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Introduction: Due to the limited computing power and fast flight speed of the

picking of unmanned aerial vehicles (UAVs), it is important to design a quick and

accurate detecting algorithm to obtain the fruit position.

Methods: This paper proposes a lightweight deep learning algorithm, named

YOLOv8s-Longan, to improve the detection accuracy and reduce the number of

model parameters for fruitpicking UAVs. To make the network lightweight and

improve its generalization performance, the Average and Max pooling attention

(AMA) attention module is designed and integrated into the DenseAMA and C2f-

Faster-AMA modules on the proposed backbone network. To improve the

detection accuracy, a crossstage local network structure VOVGSCSPC module

is designed, which can help the model better understand the information of the

image through multiscale feature fusion and improve the perception and

expression ability of the model. Meanwhile, the novel Inner-SIoU loss function

is proposed as the loss function of the target bounding box.

Results and discussion: The experimental results show that the proposed

algorithm has good detection ability for densely distributed and mutually

occluded longan string fruit under complex backgrounds with a mAP@0.5 of

84.3%. Compared with other YOLOv8 models, the improved model of mAP@0.5

improves by 3.9% and reduces the number of parameters by 20.3%. It satisfies the

high accuracy and fast detection requirements for fruit detection in fruit-picking

UAV scenarios.
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1 Introduction

Longan, a special fruit native to tropical and subtropical regions,

is favored for its unique flavor and rich nutrition. However, longan

has a relatively short ripening period, and timely picking is essential

to ensure fruit quality. At present, longan is mainly harvested

manually. However, the manual picking of tall longan trees has

high labor intensity and high operation risk. Therefore, developing

agricultural robots that can automatically pick longan has great

economic value. Although some researchers have developed fruit

harvesting robots (Yang et al., 2023, it is necessary to develop more

adaptive harvesting robots according to the growth characteristics

of large longan trees to improve picking efficiency and reduce labor

costs to promote the development of modern agriculture.

Robotic picking is currently being studied by a wide range of

scholars (Shi et al., 2023; Dairath et al., 2023). He et al. built a robotic

vision servo system for tomato picking utilizing a depth camera and

a six-degree-of-freedom manipulator. The system utilizes depth and

color information of fruit targets and adopts a coordinated control

strategy for the hand and eye at different distances (He et al., 2021).

Liang et al. developed a facility-based cultivation grape-picking robot

using a monocular camera and a distance-measuring sensor to

identify clusters and locate the fruit branch cutting points for fast,

efficient, and low-loss grape picking (Liang and Wang, 2023).

However, robotic arm-type picking devices suffer from limited

operating range, low picking flexibility, and poor maneuverability,

which limit the advantages of automated picking. Aiming at the

string fruit growth characteristics of tall longan trees, further

development of more adapted harvesting robots is needed to

improve picking efficiency and reduce labor costs.

Compared with traditional ground-based mechanical

equipment, the unmanned aerial vehicle (UAV) has a wide range

of application prospects in fruit-picking tasks due to their smaller

size, good maneuverability, and strong adaptability to complex

terrain (Chen et al., 2024a; Lu et al., 2024; Zhaosheng et al.,

2022). Longan fruit in the fruit tree shows the characteristics of

irregular, inconspicuous, and widely distributed string fruit growth

characteristics, and its natural background is more complex, prone

to multiple clusters of longan string fruits overlapping each other, as

well as by the fruit tree branches and leaves cover and so on. In

order to achieve accurate detection of longan string fruits, deep

learning target detection techniques have been applied to string

fruit detection in agricultural work scenarios due to their ability to

extract complex patterns and regularities by learning a large amount

of data (Li et al., 2021; Ding et al., 2024, 2022). Among them, Li et al.

proposed an improved YOLOv7-litchi detection algorithm by

integrating ELAN-L and ELAN-A modules based on lightweight

ELAN on the backbone network, which makes the network

structure lightweight and provides a theoretical basis for

mechanized lychee harvesting (Li et al., 2024). Huang et al.

proposed Triplet-Large Kernel Attention (TLKA). The TLKA

module inherits the advantages of channel attention and large

kernel attention, and TLKA-YOLOv7 outperforms all other

research models in grape string detection and segmentation and

obtains more competitive results in yield prediction (Huang and Li,
Frontiers in Plant Science 02
2023). Chen et al. proposed an improved YOLOv7-based multi-task

deep convolutional neural network (DCNN) detection model

MTD-YOLOv7 with two additional decoders for detecting tomato

fruit cluster ripeness based on YOLOv7 (Chen et al., 2024b). Liu

et al. (2024) proposed the MAE-YOLOv8 model using YOLOv8s-

p2 as the baseline and introduced MPDIoU as the regression loss

function to accurately detect Qing crisp plum in the actual complex

orchard environment. Meanwhile, YOLOv8 is compared with other

YOLO series models. In the Backbone network part, the YOLOv8

model uses the DarkNet-53 network structure, uses C2f to replace

the C3 module, and uses the faster SPPF module. In the Neck

network part, the YOLOv8 model uses the PAN-FPN network

structure that removes the convolution structure in the upsampling

stage. In the Head network part, YOLOv8 uses the Decoupled-Head

network structure to separate the classification and detection heads.

The YOLOv8 model is an anchor-free model, which directly

predicts the center of the object rather than the offset of the

known Anchor box. These improvements make YOLOv8 show

higher performance and accuracy in object detection tasks, which

are more widely studied by scholars (Sun, 2024; Jiang et al., 2023;

Wang et al., 2024).

The above research is dedicated to optimizing deep learning

models to improve their ability to detect string fruits. However, in

the practical problems of agricultural automated picking tasks,

when the fruit-picking UAV performs the longan-picking task,

limited by the endurance, computing resources, and dynamic

characteristics of fast flight, a lightweight and high-precision

object detection model is needed.

In response to the above challenges, the key issues addressed in

this paper are mainly divided into two aspects: i) model lightweight

and ii) recognition and detection accuracy improvement.

Specifically, the model is lightweight to solve the problem of the

limited endurance of UAVs. The high demand for complex neural

networks for computing resources will increase energy

consumption and affect the operation time and identification and

detection efficiency of UAVs. The improvement of detection

accuracy is to ensure that the UAV can accurately identify and

locate the target fruit in the process of rapid flight, reduce the

recognition error, and improve the picking accuracy. Due to the

irregular, inapparent, and widely distributed characteristics of

longan bunches on the fruit tree, traditional detection methods

often have difficulty balancing between real-time performance

and accuracy.

To this end, the YOLOv8s-Longan model is proposed in this

paper. In this paper, we propose a novel solution to realize longan

picking using the fruit-picking UAV. It will help to improve object

detection accuracy for the vision-based fruit-picking UAV in

natural environments. A dataset of UAV-collected longan images

is built to train and evaluate object detection models. The main

contributions of this paper are listed in the following three parts.
1. Considering the limited computing power and fast flight

speed of the UAV, this paper first proposes a lightweight

deep learning model, named YOLOv8s-Longan, to obtain

real-time fruit location in complex backgrounds.
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Fron
2. For model lightweight, the Average and Max pooling

attention (AMA) attention module is designed and

integrated into the DenseAMA and C2f-Faster-AMA

modules on the proposed backbone network to reduce

the number of parameters and the number of calculations

to make the network lightweight.

3. For detection accuracy, a novel Inner-SIoU loss function is

designed, and the cross-stage local network structure

VOVGSCSPC module is integrated into the neck

network, which improves the model’s ability to accurately

locate the target longan and facilitates the UAV to move

more stably to the designated location for picking.

4. The proposed model is actually developed on the UAV and

occupies 18.1 MB of storage memory, which can process 45

to 50 images per second, and the average recognition

accuracy of the real longan orchard scenario is 87.5%. It

can meet the lightweight and accurate recognition of the

longan fruits by the fruit-picking UAV.
2 Materials

2.1 Image acquisition equipment

In this paper, the structure of the independently developed and

designed fruit-picking UAV is shown in Figure 1. An RGB-D

camera named RealSense D435i is installed for image acquisition,

which combines the features of a color camera and an infrared

camera. To enhance the model’s generalization, the images of Shek

Kip and Chuliang longan are collected. To fully restore the real

scene of UAV picking longan and the complexity of the orchard

environment, the images within the range of 400–700 mm (near

view) and 700–1,100 mm (far view) from the longan string are
tiers in Plant Science 03
selected as the dataset. The dataset includes images taken under

various lighting conditions, such as full sun and backlight, to ensure

the acquired images are not disturbed by artificial shadows or lights.
2.2 Image dataset preprocessing

2.2.1 Image filtering
The 1,070 collected images were screened and reviewed, and

images with high-definition and rich details were selected. Images

with poor quality, severe exposure, and only a single string of fruit

were eliminated to ensure the accuracy and stability of the

subsequent algorithm.

2.2.2 Image flipping and brightness adjustment
Self-programmed image left–right flip and brightness

adjustment algorithms are used to expand the image data to

ensure the diversity of image data. In this way, the dataset is

expanded from the original 438 longan images to obtain 2,460

images, and Table 1 shows the statistics of the categories and

numbers of images in the dataset.

2.2.3 Image annotation
For 2,460 images, manual annotation and classification label

definition are performed, where string fruit means a string of longan

from the first to the last branch on the fruiting mother branch. The

annotated dataset is divided according to the ratio of the training set

to the test set (4:1), and 1,968 training images and 492 test images

are obtained. As shown in Table 2, the number of images and

annotation information contained in the dataset are counted, and

the images of the test set are grouped according to the set standards

to prepare for the grouping test of the network model and to

examine the effectiveness of the network model in various

interference cases.
FIGURE 1

The structure of the fruit-picking UAV. UAV, unmanned aerial vehicle.
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3 The YOLOv8s-Longan
detection method

3.1 Overall network structure

To improve the performance of the deep learning visual model

for longan string fruit picking, the algorithm in this study is based

on the YOLOv8 detection model to construct a lightweight

YOLOv8s-Longan model, which is composed of three main parts:

the backbone, neck, and head. The overall structure is shown in

Figure 2. The detailed procedure of YOLOv8s-Longan is shown in

Algorithm 1. The backbone serves as the backbone network of the

model, consisting of the DenseAMA module, C2f-Faster-AMA

module, and SPPF module. The input image is first passed

through the densely connected DenseAMA module as the feature

extractor to replace the first Conv and C2f combination module in

the backbone network, which strengthens the feature learning

ability of longan string fruit and mitigates the problem of

insufficient features of longan string fruit in complex orchard

environments. Then, the C2f-Faster-AMA module is used to

replace the C2f module in the subsequent backbone network,
TABLE 2 Details of the dataset.

Number of images Number of
bounding boxes

Total dataset 2,460 34,302

Train dataset 1,968 28,554

Test dataset 492 5,748
TABLE 1 Image categories and number.

Influence
factor

Image category Number
of images

Original image / 438

Flip degree Left and right flip 438

Light conditions

Very highlights
(flag = 0.3:0.4)

Highlights (flag = 0.5:0.8)
Shadows (flag = 1.2:1.5)

Polar shadows
(flag = 2.5:3.0)

1,584
FIGURE 2

YOLOv8s-Longan network structure.
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which can significantly reduce the amount of computation and

memory access, thus lightening the backbone network and

improving the inference speed of the model, which is conducive

to the real-time detection of longan string fruit by the UAV during

flight. Finally, the multiscale features are fused through the SPPF

module of the backbone network. The features of the same longan

string fruit feature map at different scales are fused to enrich the

semantic features of the longan string fruit feature map, improve

the attention given to important details of the string fruit features,

and enhance the quality of the features obtained by the model.
Fron
Require: image size S; Learning ratel; Number of epochs T.

Ensure: Pixel label

1: TheMosaic data augmentation strategy is used to concatenate the four images

to generate a brand new image.

2: for t = 1 to T do

3: Feature maps with higher semantics are generated by Equations 3 and 4

through the DenseAMA module in Backbone.

4: The C2f-Faster-AMA module is used to lighten the Backbone network
and improve the inference speed of the model by Equation 5.

5: The SPPF module is used to fuse multi-scale features.

6: The features of longan sting fruit at different scales are extracted

through the VOVGSCSPC module in Neck by Equations 6 and 7.

7: The Inner-SIoU loss function is used to calculate the loss by Equations
8-21.

8: end for

9: Perform label prediction for each pixel.

10: Output: each pixel label.
Algorithm 1. Lightweight detection method of YOLOv8s-Longan.

The neck is used as the pyramid multiscale feature fusion

structure of the model, and the different scales of longan string

fruit feature maps output by the backbone are fused to different

degrees. The cross-stage local network structure of the

VOVGSCSPC module is designed through the aggregation

method to replace the C2f module in the neck to reduce the

complexity of its network structure and make the YOLOv8s-

Longan model easy to deploy to the terminal equipment of the

fruit-picking UAV.

The head is used as the model detection output, and the

bounding box is generated for the longan string fruit feature

maps of different scales output by the neck. The Inner-SIoU loss
tiers in Plant Science 05
function is used as the loss function of the target bounding box to

improve the positioning ability and prediction accuracy of the target

box so that the UAV can more accurately and quickly detect the

position information of the longan string in the process of flight.
3.2 Improvement of the backbone network

3.2.1 Proposed the AMA attention module
Longan fruits usually grow in the form of string fruits and show

irregular, inconspicuous, and widely distributed features on the fruit

trees. Moreover, the natural background of longan string fruits is

complicated, and multiple clusters of longan string fruits overlap

with each other, as well as being shaded by the branches and leaves

of the fruit trees.

Meanwhile, different levels of longan feature maps usually have

different background noise distributions and also generate

redundant information due to differences in scale and location of

longan string fruit feature maps. Therefore, in this paper, feature

fusion is used to suppress the background noise of individual

longan string fruit feature maps and generate more discriminative

feature representations. In order to suppress the interference of

negative information such as multiple cluster occlusion of longan

string fruits and occlusion of fruit tree branches and leaves, the

authors propose an AMA module, which is weighted by average

pooling and maximum pooling, to reduce the negative impact of

redundant information and noise on the network, improve the

network’s attention to longan string fruits, and help the model to

focus on the most distinguishable and important features in

the input.

The structure of the AMA attention module is shown in

Figure 3. First, one-dimensional convolution is used to replace

the fully connected layer, effectively reducing the weight parameters

and increasing the inference speed, where W, H, and C are the

width, height, and channel size of the feature vector, respectively.

Then, global average pooling (GAP) and global maximum pooling

(GMP) are performed on the last convolution output to aggregate

the convolution features without dimensionality reduction.

Subsequently, channel feature learning is performed with the

same dimension, and one-dimensional convolution is used to

quickly capture the cross-channel information interaction

between each channel and its nearly K adjacent channels. Thus,

there is a non-linear mapping between K and C, as in Equations 1

and 2.

C = w(K) =
gK − b

a

� � 1
0:35

�����
�����, (1)

K = j(C) =
aC0:35 + b

g

� �����
����, (2)

where a = 2, b = 1, and g = 4.

The activation value of the one-dimensional convolution is

calculated by the sigmoid activation function, and different weights

are obtained to show the relevance and importance of the longan

string features between channels. Finally, the learnable weight
frontiersin.org
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coefficients (A1, M1) of each channel are generated by GAP and

GMP. Then, the weight of each channel is weighted to the original

input feature map to complete the recoding of each channel feature

so that the important features are assigned large weights to be

enhanced, and the effective longan string fruit features are

enhanced. Instead, the negative environmental features of

ineffective nature are assigned a small weight to suppress.

The AMA attention module avoids information loss caused by

mapping the input longan features to low dimensions. Additionally,

it can capture cross-channel interactions effectively, better capture

the important feature information of the target to be detected,

enhance the feature extraction ability of the network, and make the

model use global features to distinguish the image information level.

In addition, this AMA attention module has fewer parameter

requirements, which avoids the excessive complexity of the model

and compensates for the loss in accuracy caused by the model being

lightweight, increasing the effectiveness of channel learning

attention and leading to obvious performance gains in the

network. It is beneficial to integrate into the subsequent

DenseAMA and C2f-Faster-AMA modules more effectively and

improve the module’s longan string fruit feature extraction ability.

3.2.2 Proposed the DenseAMA module
In the detection of missed fruit in the agricultural field, the

longan background image usually has the problems of unobvious

features, complexity, and redundancy. Using the feature extraction

module C2F developed based on natural view images may lead to

insufficient extracted longan string fruit feature information, which

limits the performance of the model in detection tasks. To this end,

a densely connected DenseAMA module is proposed as a feature

extractor to replace the first Conv and C2f combination module in

the backbone network, which is used to extract features of various

scales from the input image, and the output of each layer is directly

connected with the input of all subsequent layers. This connection

makes the information flow of the network more sufficient, helps to

prevent the vanishing gradient problem, and can use low-level

features to supplement high-level features.
Frontiers in Plant Science 06
In computer vision, the main idea of DenseNet is to build dense

connections, that is, to promote the reuse of features by connecting

features between different channels (Jia et al., 2023; Cai et al., 2022).

These properties allow DenseNet to maintain low model parameters

and computational costs. The dense connection mechanism of

DenseNet is shown in Figure 4, and its expression is below.

Xl = Wl*½X0,X1,…,Xn,…,XL−1�, (3)

Xn is the feature output of each layer through the convolutional

network, Wl is the weight of each dense layer, where l is the layer

index, and ∗ is the composite function of operations such as batch

normalization (BN), rectified linear unit (ReLU), pooling,

or convolution.

DenseNet has multiple DenseBlocks, the inner layers of each

DenseBlock are densely connected DenseLayer modules (by

superposition rather than addition), and the dense blocks of

different DenseBlocks are downsampled by transition layers. In

this paper, the original DenseNet121 is used as the basic structure,

and the H-swish activation function and the AMA attention

mechanism are connected in the DenseBlock and transition layers

to obtain the DenseAMA module.

Moreover, the H-swish (Sunkari et al., 2024; Mercioni and

Holban, 2020) activation function has a low computational cost and

comprises simple multiplication and addition operations, which can

be calculated faster in model inference and training. The equation is

shown in Equation 4:

HardSwish(x) = x �HardSigmiod(x)

  = x � ReLu6(x+3)
6

  = x �
1, x ≤ 2

x
6 +

1
2 , −3 ≤ x ≤ 3

0, x ≤ 3

8>><
>>:

: (4)

It shows that H-swish activation functions have strong

similarities in terms of upper and lower boundaries, smoothness,

and monotonicity. After replacing the sigmoid activation function
FIGURE 3

Structure of the AMA attention module. AMA, Average and Max pooling attention.
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with the H-swish activation function, the number of parameters and

the calculations in the model can be effectively reduced. When the

backpropagation algorithm is trained, the H-swish activation

function has a lower gradient saturation problem, which means

that it is easier to train in the deep neural network, which can

effectively enhance the feature extraction ability and eliminate the

potential accuracy loss. Therefore, the H-swish activation function

is more suitable for improving mode performance.

The DenseAMA module consists of three stages, where the first

and second stages form the DenseLayerAMA layer and the third

stage forms the TransitAMA layer, as shown in Figure 5. In the first

stage, a BN operation is performed on the input longan feature map,

and the H-swish activation function is used to activate the feature

map. Then, a 1 × 1 convolution kernel is used to reduce the number

of parameters.

The second stage is similar to the first. The input feature map is

batch normalized and activated by the H-swish activation function.

Then, a 3 × 3 convolution kernel is used to convolve the feature

map. Finally, to reduce the number of parameters and calculations

in the model as much as possible, the AMA attention mechanism

module designed in this paper is added after the 3 × 3 convolution

operation in the second stage, and the AMA attention module is

used to extract features of the string fruit feature map to enhance

the utilization ability of longan string fruit features. The

DenseLayerAMA layer structure is shown in Figure 5A.

The TransitAMA layer in the third stage first inputs the feature

map for the BN operation and uses the H-swish activation function

for activation. It is processed by the AMA attention mechanism,

and the average pooling operation is performed on the processed

feature map to reduce the size of the input feature map by half. It

can better reduce the spatial dimension of the feature map and the

number of calculations and increase the receptive field size to better

capture global information. The transition layer of the third stage

connects the two adjacent dense blocks of the first and second stages

to each other, which reduces the size of the feature map and plays

the role of a compression model. The network structure of the

TransitAMA layer is shown in Figure 5B.

The DenseAMA module is used to replace the first Conv and

C2f combination modules in the backbone network. The

DenseAMA module can effectively take advantage of feature reuse

while retaining the original string fruit feature information and

significantly enhancing its semantics, making the low-level features
Frontiers in Plant Science 07
richer and more detailed, and generating feature maps with higher

semantics. This method helps to alleviate the problem that the

longan string fruit features in agricultural scenes may be submerged

by redundant background information when the depth of the model

increases so that the UAV can accurately and effectively identify

longan string fruit during flight and improve the adaptability to

complex environments.

3.2.3 Proposed C2f-Faster-AMA module
Although the accuracy of the YOLOv8 algorithm is improved

compared with that of the previous version, the model is relatively

complex and has a large number of parameters. When deploying

the model in the field, the requirements for equipment performance

are too high, and the model is not suitable for fruit-picking UAV

terminal equipment. Therefore, the C2f module is improved to

reduce the number of parameters and the model size, which
FIGURE 4

Schematic diagram of the DenseNet structure.
FIGURE 5

Local structure diagram of the DenseAMA module. (A)
DenseLayerAMA. (B) TransitAMA.
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overcomes the shortcomings of the YOLOv8 network in that the

number of model parameters is too large and deployment

is difficult.

Therefore, the simpler C2f-Faster-AMA module is proposed

with the PConv convolution way to replace the last three C2f

modules in the backbone network. By reducing the computations

and memory access to extract features effectively, it can dynamically

learn the relationships between different parts of the input, better

understand the relationships and dependencies between longan

data, and improve the performance of the YOLOv8s-Longan model.

Inspired by the FasterNet network, the bottleneck in the C2f

module is replaced by Faster-Block, which reduces FLOPs while

maintaining high FLOPS. The structure of the Faster-Block module

is shown in Figure 6A.

Faster-Block consists of PConv and regular Conv modules. The

PConv module can reduce both computational redundancy and

memory access. The working principle of the PConv module is

shown in Figures 6B, C. It shows that PConv only applies

conventional Conv for spatial feature extraction on the part of the

input channels, and the remaining channels remain unchanged. For

consecutive or regular memory access, we compute the first or last

consecutive cp channel as a representative of the entire feature map.

Without loss of generality, the input and output feature maps have

the same number of channels, as shown in Equation 5.

h� w � 2cp + k2 � c2p ≈ h� w � 2cp (5)
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where h, w, and cp represent the height, width, and number of

channels of the feature map, and k represents the size of the

convolution kernel.

The Faster-AMANet block module is obtained by integrating the

AMA attention mechanism into the FasterNet block and replacing the

bottleneck in C2f to obtain the C2f-Faster-AMA module. The C2f-

Faster-AMA module is used to replace the last three C2Fs in the

backbone network, which can reduce the redundant calculation and

memory access of the model, extract spatial features more effectively,

and better understand the connections and dependencies between

longan data. Thus, the lightweight and real-time detection of the

YOLOv8s-Longan model is ensured, so the UAV can adjust its flight

attitude according to the detection results of the vision model in real-

time and realize safe and stable picking work. The C2f-Faster-AMA

module structure is shown in Figure 6D.
3.3 Integration into the neck structure
of VOVGSCSPC

By integrating the cross-stage local network structure of the

VOVGSCSPC module designed by the fusion method, the C2f

module in the neck part is replaced to fuse multiple longan string

feature maps of different scales better (Xu et al., 2023; Zhu et al., 2024).

The VOVGSCSPC module can extract richer semantic information,

and multiscale feature fusion can help the model better understand the
FIGURE 6

The specifics of the C2f-Faster-AMA module. (A) Faster-Block module structure. (B) Conventional Cony. (C) PCony. (D) C2f-Faster-AMA
module structure.
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global and local information of the longan image and improve the

perception and expression ability of the model.

To further reduce the model complexity, through the idea of

ResNet, the VOVGSCSPC module is introduced to replace the original

C2f module. The VOVGSCSPC module uses a cross-stage local

network designed by the aggregation method, and the structure is

shown in Figure 7. In GSBottleneck, the idea of a residual is adopted.

The output is obtained by adding the residual of the input feature map

after two GSConv convolutions and one DWConv depth convolution.

The above process is expressed as

GSBout = FGSC FGSC a(XC1
)C1

2

� �� �
+ a(X)C1

2
, (6)

VOVGSCSPCout = a Concat GSBout ,a(XC1
)

� �� �
, (7)

where C1 is the number of channels of the input feature map

XC1
, a is the conventional convolution, GSBout is the output of

GSBottleneck, and VOVGSCSPCout   is the final output of this

module. The VOVGSCSPC neck structure balances the accuracy

and speed of the model well and reduces the complexity of the

calculation and network structure, making the YOLOv8s-Longan

model lightweight and easier to deploy for fruit-picking UAV

terminal equipment while maintaining sufficient accuracy and

utilization of the extracted features.
3.4 Improvement of the Inner-SIoU
loss function

The angle between the real bounding box and the predicted

bounding box is ignored in different detection tasks to compensate
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for the existing IoU loss function, resulting in weak generalization

ability and slow convergence speed in the training process, which

easily results in a poor model. In this paper, the InnerSIoU loss

function is proposed to capture the location information of defects

more accurately and further improve the robustness of

the algorithm.

In the Inner-SIoU, the use of an auxiliary bounding box is

proposed to calculate the loss to accelerate the bounding box

regression process, and the scale factor ratio is introduced to

control the scale of the auxiliary bounding box. By using auxiliary

bounding boxes of different scales for different datasets and

detectors, we can overcome the limitations of existing methods in

terms of their generalizability.

As shown in Figure 8A, the Ground truth and Anchor boxes are

bgt and b, respectively. (xgtc , y
gt
c ) is the center point of the GT box and

the center point of the inner GT box, while the center point of the

Anchor box and the inner Anchor box is denoted by (xc, yc). The

width and height of the GT box are denoted by wgt and hgt,

respectively, while the width and height of the Anchor box are

denoted by w and h, respectively. The variable “ratio” corresponds

to the scaling factor and is typically in the range [0.5, 1.5]. The

relevant formulas are shown in Equations 8 and 14, which describe

the adjustment process of the Anchor box with respect to the GT

box. In these formulas, the Anchor box is scaled and displaced by

the scaling factor ratio.

bgtl = xgtc −
wgt � ratio

2
,   bgtr = xgtc +

wgt � ratio
2

, (8)

bgtt = ygtc −
hgt � ratio

2
,   bgtb = ygtc +

hgt � ratio
2

, (9)
FIGURE 7

VOVGSCSP module structure. (A) GSBottleneck. (B) VOVGSCSPC.
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bl = xc −
w � ratio

2
,   br = xgtc +

w � ratio
2

, (10)

bt = yc −
h� ratio

2
,   bt = ygtc +

h� ratio
2

, (11)

inter = min (bgtr , br) −max (bgtl , bl)
� �
� min (bgtb , bb) −max (bgtt , bt)
� �

, (12)

union = wgt � hgt � ratio2   +w � h� ratio2 − inter, (13)

IoUinner =
inter
union

: (14)

The Inner-SIoU loss function inherits some characteristics of

IoU and has unique characteristics. The range of Inner-SIoU and

IoU loss functions is the same, which is [0, 1]. Since there is only a

scale difference between the auxiliary bounding box and the actual

bounding box, the loss function is calculated in the same way.

Therefore, the Inner-IoU bias curve shows a similar trend to the

IoU bias curve.

Additionally, the Inner-SIoU loss function redefines the loss

index by the angle of the regression vector, which comprises three

functions: angle loss, distance loss, and shape loss (Dong and

Duoqian, 2023; Lawal et al., 2023). Here, the angle loss is defined as

L = 1 − 2sin2 arcsin x −
p
4

� �
, (15)

x =
ch
s

= sin a , (16)

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgtcx − bcx
� �2

+ bgtcy − bcy

� �2r
, (17)

Ch = max  bgtcy , bcy

n o
−min  bgtcy , bcy

n o
, (18)
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where bgtcx ,   b
gt
cy

� �
are the real bounding box coordinates,

bcx ,   bcy

� �
are the predicted bounding box coordinates and a is

the vector Angle. The angle loss is shown in Figure 8B.

The distance loss is defined as Equations 19 and 20:

D = S
t=xy

1 − exp−grt ) :ð (19)

where

rx =
bgtcx − bcx

cw

 !2

, ry =
bgtcy − bcy

ch

 !2

, g = 2 − L (20)

The shape loss is defined in Equations 21 and 22:

W = S
t=w ,h

(1 − exp−wt )q : (21)

where

ww =
w − wgtj j

max  w,wgtf g ,wh =
h − hgtj j

max  h, hgtf g , (22)

where w and h are the width and height of the predicted

bounding box, respectively; wgt and hgt are the width and height

of the true bounding box, respectively. In summary, the loss

function of Inner-SIoU is

LInner−SIoU = 1 − IoUinner +
D +W
2

, (23)

Whena tends to 0, the angle costLwill also tend to 0, whichmeans

that the influence of L on the Inner-SIoU is greatly reduced. When a
tends to 3.14/4,L takes themaximum value, whichmeans that it has the

greatest impact on the Inner-SIoU. This approach fully considers the

angle between the real bounding box and the predicted bounding box,

improving the target box localization ability and prediction accuracy.

4 Experimental results and analysis
In this paper, 1,070 images of the longan dataset from the

Longan Garden of the Guangdong Academy of Agricultural
FIGURE 8

The specifics of the Inner-SIoU. (A) Schematic diagram. (B) Angle loss.
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Sciences are used. After manual screening, annotation, and data

expansion, 2,460 longan dataset images are obtained for model

training and evaluation. The dataset contains images captured by

fruit-picking UAV cameras with different lighting conditions,

densities, angles, and longan species, which cover a wide range

and have strong generalizability.

This experiment classifies the selected fruit-picking UAV aerial

images, of which 1,968 are used for training and 660 are used for

testing. The quantity of data and the size distribution of labels for

each category in the training set are shown in Figure 9. The number

of labels in each category varies, and the quantity of data between

the corresponding categories varies greatly. In addition, most of the

points in the label size distribution map are clustered in the bottom-

left corner, while a few points are also clustered in the middle part

and the top-right corner. This shows that the longan image dataset

contains a large number of small- and partially medium-sized

objects with diverse sizes, which is consistent with the

background and problems studied in this paper.

The experiment is based on the Ubuntu 18.04 operating system,

and the environment is Python3.9, CUDA11.7, and Pytorch2.0. The

main specifications are as follows: CPU: AMD EPYC 7402 CPU @

2.80 GHz; GPU: GPU NVIDIA RTX A4000 16G; RAM: Crucial
Frontiers in Plant Science 11
DDR4 3200 1218G; Mechanical hard disk: WD HC550 16TB; Solid-

state drive: SAMSUNG 980 1TB; Motherboard: Supermicro H12SSL.

In order to further validate the robustness of the model and

avoid the interference of chance factors on the experiments, this

section adopts a fivefold cross-validation method to test the system

performance, which randomly and evenly divides the longan string

fruit dataset into five subsets. Each experiment uses four of the

subsets (1,968 sheets) for training and the remaining one (492 pairs)

for testing, and the cross-validation is repeated five times to ensure

that each subset is validated once as a test set. To ensure the validity

of cross-validation, this experiment ensures that there are no images

of the same case between the five subsets when dividing the dataset,

i.e., to ensure that there are no overlapping cases between the

training set and the test set.

To verify the effectiveness of the proposed model algorithm, we

conduct a series of lateral comparison experiments and perform

comparative ablation analysis on the corresponding improvement

points to verify the advancement of the YOLOv8s-Longan model.

Under the same hyperparameters, the experiments are trained,

verified, and tested on the basis of the original model, the training

epochs are set to 100, the initial learning rate is 0.01, and the

termination learning rate is 1e−4.
FIGURE 9

Data size of each category and label size distribution. (A) Size distribution of labels. (B) Heatmap of label size distribution. (C) Label size
distribution graph.
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4.1 Experimental evaluation index

To effectively and intuitively demonstrate the improvement

effect of YOLOv8 in this paper, the mean average precision

(mAP), the number of model parameters (Params), the total

floating-point operations (GFLOPs), and the frame rate of refresh

[Frames Per Second (FPS)] are used as the evaluation indexes of

model performance (Zhou et al., 2024). The evaluation metrics

contain precision, deployability, and speed, which are defined as

shown in Table 3.

Efficient ECA channel attention mechanism, which only adds a

small number of parameters but obtains performance gains, has

some limitations in dealing with global context dependencies and

channel spatial relationships. The DenseCBMA module

incorporates the CBAM attention mechanism, adding the spatial

attention mechanism on the basis of retaining the original channel

attention mechanism, optimizing the network from both the

channel and spatial aspects, and improving the feature extraction

effect of the model from both the channel and spatial perspectives at

the same time. Each DenseNet variant module replaces the first set

of Conv-C2f modules in the YOLOv8 backbone network, and the

experimental results are shown in Table 4.
4.2 DenseAMA module comparison results

The DenseAMAmodule is built based on the DenseNet module

architecture and introduces the AMA attention mechanism module

and the H-wish activation function, which are weighted by average

and maximum pooling. The DenseNet, DenseAMA, DenseCA,

DenseECA, and DenseCBMA modules are also selected for

comparison with other DenseNet variants. The DenseAMA

module is proposed on the infrastructure of DenseNet and aims

to improve the generalization performance of the classifier through
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adaptive convolutional kernel tuning while enhancing the flow of

information and gradients throughout the network. The DenseCA

module introduces the CA attention mechanism in the DenseNet

network, which focuses on the attention on the channel dimension,

and although it may not be as good as the other 384 attention

mechanisms for the case of a small number of channels, it can

improve the detection accuracy of the model in scenarios with a

large number of channels. The DenseECA module incorporates the

efficient ECA channel attention mechanism, which not only adds a

small number of parameters but also obtains performance gains, but

it has some limitations in dealing with global context dependencies

and channel spatial relationships. The DenseCBMA module

incorporates the CBAM attention mechanism, adding the spatial

attention mechanism on the basis of retaining the original channel

attention mechanism, optimizing the network from both the

channel and spatial aspects, and improving the feature extraction

effect of the model from both the channel and spatial perspectives at

the same time. Each DenseNet variant module replaces the first set

of Conv-C2f modules in the YOLOv8 backbone network, and the

experimental results are shown in Table 4.

Table 4 shows that the DenseAMA module improves the

mAP@0.5 by 0.9% compared to the DenseNet module with

essentially no change in the number of parameters and the

amount of computation. Compared to the rest of the DenseNet

variant modules, mAP@0.5 improves by 0.83% on average, thus

proving the effectiveness of the DenseAMA module in terms

of accuracy.
4.3 C2f-Faster-AMA module
comparison results

The C2f-Faster-AMA module is built based on the C2f module

architecture and introduces the FasterNet and AMA attention

mechanism modules. Meanwhile, comparing other residual

modules, C2f, C2f-Faster-AMA, C2f-DCNV2, and C2f-DBB

residual modules are selected for comparison experiments. The

C2f module adopts the concept of multi-level gradient extraction,

which enhances the depth of feature extraction and improves the

detection accuracy of the model. The C2f-Faster-AMA module is

proposed on the basis of FasterNet and aims to reduce the model

parameters while maintaining accuracy. The C2f-DCNV2 module

adopts a two-branch structure to effectively fuse shared and

context-aware weights and aggregate high-frequency local

information. The C2f-DBB block aims to improve the feature

extraction capability of the network by combining multiple

branches for feature extraction using convolutional kernels of

different sizes, which are merged or spliced together to form a

more master-rich representation. The C2f module is replaced by

each residual module in the backbone network, and the

experimental results are shown in Table 5.

As shown in Table 5, compared to the C2f module, the C2f-

Faster-AMA module has 9.8% less computation, 12.7% fewer

parameters, and 1.4% improvement in mAP@0.5. Compared to

other C2f residual modules, mAP@0.5 improves by 0.67% on

average. Thus, the C2f-Faster-AMA module is superior in terms
TABLE 3 Experimental evaluation indicators.

Indicator
Type

Evaluation
indexes

Description

Accuracy

mAP@0.5 During the last 10 epochs of model
training, the average AP of all images
under each category was calculated when
the threshold IoU was set to 0.5.

mAP@0.5–0.95 During the last 10 epochs of model
training, the average AP of all images
under each category was calculated when
the threshold IoU was set to 0.5–0.95.

Recall Proportion of positive longan string fruit
samples successfully identified by
the model.

Deployability Parameters (m)
GFLOPs (G)

The number of parameters in the model.
The number of floating-point operations,
which measures the computational
complexity of the model.

Speed FPS (img/s) Refresh frame rate, which indicates how
many images are reasoned per second.
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of the number of parameters, the amount of computation, and the

prediction accuracy.
4.4 Inner-SIoU loss function
comparison results

To verify the effectiveness of the loss function Inner-SIoU, the

improved Inner-SIoU loss function was compared with Complete

Intersection over Union (CIOU), Distance Intersection over Union

(DIOU), Extended Intersection over Union (EIOU), and

Generalized Intersection over Union (GIOU) in a comparison

experiment, and the results are shown in Table 6.

Table 6 shows that the model with the Inner-SIoU loss function

performs the best, leading the model with the CIOU loss function

by 1.7%, which is an average improvement of 1.2% over the other

models. In terms of recall, Recall Inner-SIoU still maintains the best

recall with an improvement of 2.26% compared to the original

model. Under the comprehensive evaluation, the improved loss

function is effective, and Inner-SIoU not only improves the

detection accuracy but also improves the recall of the model.
4.5 Ablation experiment

To analyze the detection performance of the proposed

YOLOv8s-Longan algorithm on a dataset of 2,460 UAV aerial

longan images, YOLOv8s is the baseline model and does not use

pretraining parameters for the models before and after

improvement. On the premise of maintaining the same

experimental configuration, the detection performance of the

proposed YOLOv8s-Longan algorithm improves. The input image

resolution is set to the input size of the image taken by the D435i

depth camera, which is 848 × 480.

Therefore, an ablation experiment is designed for the UAV aerial

longan image dataset, and the experimental parameters are described in
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Section 4. A comparison of the ablation experimental results of the

proposed method is shown in Table 7. Model 1 represents the original

structure of YOLOv8s, Model 2 represents the integration of the

DenseAMA module structure in the front of the YOLOv8s

backbone, and Model 3 represents the replacement of the C2f

module with the C2f-Faster-AMA module in the back of the

YOLOv8s backbone. Model 4 represents the replacement of the

original YOLOv8’s neck network with the VOVGSCSPC module of

the C2f module, model 5 represents replacing the loss function CIOU

in the original YOLOv8s with the improved Inner-SIoU loss function,

model 6 represents replacing the backbone overall network structure of

the YOLOv8s by combining the DenseAMA module with the C2f-

Faster-AMA module, model 7 represents replacing the backbone

network of the model 6 with the VOVGSCSPC module to replace

the C2f module in the neck network of model 6, and model 8

represents the YOLOv8s-Longan model structure of this paper.

According to Table 7, integrating the DenseAMA module

structure in the front of the YOLOv8s backbone can improve the

mAP@0.5 of the model by 1.6%, and replacing the C2f module with

the C2FFast-AMA module in the back of the YOLOv8s backbone

can improve the mAP@0.5 of the model by 1.4%. Additionally, the

combination algorithm of the DenseAMA module and C2F-Fast-

AMA module improved the mAP@0.5 of the original YOLOv8s

model by 2.3%, thus showing a performance superposition effect.

After C2f in the neck network is replaced with the VOVGSCSPC

module, the loss function CIOU in the original network structure is

changed to the Inner-SIoU loss function to improve global

performance. Compared with those of the original YOLOv8s

model, the parameters of the proposed YOLOv8s-Longan model

are reduced by 20.3%, and the number of calculations in the model

is reduced by 2.08%. With the same number of training steps (100

iterations), the recall rate increases by 6.3%, and the prediction

accuracy mAP@0.5 increases by 3.9%. It shows that the proposed

method not only improves the detection accuracy but also

successfully realizes the lightweight nature of the model to meet

real-time and accuracy requirements.
TABLE 5 C2f residual module performance comparison results.

Residual Module Cross-validation GFLOPs (G) Parameters (m) Recall mAP@0.5 mAP@0.5–0.95

C2f AVG 28.4 11.1 0.751 80.4% 46.8%

C2f-DCNV2 AVG 27.1 11.2 0.767 81.2% 47.3%

C2f-DBB AVG 34.5 13.7 0.759 81.0% 47.2%

C2f-Faster-AMA AVG 25.6 9.7 0.755 81.8% 47.8%
TABLE 4 Comparison results of the performance of different DenseNet variants.

Variant module Cross-validation GFLOPs (G) Parameters (m) Recall mAP@0.5 mAP@0.5–0.95

DenseNet AVG 35.30 11.10 0.766 81.1% 47.6%

+CA AVG +2.70 +0.10 0.754 80.9% 46.4%

+ECA AVG +0.12 +0.06 0.759 81.2% 47.1%

+CBMA AVG +2.90 +0.10 0.767 81.5% 47.4%

+AMA AVG +0.53 +0.08 0.779 82.0% 48.8%
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4.6 Different comparison algorithms

To further verify the efficiency and adaptability of the

YOLOv8s-Longan model proposed in this paper for longan string

fruit target detection and positioning, the YOLOv8s-Longan model

is selected to compare with YOLOv5, YOLOv6, and YOLOv8,

which are classic models in the current object detection field. As a

mature real-time detection model, YOLOv5 uses Mosaic data

enhancement in the input and Focus structure in the Backbone

network, which has a good balance between speed and accuracy.

YOLOv6 further improves efficiency by introducing RepVGG and

EfficientRep modules. As the latest version of the YOLO series,

YOLOv8 uses deeper DarkNet-53 as the backbone network and

replaces the C3 module in YOLOv5 with the C2f module, which has

made significant improvements in lightweight and performance

and has strong representability. By comparing the n and s versions

of the YOLOv5 and YOLOv8 series proposed by Ultralytics, and the

n and s versions of the commonly used YOLOv6 series, six

performance indicators are selected. Namely, the amount of

computation (GFLOPS), the number of parameters, recall, mAP@

0.5 and mAP@0.5–0.95, and FPS are recorded, and the data are

shown in Table 8 and Figure 10.

According to the comparative experimental results in Table 8,

the improved YOLOv8s-Longan model proposed in this paper has

higher mAP@0.5 and mAP@0.5–0.95 detection accuracies than

other classical models, and the average accuracy of the other

mAP@0.5 models increases by 4.72%. The parameters of the

improved algorithm in this paper are lower than those of other
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classical models, the parameters of the YOLOv8s-Longan model are

only half of those of the YOLOv6s model, and the parameters of the

YOLOv8s-Longan model are reduced by 23.6% on average

compared with those of other models with the same

specifications. From the perspective of various indicators, the

improved model algorithm in this paper has the best

comprehensive performance and has good detection ability for

longan string fruit images. This model not only improves

detection accuracy but is also lightweight and can meet real-time

and accurate requirements, demonstrating the obvious superiority

of the YOLOv8s-Longan target detection model.

To better show the effectiveness of the improved algorithm,

various classical accuracy detection models and the YOLOv8s-

Longan model in the training process are compared with the

changes in four indicators: accuracy, recall rate, mAP@0.5, and

mAP@0.5–0.95. The experimental results are shown in Figure 10.

With an increase in the number of iterations, all the comparison

algorithms can finally reach convergence, but the four indicators of

the improved YOLOv8s-Longan model are significantly greater

than those of all the classical detection models. A comparison of

the mAP@0.5 and mAP@0.5–0.95 curves is shown in

Figures 10C, D. The mAP of the improved algorithm is greater

than that of the original YOLOv8s benchmark model when training

for 100 rounds, which proves that the YOLOv8s-Longan model in

this paper can effectively improve the ability to detect longan bunk

fruit compared with the original benchmark model.

The Longan Garden of the Guangdong Academy of

Agricultural Sciences was used to test some of the 1,070 longan
TABLE 7 Comparative results of ablation experiments for YOLOv8s-Longan.

Model
Cross-

validation
GFLOPs

(G)
Parameters

(m)
Recall mAP@0.5

mAP@0.5–
0.95

FPS
(img/s)

YOLOv8s AVG 28.8 11.1 0.751 80.4% 46.8% 115

YOLOv8s + DenseAMA AVG 35.3 11.1 0.779 82.0% 48.8% 46

YOLOv8s + C2f-Faster-AMA AVG 25.6 9.7 0.755 81.8% 47.8% 110

YOLOv8s + VOVGSCSPC AVG 25.2 10.3 0.775 82.0% 47.7% 113

YOLOv8s + Inner-SIoU AVG 28.8 11.1 0.768 82.1% 47.4% 114

YOLOv8s + DenseAMA + C2f-Faster-AMA AVG 32.1 9.8 0.780 82.7% 48.4% 43

YOLOv8s + DenseA + C2f-Faster-AMA
+ VOVGSCSPC

AVG 28.2 8.8 0.778 82.6% 48.3% 45

YOLOv8s-Longan AVG 28.2 8.8 0.798 84.3% 50.2% 45
f

TABLE 6 Comparison results of the performance of different loss functions.

Loss function Cross-validation Recall mAP@0.5 mAP@0.5–0.95

CIOU AVG 0.751 80.4% 46.8%

DIOU AVG 0.751 81.1% 46.9%

EIOU AVG 0.773 81.0% 47.6%

GIOU AVG 0.765 81.1% 47.1%

Inner-SIoU AVG 0.768 82.1% 47.7%
CIOU, Complete Intersection over Union; DIOU, Distance Intersection over Union; EIOU, Extended Intersection over Union; GIOU, Generalized Intersection over Union.
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dataset images to evaluate the effect before and after the

improvement more intuitively. Comparing Figure 11 shows that

except for YOLOv6s in Figure 11D and YOLOv8s-Longan in

Figure 11G, there is no missing detection in the upper-right

corner of the dense longan string fruit scene; other detection

models fail to detect longan string fruit in the upper-right corner

of the figure. Additionally, compared with Figures 11D, G, the

overall accuracy of the YOLOv8s-Longan model in image detection

is much greater than that of the YOLOv6s model, and the

prediction accuracy of the YOLOv6s model increases by 21.1% on
Frontiers in Plant Science 15
average. The improved model has higher detection accuracy, and

the detection performance is significantly improved.

To further explore the improvement of the YOLOv8s-Longan

model algorithm, a heatmap visualization comparison and analysis

of the detection effect are performed, and the specific results are

shown in Figure 12.

Specifically, Figures 12A, D show the heatmap visualization

comparison of the YOLOv5 model, in which Figure 12A only

vaguely identifies the approximate position of the longan string

fruit, and Figure 12D only identifies the center position of the right
FIGURE 10

Comparison of object detection algorithms’ indicators. (A) Precision comparison. (B) Recall comparison. (C) mAP@0.5 comparison. (D) mAP@0.5-
0.95 comparison.
TABLE 8 Comparative experimental results of classical models for object detection.

Model
Cross-

validation
GFLOPs (G) Parameters (m) Recall mAP@0.5

mAP@0.5–
0.95

FPS (img/s)

YOLOv5n AVG 7.8 2.65 0.743 79.5% 44.1% 272

YOLOv5s AVG 24.2 9.15 0.750 79.9% 45.7% 119

YOLOv6n AVG 13.1 4.5 0.720 78.9% 43.5% 292

YOLOv6s AVG 44.9 16.4 0.749 79.7% 44.9% 116

YOLOv8n AVG 8.2 3.0 0.745 79.1% 45.0% 262

YOLOv8s AVG 28.8 11.1 0.751 80.4% 46.8% 115

YOLOv8s-Longan AVG 28.8 8.8 0.798 84.3% 50.2% 45
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longan string fruit but does not identify the left longan string fruit.

Figures 12B, E show the heatmap visual comparison of the YOLOv6

model. This group of figures can only identify the center position of

the right longan string fruit and has obvious false detection of the

surrounding green leaf environment. A heatmap of the YOLOv8

model is shown in Figures 12C, F. In Figure 12C, the approximate

position of the longan string fruit on the left and right sides is fuzzy,

but the surrounding green leaves are clearly misidentified.

Figure 12F shows the approximate identification of the peripheral

outline of the longan string fruit on the right. Figure 12G shows a

heatmap visual comparison between the YOLOv8s-Longan model

and other classical detection models. The improved YOLOv8s-

Longan model can perfectly identify the irregular peripheral

contour of longan string fruit, and there is no false detection of

the surrounding green leaves or other interference objects.

Therefore, the YOLOv8s-Longan model performs well in

improving object detection accuracy and solving the problems of
Frontiers in Plant Science 16
missed and false detections, which significantly improves the object

detection task.
4.7 Detection effects in different
natural scenes

In this section, the performance of the YOLOv8s-Longan model

under different lighting conditions is evaluated in detail. In the frontal

illumination environment, Figures 13A, B demonstrate that the model

can accurately identify the target at different distances, far and near.

Figures 13C, D are in the backlight condition; the model is still able to

accurately identify the longan string fruit without being affected by the

light intensity. As shown in Figures 13A, C, the recognition of longan

strings in long-distance scenes proves that the model can maintain

accurate detection of longan string fruit regardless of the lighting

environment or scene distance. Comprehensive Figure 13 shows that
FIGURE 11

Prediction comparison of different network models for identification. (A) YOLOv5n. (B) YOLOv6n. (C) YOLOv8n. (D) YOLOv8n. (E) YOLOv6s. (F)
YOLOv8s. (G) YOLOv8s-Longan detention results in dense longan string fruit scene.
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the YOLOv8s-Longan model shows strong robustness regardless of the

changes in lighting conditions or near and far scenes and successfully

realizes the accurate detection of targets under different

environmental conditions.

In order to verify the robustness of the YOLOv8s-Longan model

for the recognition of different longan varieties, especially the

detection ability of the model for different longan varieties in the

same environment, Figures 14A, B show the detection results for the

Chuliang longan, while Figures 14C, D show the detection results

for the Shixia longan. There were obvious differences in the color,

size, and shape of the two longan fruits, and different appearance

characteristics were reflected at different distances and light

conditions. Based on Figure 14, it can be seen that the model can

accurately identify longan string fruit, which indicates that the

YOLOv8s-Longan model shows excellent generalization

performance in identifying different longan varieties.
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4.8 The real-time deployment test

To verify the practical deployment capability of the proposed

YOLOv8s-Longan model for the UAV, in this experiment, DJI

M300 RTK model UAV and Intel RealSense D435i camera are

selected, and the YOLOv8s-Longan model is deployed to the

NanoPi-R5C-Combo onboard computer. The performance of

string fruit recognition is tested on Chuliang and Shixia longan

scenes in the longan garden of the Guangdong Academy of

Agricultural Sciences. The test scenario is shown in Figure 15,

and the recognition results are shown in Table 9.

During the actual test, the NanoPi-R5C-Combo on-board

computer deploys the lightweight model with a parameter count

of 8.83M with 18.1 MB of memory, and the model can process 45 to

50 images per second, which can meet the real-time recognition of

longan string in real-time by the UAV. From Table 9, the
FIGURE 12

Comparison of heatmaps for prediction of longan fruit recognition by different network models. (A) YOLOv5n. (B) YOLOv6n. (C) YOLOv8n. (D)
YOLOv8n. (E) YOLOv6s. (F) YOLOv8s. (G) YOLOv8s-Longan heat map for longan string fruit prediction.
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FIGURE 13

Comparison of detection results under different environmental conditions. (A) Far and sunny side. (B) Near and sunny side. (C) Far and night side. (D)
Near and night side.
FIGURE 14

Comparison of the detection results for different longan varieties. (A) Far and Chuliang Longan. (B) Near and Chuliang Longan. (C) Far and Shixia
Longan. (D) Near and Shixia Longan.
Frontiers in Plant Science frontiersin.org18

https://doi.org/10.3389/fpls.2024.1518294
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1518294
YOLOv8s-Longan model has good recognition and detection

results for both Chuliang and Shixia longan varieties in different

natural scenarios. Among the 48 clusters of identified longan string,

42 clusters of string are accurately identified, and the average

recognition accuracy of the YOLOv8s-Longan model is 87.5%,

which can satisfy the need of the UAV for lightweight and

accurate recognition of longan string. Among the six clusters of

longan string that were missed, four clusters of string are occluded

by the transition of longan string in front of them and thus

identified as one cluster of longan string by the model; the other

two clusters of string are missed because they are located inside the

center of the fruit tree under cloudy conditions, which prevented

them from being accurately identified by the model.
5 Conclusion

In this paper, a fast and accurate detection scheme based on

deep learning is proposed for the UAV aerial longan image dataset.

First, the Intel RealSense D435i depth camera is mounted on the

fruit-picking UAV to collect longan string fruit data. Second, in

order to reduce the computing requirements and memory usage of

airborne computing equipment and improve the fast and accurate

detection accuracy of longan string fruit, the YOLOv8s-Longan

deep learning model is proposed.
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The experimental results show that the recall and mAP@0.5 of

the improved model proposed in this paper increase by 6.3% and

3.9%, respectively, on the longan string fruit dataset, and the

parameter quantity of the improved model decreases by 20.3%.

Compared with the other three YOLO series classical algorithms,

the improved model algorithm in this paper is feasible, which

improves the detection accuracy of longan string fruit targets and

greatly reduces the number of missed and false detections of

occluded targets.

In the future, the training speed of the model and the ability of

the object detection model to resist environmental interference will

be further improved, and the robustness, generalization ability, and

application prospect of the model will be enhanced. In future work,

we will analyze the maturity and disease and insect pests of longan

string fruit through the model and provide customized picking

strategies, which will help to improve the yield and quality of

longan, promote the income growth of fruit farmers, and promote

the sustainable development of longan cultivation industry.
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