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Introduction: To address the scarcity of agricultural phosphorus (P) fertilizers

and reduce phosphorus accumulation in wastewater, this study employed iron-

modified biochar (Fe-B) to adsorb phosphorus from water. The phosphorus-

loaded iron-modified biochar (Fe-BP) was subsequently applied to peanut fields.

Batch experiments were conducted to determine the optimal adsorption

parameters and mechanism of Fe-B for phosphate ions (PO4
3−).

Methods: The field experiment utilized a randomized complete block design,

comprising the following treatments: no biochar and no P fertilizer (B0P0), no

biochar with conventional phosphate fertilizer (B0P1, CK, P2O5 at 144 kg ha−1),

biochar with CK (B1P1), Fe-B with CK (FeB-P1), phosphorus-loaded Fe-B with CK

(FeBP-P1), and phosphorus-loaded Fe-B with two-thirds CK (FeBP-P2, P2O5 at

96 kg ha-1).

Results: The results demonstrated that the biochar dosage of 0.05 g (2 g L-1)

results in a phosphate removal rate exceeding 80%. Optimal adsorption

efficiency occurs within a pH range of 6-9, with a sharp decline observed at

pH values above 10. The presence of NO3
-, Cl-, and SO4

2- does not significantly

affect the phosphate adsorption capacity of Fe-B, unlike HCO3
- and CO3

2-,

which reduce it. After the fifth desorption and recycling process, the adsorption

capacity of the biochar decreased to 24%. The peanut yield in the FeB-P1

treatment was 50.8% higher than that in the FeBP-P2 treatment. While the

phosphorus recovery efficiency (REP) does not significantly differ between

FeBP-P2 and B1P1 treatments, both are superior to B0P1. Moreover, FeBP-P2

facilitated the available phosphorus concentration in the root zone.

Discussion: Overall, phosphorus-loaded iron-modified biochar reduced the

required amount of phosphorus fertilizer, maintain peanut yield, and enhanced

phosphorus fertilizer utilization efficiency.
KEYWORDS

iron-modified biochar, phosphorus fertilizer utilization efficiency, absorption,
desorption, yield
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1 Introduction

Phosphorus is essential for crop growth in agriculture, yet 30–

40% of the world’s arable soils have low phosphorus levels (Zhu

et al., 2018). Since the 1950s, the demand for phosphate fertilizer

has increased to ensure food security for the growing global

population (Alewell et al., 2020). The FAO reported that global

phosphate fertilizer consumption reached 47.4 million tons in 2015,

with an annual growth rate of 2%., increasing to 49.1 million tons by

2022. However, high-quality phosphate reserves are expected to be

exhausted within 50 to 400 years (Zou et al., 2022). Excessive

phosphorus application, particularly when crops do not cover the

soil, heightens the risk of phosphorus loss through leaching, runoff,

and erosion (Schoumans et al., 2014). Loss rates of phosphate

fertilizers in natural environments can reportedly reach as high as

80–90% (Dimkpa et al., 2020). The primary cause of water

eutrophication, phosphorus leaching into deep soil layers, leads to

widespread ecological damage, exacerbating environmental

pollution, challenging global sustainability, and causing significant

financial losses (Sharpley et al., 1994; Hou et al., 2020). Additionally,

excessive chemical fertilizer use has degraded cultivated land

quality, resulting in soil salinization and organic matter depletion

(Tripathi et al., 2020). In this context, slow-release phosphate

fertilizers offer a solution by improving phosphorus utilization

efficiency (Li J. et al., 2022). These fertilizers extend nutrient

availability for plant uptake, reducing environmental nutrient

losses (Bindraban et al., 2015). Marcińczyk and Oleszczuk (2022)

suggest that biochar may be a promising alternative material for

producing slow-release phosphate fertilizers.

Biochar, a stable material derived from biomass pyrolysis,

possesses high carbon content, a large surface area, porosity, and

abundant functional groups (Tomczyk et al., 2020). Widely utilized

in soil improvement (Qian et al., 2023), sewage treatment (Gonzalez

et al., 2021), carbon sequestration (Yang et al., 2021), and emission

reduction (Lehmann et al., 2021). Meanwhile, its porous structure

enables phosphorus adsorption, with reported phosphate

adsorption capacities of 4 mg P g-1 for biochar derived from

sugarcane and miscanthus (Trazzi et al., 2016). Despite this, the

phosphorus content of biochar remains significantly lower than that

of mineral fertilizers such as commercial superphosphate (>46%

P2O5). Moreover, traditional pyrolysis-produced biochar exhibits

limited surface functional groups with predominantly negative

charge, reducing phosphate adsorption efficiency (Chintala et al.,

2016). Metal-based materials, particularly iron, exhibit high

selective adsorption capacities for phosphorus due to their

abundance and small solubility product constant (Ksp) of metal

phosphates (Bao et al., 2024). Dong et al. (2016) and Wen et al.

(2021) found in their research that iron modified biochar can

reduce the impact of harmful substances on plants, and thus

increase dry matter accumulation. Phosphorus adsorbed on

biochar can generally undergo slow release via an adsorption-

desorption equilibrium (Chen et al., 2017). However, the

direction of phosphorus deposited on biochar is uncertain, as it

may dissolve and face similar soil constraints as conventional

mineral phosphate fertilizers (Bacelo et al., 2020). Additionally,
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application of iron-modified biochar to farmland may reverse

adsorbing soil phosphorus due to its numerous adsorption sites

(Wu et al., 2020). Thus, investigating the adsorption and slow-

release mechanisms of iron-modified biochar phosphate, along with

its impact on available phosphorus in farmland, holds significance

for sustainable phosphate fertilizer development.

This study aimed to investigate the effects of phosphorus-loaded

iron-modified biochar slow-release fertilizer on soil available

phosphorus. Two hypotheses were tested in this work. First, we

explored the adsorption mechanism of iron modified biochar on

phosphate, and second, we explored the effect of iron modified

biochar loaded with phosphorus as a phosphorus slow-release

fertilizer on the spatial distribution of available phosphorus in

farmland soil.
2 Materials and methods

2.1 Preparation of Fe-B and P-loaded Fe-B

The biochar was derived from maize straw (Northeast China)

pyrolyzed at 600°C for 2 h. The collected biochar was washed by

aqua pura to remove the ash, dried, and crushed through an 80

mesh sieve. For large-scale application and cost-saving, the alkaline

impregnation method was used for this experiment. To prepare the

Fe-B, a part of the maize straw biochar was immersed in 1 M FeCl3
at a 1:12.5 (w/v) ratio (Fe:C is 0.7), and stirred vigorously for 2 h

followed by the dropwise addition of NaOH (pH 10-11) to adjust

pH to 11. Seal and oscillate for 24 h. Rinse with deionized water

until neutral. The FeB were finally dried to a constant weight at

50°C (Wang et al., 2019).
2.2 Adsorption experiment of Fe-B

P adsorption capacity were calculated by Equation 1:

qe =
(C0 − Ce)V

m
(1)

where qe is the phosphorus adsorption capacity of Fe-B at

equilibrium, mg·g-1; V is the volume of the solution, L;m is the mass

of Fe-B, g; C0 and Ce are the initial and equilibrium concentrations

of phosphorus in solution, mg·L-1.

2.2.1 Adsorption kinetics
For kinetics adsorption experiments, 0.05 g of Fe-B samples were

mixed with 50 mL of phosphate solution and shaken at 170 ± 5 r/min

at 25 ± 1°C. The supernatant was collected at specific times(5min,

10min, 15min, 20min, 30min, 60min, 120min, 240min, 480min,

720min, 1440min, and 2880min)using a 0.45 mm millipore filter.

Finally, the P adsorption kinetics of the biochar samples were fitted by

two classical models: the pseudo-first-order kinetics Equation 2 and

the pseudo-second-order kinetics Equation 3.

qt= qe ð1 − e−k1tÞ (2)
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qt =
qe2k2t

1 + qek2t
(3)

Where qe is the adsorption capacity of Fe-B at equilibrium,

mg·g-1; qt is the adsorption capacity of the adsorbent at time t,

mg·g-1;  k1 and k2 are adsorption rate constants.

2.2.2 Adsorption isotherm
For adsorption isotherm experiments, 0.05 g of Fe-B samples

were mixed with 50 mL of phosphate solution and shaken at 170 ± 5

r/min at 25 ± 1°C. The solution concentrations are 1, 5, 7, 10, 15, 17,

23, 25, and 30 mg·L-1. Finally, the P adsorption isotherm of the Fe-B

samples were fitted by two classical models: the Langmuir model

Equation 4 and the Freundlich model Equation 5.

Langmuir model:

qe =
klqmCe

1 + klCe
(4)

Freundlich model:

qe = kf C
−n
e (5)

where qe is the adsorption amount of the adsorbent at the

equilibrium time, mg·g-1; qm is the saturated adsorption capacity,

mg·g-1;Ce is the solution concentration at equilibrium,mg·g-1;   kl and

kf are adsorption equilibrium constants; n is the strength constant.
2.3 Field experiment analysis of P-loaded
Fe-B

2.3.1 Field layout and treatments application
Field experiments were carried out at the Beidianzi

Experimental Station (121°47′E, 42°01′N) located in the Liaoning

Province of Northeast China during the growing seasons of 2021

and 2022, spanning from May to September. The study area is

situated in a north-temperate zone with a semiarid continental

monsoon climate. The region experiences an annual average air

temperature of 6.1°C, with an average evaporation of 1780.5 mm

and an average annual precipitation of 307 mm. Precipitation and

temperature data for the two years were acquired from a local

weather station, as depicted in Supplementary Figure S1. The soil

texture was showed in Supplementary Table S1.

The experiment was a randomized complete block design

comprising six treatments combinations over three replicates

included no biochar and no phosphorus fertilizer (B0P0), no

biochar and conventional phosphate fertilizer (B0P1, CK, P2O5 is

144 kg·ha-1), biochar and conventional phosphate fertilizer (B1P1),

iron modified biochar (Fe-B) and conventional phosphate fertilizer

(FeB-P1), phosphorus-loaded Fe-B and conventional phosphate

fertilizer (FeBP-P1), phosphorus-loaded Fe-B and two third

conventional phosphate fertilizer (FeBP-P2, P2O5 is 96 kg·ha-1).

When preparing a large quantity of phosphorus-loaded iron-

modified biochar (Fe-BP), with a phosphorus concentration set at

5 mg/L, phosphoric acid ions in the solution undergo multiple

absorption cycles by Fe-B through artificial stirring. After reaching

adsorption saturation (2h) of Fe-BP, followed by natural air drying,
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the Fe-BP is ready for field experiment. The amount of biochar is 24

t·ha-1 (1% of the soil mass).The biochar was fully mixed with the

upper 15cm soil layer by rotary before sowing.

The test peanut was the cultivar Baisha, which is widely planted

in the study area. The plant spacing was 15 cm and planting depth

of 5 cm with 2 seeds per hole. Each plot was 6.67 m2. The planting

density was 180,000 hills hm-2. Based on the traditional fertilization

method in the experimental station. N was applied as urea (156 kg·

ha-1 N). K was applied as potassium sulfate (144 kg· ha-1 K2O). P

was applied superphosphate. The field was irrigated up to 90% of

the water content at field capacity (FC) when the soil moisture

content dropped to 50-60% FC. Other managements were in line

with local farmer practices to avoid yield losses.

2.3.2 Soil available phosphorus
Soil drilling method was used on the 30th, 74th and 110th days

after fertilization. Soil samples were collected at 20 cm intervals

within 0 ~ 60 cm of 0 cm (right below the drip irrigation belt), 17.5cm

(peanut side), and 25cm (ridge side). After the collected soil samples

were air-dried in a ventilated place in the room, they were crushed

through a 2mm sieve, and 2.50g of air-dried soil samples were

weighed and extracted with 0.5mol·L-1 NaHCO3 solution. The

phosphorus concentration of the extracted solution was determined

by ultraviolet spectrophotometer (2700) produced in Shimadzu,

Japan. Soil available phosphorus is calculated according to

Equation 6:

p =
r � V � ts
m� k

(6)

Where: P is soil available phosphorus content, mg·kg-1; r is the

mass concentration of P in the measured curve, mg·L-1; V is the

constant volume at the time of color development, mL; ts is the

extraction multiple (the ratio of the total volume of the extract to

the volume of the extracted liquid during color development); m is

the quality of air-dried material, g; k is the coefficient of mass of air-

dried soil replaced by dried soil.

2.3.3 Peanut yield and phosphorus fertilizer
utilization efficiency

The center of each plot (1 m2) was harvested for yield

determination, and yield was determined after air-drying

(standardized to 14% water content) (Zhang et al., 2021). Two

indicators of P fertilizer use efficiency were calculated as follows:

Recovery ef f iciency of  P,  REP,   %

=  (PA − P0A)=Padded� 100%

(7)

Agronomic ef f iciency of  P,  AEP,  kg=kg 

=  (PY − P0Y)=Padded

(8)
2.4 Biochar characteristic

The crystallinities of Fe-B were determined by X-ray powder

diffractometry (XRD) (Bruker, D8, Advance, Germany). The shape
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and size of the samples were analyzed using scanning electron

microscopy (SEM) (Hitachi Regulus8230, Japan). Fourier transform

infrared spectrometry (FTIR) spectra were conducted to identify the

surface functional groups by a Nicolet Avatar 370DTGS

spectrophotometer (IR Tracer 100, Japan).
2.5 Statistical analysis

Data analysis were computed by using Origin 2023 (Origin Lab,

Northampton, MA, USA). Differences between the treatments were

analyzed through the one-way ANOVA followed by the LSD

test (0.05level).
3 Results and discussion

3.1 Fe-B adsorption performance

With increasing Fe-B concentration, phosphate removal

efficiency correspondingly improves (Figure 1A). This

enhancement is due to the more adsorption sites, which enhances

the contact area between phosphate and these sites (Li M. et al.,

2016). However, once the adsorption sites reach saturation with

further Fe-B addition, the removal efficiency remains unchanged as

no additional active sites remain for adsorption (Yang et al., 2018).

At an Fe-B concentration of 0.05 g (2 g L-1), the phosphate removal

rate exceeds 80%.

When the solution pH is between 5 and 8, Fe-B adsorbs 2.4 mg·g-1

of phosphate, as depicted in Figure 1B. As the pH increases from 8 to
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10, the adsorption slightly decreases, yet Fe-B retains a high adsorption

capacity over this broad pH range, which is crucial for practical

applications (Xu et al., 2021). Phosphate exists in four forms: H3PO4,

H2PO4
-, HPO4

2-, and PO4
3- (Iheagwara et al., 2013). At a pH below 2,

phosphate predominantly exists as H3PO4, which is challenging to

adsorb, resulting in a low adsorption capacity for Fe-B (Li R. et al.,

2016). As the pH increases to 2-4, H3PO4 diminishes, and H2PO4
-

becomes more prevalent, leading to a gradual rise in Fe-B adsorption.

In the pH range of 4-6, H2PO4
- is the dominant form, and the hydroxyl

groups on Fe-B can undergo ligand exchange with H2PO4
-, thus

maintaining a high phosphate adsorption levels. When the pH

ranges from 6 to 10, H2PO4
- gradually decreases, while HPO4

2-

increases; ligand exchange continues to support Fe-B’s high

phosphate adsorption (Du et al., 2022). However, as the pH exceeds

10, the OH- concentration significantly, enhancing electrostatic

repulsion. This repulsion, combined with competition between OH-

and phosphate for adsorption sites, reduces the phosphate adsorption

efficiency of Fe-B rapidly when the pH is between 9 and 12 (Wendling

et al., 2013).

The enhanced phosphate adsorption capacity of Fe-B primarily

depends on its positively charged surface-active sites. In actual

wastewater, high concentrations of various anions often compete

with phosphate for these sites (Lin et al., 2021). Common

interfering ions in wastewater include NH4
+, NO3

-, Cl-, SO4
2-,

HCO3
-, and CO32-. This study found that NO3

-, Cl-, and SO4
2-

had minimal impact on Fe-B’s adsorption capacity (Figure 1C).

Increasing anion content can trigger ion competition and enhance

electrostatic repulsion, reducing phosphate adsorption. However,

the primary mechanism for phosphate adsorption by Fe-B involves

complex formation through coordination between surface-loaded
FIGURE 1

(A) Effect of adsorption dosage on adsorption capacity and removal rate; (B) Effect of initial solution pH on adsorption capacity; (C) Effect of
coexisting ions on adsorption capacity; (D) Desorption and recycling; (E) Kinetic fitting curve for phosphate adsorption by FeB; (F) Fitting of Langmuir
and Freundlich isotherm adsorption models for Fe-B. Fe-B, iron modified biochar; PO4

3−, phosphate ions.
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iron oxides and phosphate ions, which makes it less susceptible to

interference from coexisting ions (Zhang et al., 2020; Huang et al.,

2020). NH4
+ slightly reduced phosphate adsorption efficiency, while

HCO3
- and CO3

2- significantly impacted phosphate removal,

mainly due to their alkalinity, which raises the solution pH (Yang

et al., 2018). When the pH exceeds 10.0, Fe-B’s phosphate

adsorption efficiency decreases significantly. Additionally,

previous reports indicated that HCO3
- and CO3

2-, as anions, can

generate electrostatic repulsion with phosphate ions, further

reducing adsorption (Qu et al., 2020).

Figure 1D illustrates a gradual decline in the adsorption capacity

of Fe-B when eluted with NaOH solution. Initially, after the first

desorption, the capacity decreased from 2.05 mg·g-1 to 1.55 mg·g-1,

indicating that Fe-B retained considerable adsorption ability.

However, by the fifth desorption, the capacity had diminished to

24%, indicating a significant reduction in recyclability. This decline in

phosphate adsorption capacity may be attributed to several factors.

First, prolonged exposure to high-concentration NaOH solution

could elute iron oxides from Fe-B, diminishing its adsorption

efficiency. Second, when Fe-B reaches adsorption saturation, the

desorption solution might not fully remove the phosphate from

both the surface and internal structure of Fe-B (Rahman et al.,

2022; Zhao et al., 2019). As a result, phosphate may occupy active

adsorption sites and form precipitates that block Fe-B’s pore

structure. This blockage hinders the entry of additional phosphate

into the porous structure, preventing binding to internal adsorption

sites and thereby reducing the overall adsorption performance of Fe-

B (Wu et al., 2020).

As the reaction time progresses, phosphate adsorption by Fe-B

is initially rapid, but the rate gradually decreases until equilibrium is

achieved (Figure 1E). To analyze the adsorption kinetics, the data
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were fitted to both pseudo-first-order and pseudo-second-order

kinetic models. The correlation coefficient (R2) for the pseudo-

second-order model was 0.9757, which is higher than that for the

pseudo-first-order model (Supplementary Table S1). This suggests

that the adsorption of phosphate by Fe-B aligns more closely with

the pseudo-second-order kinetic model, indicating that the primary

adsorption mechanism is chemical (Ou et al., 2023). Figure 1F

demonstrates that the equilibrium adsorption capacity of Fe-B

increases with rising initial phosphate concentrations, eventually

plateauing. This trend correlates with the ratio of available

adsorption sites on the Fe-B surface. Phosphate adsorption data

for Fe-B were analyzed using the Langmuir and Freundlich models.

As indicated by the fitting parameters in Supplementary Table S2,

both models yielded correlation coefficients (R2) > 0.9, with the

Langmuir model exhibiting a higher R2. This suggests that the

Langmuir model more accurately describes the phosphate

adsorption by Fe-B, suggesting a predominantly monolayer

adsorption process (Kang et al., 2021).
3.2 Characterization of Fe-B

The unmodified biochar surface is smooth, with a distinct porous

structure and minimal impurities or particulate matter (Figure 2). In

contrast, the Fe-modified biochar surface exhibits a small amount of

particulate load while retaining its porous structure (Zhang et al.,

2023). The EDS spectra reveal that the original biochar consists only

of C and O. Following modification, the biochar iron content

increases to over 34%. The functional group peaks on both the Fe-

B and original biochar surfaces are similar in the 3300–3500 cm-¹

range, though they differ significantly in intensity. This variation may
FIGURE 2

Characterization of FeB and P-loaded FeB.
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result from iron hydroxide covering some functional groups or the

absorption of hydroxyl groups due to the hydrolysis of FeCl3 (Kong

et al., 2023). The absorption peaks of Fe-modified biochar in the 500–

700 cm-¹ range show significant differences in both intensity and type

before and after adsorption, indicating that phosphate adsorption by

Fe-modified biochar is a chemical process (Ajmal et al., 2020). After

phosphate adsorption, the stretching vibration band at 974 cm-¹ in

the Fe-modified biochar corresponds to the P-O single bond.

Additionally, new peaks at 1550 cm-¹ in both Fe-B and adsorbed

Fe-B are attributed to the stretching vibration of C=O, indicating an

increased presence of oxygen-containing functional groups and

enhanced adsorption capacity.
3.3 Yield and phosphorus fertilizer
utilization efficiency

The peanut yield under the FeB-P1 treatment increased by 64.5%

and 35.6% compared to the B0P1 and B1P1 treatments in 2021,

respectively (Figure 3). There was no significant difference in yield,

recovery efficiency of phosphate fertilizer (REP), and agronomic

efficiency of phosphate fertilizer (AEP) between the FeB-P1 and

FeBP-P1 treatments. This shows that increasing the amount of

phosphate fertilizer cannot increase the yield, and reduce the

utilization efficiency of phosphate fertilizer. This is consistent with

most studies, phosphorus reduction does not necessarily reduce

production, but improves the efficiency of phosphorus fertilizer

utilization (Rakotoson et al., 2022; Cao et al., 2021). When

considering the two-year comprehensive data, in 2021, there was no

difference in yield between FeBP-P1 treatment and FeBP treatment,

but both were higher than FeBP-P2. In 2022, the difference between

FeBP-P1 and FeBP treatment was not significant, which may be due to

the slow release of phosphorus by iron-modified biochar. Amin and

Mihoub (2021) also found in their studies that Sulfur-Enriched biochar

acted as a slow-release phosphate fertilizer, which can increase the

available phosphorus content and P associated with calcium fractions

in soil. The yield of FeBP-P2 decreased by 33.3% compared with that of
Frontiers in Plant Science 06
FeBP-P1, but there was no significant difference in REP between FEBP-

P2 and FEBP-P1.While the FeBP-P2 treatment resulted in a 9.1% yield

increase over B0P1, this difference was not statistically significant.

Notably, the REP under FeBP-P2 was 126.1% higher than under B0P1

(P < 0.05). No significant difference in REP was observed between the

FeBP-P2 and B1P1 treatments, suggesting that the application of Fe-BP

under reduced phosphorus conditions maintained yield while

enhancing phosphorus fertilizer utilization efficiency.
3.4 Available phosphorus in soil profile

The surface layer of the B0P0 treatment exhibited extremely low

available phosphorus levels (Figure 4). Throughout the growing

season, factors such as rainfall and irrigation led to the leaching of

nearly all the original surface phosphorus from the soil (Aulakh

et al., 2007). In the B0P1 and B1P1 treatments, the distribution and

variation of available phosphorus were similar, suggesting that the

original biochar had a poor capacity for phosphorus adsorption.

This is similar to the research of some scholars, who believe that the

phosphorus in biochar is stable in structure and difficult to dissolve,

especially the biochar with low phosphorus content cannot increase

the phosphorus content in soil (Qian et al., 2013). It is also believed

that the adsorption of phosphate by biochar will essentially compete

with plants and reduce the concentration of phosphorus in soil

solution (Zhang et al., 2024). In contrast, the FeB-P1 treatment

demonstrated superior phosphorus adsorption, with only slight

leaching of available phosphorus at the end of the growing

season. A decrease in available phosphorus content during the

mid-growing season may be attributed to the presence of additional

adsorption sites on FeB, which adsorbed phosphate in the soil

(Zhang et al., 2016). This phenomenon was not observed with

phosphate-loaded iron-modified biochar, as its adsorption sites

were already occupied. When phosphate-loaded iron-modified

biochar was applied under reduced phosphorus conditions, the

available phosphorus remained concentrated near the root zone,

with stable but lower levels than in other treatments, and showed no
FIGURE 3

Yield and utilization efficiency of phosphate fertilizer. REP, Recovery efficiency of phosphorus; AEP, Agronomic efficiency of phosphorus.
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significant dynamic changes throughout the season. This stability

may result from the combined effect of reduced phosphorus

fertilizer and the slow-release function of phosphate-loaded iron-

modified biochar (Talboys et al., 2016). It has also been reported
Frontiers in Plant Science 07
that the modified biochar makes the soil effective phosphorus

release period longer, The rate of P diffusion in biochar-amended

soils was lower than the unamended soil (Mihoub et al., 2022).

The phosphorus fertilizer utilization efficiency in this treatment
FIGURE 4

Dynamic changes of spatial distribution of soil available phosphorus during growth period.30th, 74th and 110th represent the number of days after
seedling.The six images from top to bottom are processed as B0P0, B1P1, B0P0, FeB-P1, FeBP-P1, FeBP-P2. B0P1 represents no biochar and no
phosphorus fertilizer, B0P1 represents no biochar and conventional phosphate fertilizer, B1P1 represents biochar and conventional phosphate
fertilizer, FeB-P1 represents iron-modified biochar and conventional phosphate fertilizer, FeBP-P1 represents phosphorus-loaded Fe-B and
conventional phosphate fertilizer, FeBP-P2 represents phosphorus-loaded Fe-B and two third conventional phosphate fertilizer.
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indicated a stable and continuous release of available phosphorus,

reduced phosphorus loss, and higher utilization efficiency.
3.5 Roots

It can be seen from the Table 1 that not applying phosphorus

fertilizer significantly inhibits the development of peanut root. The

root surface area of B0P1 treatment was 33.25% and 39.38% higher

than that of B0P0 treatment, respectively, at flower-pegging stage

and pod setting stage in 2021. By 2022, this situation became more

obvious, with the root surface area of B0P1 treatment being 96.21%

higher than that of B0P0 treatment. Péret et al. (2011) has found

that soil phosphorus can stimulate the development of lateral roots

and root hairs, especially for the seedling stage of crops. Sufficient

phosphorus can accelerate the early development of the root system,

increase the root surface area, while long-term phosphorus

deficiency will limit root development, and the longer the

deficiency, the more detrimental it will be to the root system (Liu

et al., 2023), which is consistent with the results of this study. This

study found that in the early growth period, biochar had no

significant effect on the development of peanut root. There was

no significant difference in root surface area between B1P1 and

B0P1 treatments from the 2021 flower-pegging stage to the 2022

flower-pegging stage, but the root surface area of B1P1 treatment

was significantly higher than that of B0P1 treatment by 25.83% in

the pod setting stage of 2022, which may be due to the phosphorus

release effect of biochar (Gwenzi et al., 2018; El-Naggar et al., 2019).

This delayed release effect was more obvious in the FeBP P1
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treatment, with the root surface area of FeBP P1 treatment being

39.52% higher than that of B0P1 treatment (P<0.05) and 10.88%

higher than that of B1P1 treatment (P>0.05) at pod setting stage in

2022. There have been studies showing that phosphorus-release

fertilizers can help crop root development and improve root vitality

(Li G. et al., 2022; Everaert et al., 2016). The root length, root surface

area, and root volume of the FeBP P1 treatment were all higher than

those of the FeBP P2 treatment at pod-setting stage in 2021.

However, there was no significant difference in these indicators

between the two treatments at pod setting stage in 2022, which

suggests that even under conditions of reduced phosphorus

fertilizer application, the use of slow-release phosphorus fertilizers

can promote root development, but with a certain lag. Therefore,

the phosphorus release rate of FeBP as a slow-release fertilizer still

needs to be further developed.
4 Conclusions

In this study, the phosphate adsorption by iron-modified

biochar (Fe-B) was characterized as chemisorption and

monolayer adsorption. Within a specific pH range, Fe-B

demonstrated effective phosphate adsorption and could mitigate

interference from competing ions. Post-adsorption, the iron-

modified biochar showed potential as a phosphorus slow-release

fertilizer (Fe-BP). When phosphate fertilizer input was reduced, Fe-

BP maintained the available phosphorus content in the peanut

rooting zone, thereby not only sustaining peanut yield but also

enhancing phosphate fertilizer utilization efficiency. Therefore, it is
TABLE 1 ANOVA output of different treatments on root length, root surface area and root volume.

Stage Treatments

Total root Length
(cm)

Root Surface Area
(cm2)

Root Volume
(cm3)

2021 2022 2021 2022 2021 2022

Flower-pegging
stage

B0P0 362.19b 403.19b 47.86c 42.78c 0.74c 0.63b

B0P1 450.11ab 496.01b 63.77b 83.94b 1.03b 1.01a

B1P1 479.02a 500.53b 67.64b 99.10ab 1.07b 1.00a

FeB P1 536.51a 686.87a 83.29a 112.91a 1.23a 1.10a

FeBP P1 532.47a 628.02a 86.35a 113.29a 1.25a 1.04a

FeBP P2 493.62a 493.36b 67.41b 92.58ab 1.07b 1.05

Pod setting
stage

B0P0 450.95d 657.56c 85.39d 89.23c 0.92c 1.05b

B0P1 588.91c 1291.39b 119.02abc 108.34bc 1.23b 1.24ab

B1P1 639.99bc 1335.34b 115.31bc 136.32a 1.29b 1.28a

FeB P1 755.60ab 1525.73ab 134.07ab 127.54ab 1.66a 1.02ab

FeBP P1 846.13a 1635.40a 137.13a 151.16a 1.32b 1.23ab

FeBP P2 662.65bc 1429.15ab 108.83c 134.86a 1.13bc 1.20ab
For interaction effect, mean data (n = 3) with different letters are significantly different at P < 0.05.
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more economical to apply FeBP in the case of reducing the input of

phosphate fertilizer. However, this new type of phosphorus-release

fertilizer has a slower release rate, so improving its release efficiency

is the focus of the next stage of research.
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