feature of a sample a is denoted by fa, and the similarity Saj
between a and a reference prompt point can be calculated as:

Saj =
f a, f ij
� �
f ak k2 f ij

�� ��
2

, (4)

where Saj represents the similarity between fa and fij, with fij ∈
Fi being the feature corresponding to the ith category label. The

confidence p(i)a of sample a is calculated as the average of its

similarity with all labels, and is expressed as:

p(i)a =
1
no

n

j=0
Saj : (5)

During the training phase of the Prompt Encoder in SAM, we

freeze most of the parameters of the feature decoder and update

only the parameters of the first-layer decoder. A spatial-

information-consistency-driven loss function is constructed by

calculating the feature similarity between the samples of pseudo

labels and those of ground-truth labels. This loss is then used to

update the Prompt Encoder through backpropagation. In each
frontiersin.org
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iteration, IPG selects high-confidence pseudo labels as positive

samples to optimize the generation of segmentation maps. The

incoming “point prompts” are based on the most recently selected

highconfidence pseudo labels, which are treated as new positive

samples and simultaneously serve as prompts to SAM, ensuring

continuous optimization and updating of the segmentation masks.

Specifically, the loss function for training the Prompt Encoder is

designed to minimize the distance between samples with generated

labels and those with labels from the same category, while

maximizing the separation from other categories. To achieve this
Frontiers in Plant Science 04
purpose, we employ a binary classification loss function to optimize

the pseudo label generation framework:

Li =o
a
g(i)a log  p(i)a

� �
+ o

K

j=1,j≠i
log  1 − p(j)a

� �" #
, (6)

where g(i)a indicates whether pseudo labels are used for training

the network, and can be calculated as:

g(i)a = 1 u p(i)a
� �

≤ kh
h i

1 p(i)a ≥ th
h i

, (7)
FIGURE 1

Illustration of the iterative generation process of pseudo labels by using point prompts to fine-tune SAM. (A) Hyperspectral image overlaid with the
ground-truth label for a single object category, (B) Ground-truth labels, (C) Initial mask generated by SAM, (D) Mask generated by SAM after
sufficient rounds of optimization with iteratively updated point prompts. A comparison between (C, D) demonstrates that refining the pseudo labels
significantly enhances SAM’s prediction accuracy.
FIGURE 2

Illustration of the structure of the IPG framework. It introduces spectral voting strategy and spatial-information-consistency-driven loss function,
freezing the SAM mask encoder and decoder, and updating prompt encoder, iteratively optimizing the generated pseudo labels.
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where u p(i)a
� �

quantifies the uncertainty of the pseudo labels and

can be calculated using Equation 8. The parameter kh represents the
threshold for the uncertainty of positive samples. When the

uncertainty falls below this threshold, indicating that the pseudo

label is considered reliable, we set p(i)a = 1, thereby allowing the label

to be used in subsequent classification task.

u p(i)a
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

j=0
Saj − p(i)a

� �2
s

: (8)
2.4 IPG-based hyperspectral
image classification

In hyperspectral image classification, the IPG framework plays a

crucial role in enhancing the training process. After a sufficient

number of iterations, the high-confidence pseudo labels generated

by IPG are combined with the limited labeled samples, thereby

enriching the training data for the 2D Convolutional Neural

Network (2DCNN)-based classification model, as shown in

Figure 3. This approach effectively utilizes both the scarce labeled

data and the pseudo labels to enable more efficient feature learning.

The learned features are then passed through the classification block

of the model, which generates the final segmentation map by

predicting category labels for each pixel in the hyperspectral image.
3 Experimental results and discussion

3.1 Experimental settings

To evaluate the efficacy of the proposed framework, we

conducted experiments on two publicly available datasets: the

Indian Pines dataset (Zare and Gader, 2008) and the Pavia

University dataset (Huang and Zhang, 2009). During the training
Frontiers in Plant Science 05
sample generation process, we employed a random sampling

strategy. This approach ensures a diverse representation of

samples, contributing to the robustness and generalizability of

the model.

We compared our proposed method with several representative

classification approaches, including Support Vector Machine

(SVM) (Melgani and Bruzzone, 2004), Contextual Deep CNN

(CDCNN) (Lee and Kwon, 2017), Spectral-Spatial Residual

Network (SSRN) (Zhong et al. , 2018), Double-Branch

MultiAttention Mechanism Network (DBMA) (Ma et al., 2019),

Adaptive Spectral-Spatial Kernel ResNet (A2S2K) (Roy et al., 2020),

Discriminative Co-alignment (DCA) (Zhang et al., 2021), Dual-

layer Deep Spatial Manifold Representation (SMR-EG) (Wang

et al., 2022), and the Semi-Supervised Long-Tailed Learning

Framework with Spatial Neighborhood Information (SLN-SNI)

(Feng et al., 2023).

To ensure a comprehensive and fair comparison among the

methods, we employed three additional metrics in addition to

single-category classification accuracy: overall accuracy (OA) (Li

et al., 2021), average accuracy (AA) (Li et al., 2022), and Kappa

coefficient (Kappa) (Li et al., 2023, 2024). These metrics provide a

more nuanced understanding of model performance by capturing

different aspects of classification effectiveness. The calculations for

these three metrics are detailed below:

OA = oN
i=1TPi

oN
i=1Totali

, (9)

AA =
1
No

N

i=1

TPi
Totali

, (10)

Kappa =
OA − Pe
1 − Pe

, (11)

where N is the number of categories, TPi represents the number

of true positives for the ith category, and Totali refers to the total
FIGURE 3

Illustration of the application of our IPG framework in an hyperspectral image classification network. Specifically, the pseudo labels generated by IPG
are combined with the ground-truth labels to train the classification network, thereby improving its performance.
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number of samples in the ith category, including both correctly and

incorrectly classified samples. Additionally, Pe is calculated as

follows:

Pe =
oN

i=1½Totali � (TPi + FPi)��
oN

i=1Totali
�2 , (12)

where FPi represents the number of false positives for the

ith category.
3.2 Implementation details

In our proposed method, we initialized an equal number of

training samples, each of size 9 × 9, with five samples per category.

Using SAM, we actively selected one sample per category per epoch

for iterative optimization in each subsequent round. In the IPG

model, we set the parameters as follows: kh = 0.2, th = 0.8, and tl =
0.5. Given that our framework operates iteratively, and based on the

ablation results in Section 3.5, we set the number of iterations to 50

to balance efficiency and effectiveness. After several rounds of

iterative optimization, the generated pseudo samples were

combined with ground-truth samples to train the 2DCNN,

aiming for high precision. The network was trained using an SGD

optimizer with the following default parameters: learning rate =

0.05, momentum = 0.7, and weight decay = 0.0001. All

implementations were based on the PyTorch backend and

executed on a desktop equipped with a single NVIDIA A100 GPU.

Throughout the experiments, we ensured consistency with the

control method in terms of training samples, test samples, and
Frontiers in Plant Science 06
learning rate, thus establishing a fair comparison between all

models evaluated.
3.3 Qualitative evaluation results

Figure 4 displays the classificationmap generated by variousmethods

on the Indian Pines dataset, providing a comprehensive assessment of

model performance. It is clear that our method significantly outperforms

competing algorithms in terms of visual quality, showcasing superior

integrity in overall segmentation. The classification map produced by our

proposed method exhibits sharper boundaries, reduced noise, and more

distinct category separations, thereby enhancing the interpretability and

reliability of hyperspectral image classification.

In contrast, Figure 5 presents the classification results of the

comparison methods on the Pavia University dataset. Especially in

regions corresponding to categories such as Asphalt and Trees, the

classification results are clear with well-defined boundaries, and

there are fewer classification errors. In contrast, traditional methods

like SVM and CDCNN exhibit significant noise in certain land

cover areas, particularly in complex regions such as Buildings,

where the classification results are more disordered. In

comparison, our method not only effectively reduces noise but

also demonstrates more accurate boundary recognition.
3.4 Quantitative evaluation results

Tables 1 and 2 summarize the overall accuracy (OA), average

accuracy (AA), and Kappa coefficient (Kappa) values for various
FIGURE 4

Visual comparison of classification results on the Indian Pines dataset. (A) Ground-truth map, (B) SVM, (C) CDCNN, (D) SSRN, (E) DBMA, (F) A2S2K,
(G) DCA, (H) SMR-EG, (I) SLN-SNI, and (J) Ours.
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FIGURE 5

Visual comparison of classification results on the Pavia University dataset. (A) Ground-truth map, (B) SVM, (C) CDCNN, (D) SSRN, (E) DBMA, (F)
A2S2K, (G) DCA, (H) SMR-EG, (I) SLN-SNI, and (J) Ours.
TABLE 1 Classification performance obtained by different methods on the Indian Pines dataset.

Category SVM CDCNN SSRN DBMA A2S2K DCA SMR-EG SLN-SNI Ours

1 18.69 29.79 66.67 78.00 80.00 39.13 50.00 39.13 100.00

2 53.16 69.88 78.42 85.85 90.45 91.46 61.69 91.74 95.26

3 48.57 48.48 80.71 86.68 90.68 72.53 32.47 94.22 74.82

4 34.48 44.44 95.74 77.02 97.56 8.86 82.05 92.83 92.74

5 89.97 88.43 98.80 86.14 96.56 38.51 88.18 92.55 74.65

6 78.93 86.59 95.86 97.76 91.41 77.26 86.49 98.36 97.46

7 45.10 35.29 92.00 38.00 100.00 3.57 42.86 100.00 100.00

8 89.47 88.63 97.65 97.85 97.22 99.37 84.85 99.79 100.00

9 24.14 35.42 64.29 28.89 58.82 0.00 0.00 100.00 100.00

10 63.91 49.29 81.73 81.50 86.12 91.05 56.21 86.73 96.07

11 58.23 62.69 84.50 91.76 85.54 77.47 67.43 93.56 97.69

12 43.44 36.16 92.33 78.32 90.24 4.86 30.31 81.11 93.81

13 88.52 77.07 100.00 99.39 94.47 0.00 89.47 100.00 100.00

(Continued)
F
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methods evaluated on two real datasets. The results indicate that

our proposed method achieves substantial improvements over

comparative techniques across all evaluation metrics,

demonstrating its robustness and effectiveness. The detailed

results and discussions are presented below.

In Table 1, our method attains 100% accuracy in predicting five

categories, with only three categories showing accuracy below 90%.

This highlights the model’s robustness in handling diverse categories.

However, performance of our method in the third and fifth categories

is comparatively lower, likely due to the similar spectral signatures of

these categories, which complicates their distinction. The semi-

supervised nature of our model, though powerful, may struggle to

fully capture the nuances of these categories, especially as the iterative

pseudo-labeling process can introduce noisy labels that degrade

subsequent classification accuracy.

Further supporting this, Table 2 demonstrates that our

approach significantly outperforms previous models in two

specific categories, underscoring the framework’s capability to

enhance classification accuracy in hyperspectral image analysis.

These quantitative findings validate the effectiveness of our

method in advancing hyperspectral classification performance

across various challenging scenarios.
TABLE 2 Classification performance obtained by different methods on the Pavia University dataset.

Category SVM CDCNN SSRN DBMA A2S2K DCA SMR-EG SLN-SNI Ours

1 83.46 87.99 94.50 93.56 78.57 76.64 98.28 95.76 99.67

2 88.17 94.03 98.70 96.98 94.55 99.14 98.86 99.71 99.77

3 72.49 95.64 99.54 98.89 84.61 57.27 82.23 94.62 97.34

4 95.55 94.59 98.34 97.93 99.43 67.20 96.12 97.75 99.87

5 90.65 99.69 99.25 99.33 100.00 45.20 99.84 100.00 100.00

6 76.37 83.20 91.47 97.40 95.49 67.65 96.31 99.94 98.73

7 69.24 97.07 99.73 96.05 95.14 39.25 80.57 99.55 97.97

8 72.12 64.57 79.08 85.26 76.59 99.21 76.92 95.11 99.73

9 99.89 96.59 99.79 100.00 96.98 88.91 79.74 100.00 99.79

OA (%) 84.43 87.18 95.07 95.56 90.44 83.83 94.12 98.35 99.46

AA (%) 83.10 83.71 95.60 96.16 91.26 71.16 89.99 98.05 99.20

Kappa (%) 79.05 82.92 93.47 94.06 87.14 78.23 92.23 97.81 99.25
F
rontiers in Plant
 Science
 08
Optimal results are bolded.
TABLE 1 Continued

Category SVM CDCNN SSRN DBMA A2S2K DCA SMR-EG SLN-SNI Ours

14 85.60 73.97 92.51 92.87 94.06 71.78 85.49 97.79 99.92

15 57.59 77.48 88.47 88.92 99.54 20.21 72.60 79.53 76.05

16 98.44 75.68 98.86 68.81 87.91 87.10 94.29 100.00 92.63

OA (%) 65.02 65.10 86.93 88.89 90.16 68.85 66.31 92.53 93.51

AA (%) 61.77 61.21 88.03 82.36 90.04 48.94 64.03 90.46 93.19

Kappa (%) 59.43 59.88 85.01 87.32 88.70 64.28 61.11 91.48 92.58
Optimal results are bolded.
TABLE 3 Ablation study of different module combinations on the Pavia
University dataset.

SAM SCC SV OA (%) AA (%) Kappa (%)

× × × 93.15 94.03 92.16

✓ × × 96.19 95.83 95.59

✓ ✓ × 97.83 97.08 96.72

✓ ✓ ✓ 99.46 99.20 99.25
Optimal results are bolded.
The symbols ✓ and × indicate the classification model with or without the corresponding
module, respectively.
TABLE 4 Ablation study of different iteration numbers in
spatialinformation-consistency-driven loss function on the Pavia
University dataset.

Epoch of iterations 10 30 50 70 90

OA (%) 97.79 98.43 99.46 98.26 96.82

AA (%) 97.34 97.87 99.20 97.12 96.87

Kappa (%) 97.14 98.15 99.25 97.78 96.84

Time (Seconds) 58.95 234.07 537.82 958.79 1540.68
fronti
Optimal results are bolded.
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3.5 Ablation study

3.5.1 Ablation of different module combinations
Table 3 presents the contributions of various modules within our

proposed method to classification accuracy. In this table, “SAM” denotes

the framework based on the Segment Anything Model, while “SCC”

refers to the spatial-information-consistency-driven loss function, and

“SV” indicates the spectral voting strategy. If Spectral Voting strategy

absent, it indicates that hyperspectral images are reduced to three-

channel images for processing. The results demonstrate that

incorporating the IPG framework significantly improves classification

accuracy. This improvement can be attributed to the use of unsupervised

large models in the semi-supervised generation of pseudo labels.

Additionally, the spatial-informationconsistency-driven loss function

and the spectral voting strategy further enhance classification accuracy

within the IPG framework.

3.5.2 Ablation for different iteration numbers in
spatial-information-consistency-driven
loss function

To evaluate the effect of iteration numbers in the spatial-

information-consistency-driven loss function on classification

performance, we conducted experiments using the Pavia University

dataset. As shown in Table 4, increasing the number of iterations

initially results in a consistent improvement in classification accuracy,

with only a slight increase in running time. However, when the

iteration number surpasses 50, accuracy begins to decline, and

the running time increases sharply. This can be attributed to the

increasing number of pseudo labels fed into SAM in each iteration,

leading to increased inference time. Meanwhile, as the number of

iterations grows, the consistency-constrained pseudo labels tend to

converge too closely to the labeled data, reducing the inclusion of

useful spatial information and ultimately causing a drop in accuracy.

These ablation results demonstrate the importance of selecting an

optimal number of iterations to balance classification accuracy and

computational efficiency.
4 Conclusion

This paper introduces an iterative pseudo label generation (IPG)

framework for hyperspectral image classification. The proposed

approach integrates the Segment Anything Model (SAM) with a

spectral voting strategy, effectively leveraging the rich spectral

information in hyperspectral images for label estimation.

Experimental results confirm that the IPG framework significantly

improves classification performance, even with limited annotations.

Despite its promising results, this study has some limitations. First, the

performance of the IPG framework can be affected by the method used

to group spectral bands, which may result in variability in outcomes

across different datasets. Second, themodel’s dependence on the quality

of initial annotated labels may restrict its effectiveness in scenarios with

insufficient or low-quality labeled data. In future work, we will further

enhance the proposed method and evaluate its performance on a

broader range of datasets to reinforce its robustness and demonstrate

its generalizability.
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