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Quantitative relationship
model between soil profile
salinity and soil depth in cotton
fields based on data assimilation
algorithm: forecasting cotton
field yields and profits
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Jiaojiao Hui1,2 and Qingsong Jiang1,2*

1College of Information Engineering, Tarim University, Alar, China, 2Key Laboratory of Tarim Oasis
Agriculture (Tarim University), Ministry of Education, Alar, China
Soil salinization seriously affects the efficiency of crops in absorbing soil nutrients,

and the cotton production in southern Xinjiang accounts for more than 60% of

China’s total. Therefore, it is crucial tomonitor the dynamic changes in the salinity of

the soil profile in cotton fields in southern Xinjiang, understand the status of soil

salinization, and implement effective prevention and control measures. The drip-

irrigated cotton fields in Alaer Reclamation Area were taken as the research objects.

The multivariate linear regressionmodel was used to study the relationship between

soil salinity and soil depth in different periods, and the Kalman filter algorithm was

used to improve the model accuracy. The results showed that the month with the

highest improvement in model accuracy was July, with the model accuracy R2

increasing by 0.26 before and after calibration; followed by June and October, with

the model accuracy R2 increasing by 0.19 and 0.18 respectively; the lowest

improvement was in March, which was only 0.01. After the model was calibrated

by the Kalman filter algorithm, the fitting accuracy (R2) between the predicted value

and the actual valuewas as high as 0.79, and the corresponding RMSEwas only 96.17

mS cm-1, and the measured value of soil salinity was consistent with the predicted

value. Combined with the predicted conductivity data of each soil layer, the total

yield of the study area was predicted to be 5,203-5,551 kg hm-2, and the incomewas

about 4,953-7,441 RMB hm-2. It can be seen that Kalman filtering can improve the

prediction accuracy of the model and provide a theoretical basis for studying the

mechanism of soil salt migration in drip-irrigated cotton fields at different stages. It is

of great significance for evaluating the potential relationship between cotton yield

and deep soil salinity and guiding the efficient prevention and control of saline soil in

cotton fields.
KEYWORDS

salinization, apparent conductivity, soil conductivity, multivariate linear algorithm,
Kalman filter
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1 Introduction

Cotton is a crucial pillar industry in Xinjiang, particularly in the

southern region, with factors such as climatic conditions, seed

selection, cultivation management, soil fertility and soil salinity

content significantly influencing cotton yields (Zhu et al., 2023). Soil

salinity is a primary impediment hindering the growth and

development of cotton in this area (Zhou et al., 2021). Excessive

soil salinity will accumulate too much sodium and chloride ions,

which will antagonize the absorption of essential nutrients such as

K+, Ca2+ and Mg2+, leading to nutritional imbalance. Excessive salt

accumulation will cause salt stress on the cotton root system, inhibit

its use of water, and affect the growth and development of cotton.

Under salt stress, cotton leaves will turn yellow or brown,

chlorophyll content will decrease, and photosynthesis efficiency

will decrease. This directly affects the carbon assimilation capacity

of cotton, thereby inhibiting growth and yield. Soil salinization

occurs when salts and water in the soil are transported and

redistributed under certain natural conditions, such as high

temperatures causing evaporation or heavy rainfall, leading to an

excessive accumulation of salts in certain areas. Soil moisture is one

of the main driving forces of salt migration. Water in the soil drives

salt migration through capillary action, osmosis and evaporation. In

the linear model, soil salt concentration fluctuates with changes in

soil moisture content. El-Naggar et al. (El-Naggar et al., 2021)

imaged the conductivity of the soil profile and its relationship with

soil moisture patterns and drainage characteristics. Zare et al. (Zare

et al., 2020) used EM38 data to perform two-dimensional time-lapse

imaging of the soil wetting and drying cycles of flood-irrigated

cotton fields. It can be seen that soil moisture has a certain

correlation with the conductivity of the soil profile, and soil

moisture is an important factor that cannot be ignored in the

study of soil salinization.Understanding the salinity content of soil

profiles at different depths is critical for studying soil salinization

phenomena (Ren et al., 2019; Corwin, 2021; Kalinitchenko et al.,

2021). The distribution of salt in the soil profile usually shows

obvious depth changes. Especially in the arid areas of southern

Xinjiang, when evaporation is strong, the evaporation of surface

water drives the migration of salt and accumulates on the surface;

and the unique sandy soil has strong permeability, so salt easily

migrates to the deep layer with the water flow.Currently, small-area

studies can obtain accurate soil salinity profiles through field

sampling and indoor analysis (Gits-Muselli et al., 2020; Rahman

et al., 2020). However, this method is impractical for medium and

large-scale regional studies due to its time-consuming and labor-

intensive. Smart agriculture technologies, such as remote sensing

satellites, hyperspectral imaging and near-earth sensing, enable the

acquisition of spectral information or conductivity values indicative

of soil salinity content. By correlating this spectral data with local

sampling and laboratory analyses, an inverse model can be

constructed to estimate soil salinity in the whole profiles (Schmidt

and Bijmolt, 2020; Tancik et al., 2020). This approach significantly

improves the efficiency of monitoring soil salinity over larger scales.

However, there is a current technology face limitations in achieving

high-precision monitoring, particularly for deep soil layers, where
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remote sensing proves inadequate (Gorji et al., 2019; Wang et al.,

2020). Remote sensing technology mainly relies on electromagnetic

wave signals, which have limited penetration depth. Optical remote

sensing technology, in particular, can only obtain soil information

within the range of 0-5 cm soil layer. Even microwave remote

sensing, which has slightly stronger penetration ability, generally

does not exceed 10 cm. This poses a great challenge to monitoring

soil salinity above 20 cm. Thus, there is a pressing need for

developing a new approach to accurately estimate and analyze

deep soil salinity.

Data assimilation introduced by Charney et al. (Desamsetti

et al., 2019) focuses on the distribution of the data and the

observation and background field errors, continuously

incorporating observations into the model to enhance its accuracy

(Geer, 2021). By substituting acquired observations into the model,

and the accuracy of predictions is iteratively corrected, resulting in a

close correlation with the true value (Ahmed et al., 2020). The

primary objective of the data assimilation is to continuously adjust

the data model based on the existing data and spatio-temporal

distributions, so that the model predicted values align more closely

with the actual situation, thus improving prediction accuracy

(Zhang et al., 2020; Buizza et al., 2022). Lei et al. (Lei et al., 2020)

performed data assimilation of high-resolution thermal and radar

remote sensing retrievals for soil moisture monitoring in drip-

irrigated vineyards, improving water use assessment and irrigation

management. Both surface and root zone soil moisture predicted by

the Soil-Vegetation-Atmosphere Transport model were improved

by data assimilation, validating its effectiveness for agricultural sub-

field scale irrigation management decision. Similarly, Lu et al. (Lu

et al., 2021) proposed a data assimilation framework for soil

moisture and canopy cover observations to reduce the

requirement for parameter calibration in maize simulation using

AquaCrop. Their findings indicated data assimilation effectively

improved model performance, with joint assimilation

outperforming univariate assimilation for accurate maize yield

estimation and prediction. Ziliani et al. (Ziliani et al., 2022)

incorporated CubeSat data (A small, standardized satellite,

typically used for scientific research, technology validation and

educational purposes. They can carry a variety of sensors and

equipment and collect many types of data) into a crop model to

predict crop yields in the early season., which is quite informative

for enhancing digital agriculture objectives and improving end-of-

season yield prediction. Kalman filter-based algorithms and their

variants are extensively used in data assimilation. For instance, Kivi

et al. (Kivi et al., 2022) employed the ensemble Kalman filter

algorithm to overcome the limitations of process-based models

and observational data to improves the accuracy and precision of

agricultural forecasts. Huerta et al. (Huerta-Bátiz et al., 2022) used

the Soil-Vegetation-Atmosphere Transport (SVAT) model based

on an assimilation algorithm with an ensemble Kalman filter to

estimate root zone soil moisture throughout a maize growing season

in central Mexico. The simulated soil moisture in the top 10 cm of

soil is particularly valuable for monitoring the impact of climate

change on agricultural production in rain-fed areas, especially in

developing countries. Huang et al. (Huang et al., 2017b) monitored
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soil salinity dynamics at a specific depth (vertical direction) in

different soil textures using ensemble Kalman filtering over a 480 m

sample zone area, finding that the model performs better in sandy,

clayey, and biphasic (sand over clay) soils. Although scholars have

achieved good research results, current research on agricultural

complex dynamic systems still has certain limitations, and aspects

such as multi-time domain, multi-variable situations and regional-

scale dynamic prediction have not been explored. For multivariate

linear models, the Kalman filter algorithm, as a recursive optimal

estimation method, has significant advantages. When model

parameters or input data change, Kalman filtering can adjust the

estimation results in time without re-adjusting the entire model. It

is especially suitable for dealing with multi-variable problems

affected by environmental changes, such as prediction of changes

in soil salinity over time and moisture.

In this paper, the irrigated cotton fields in the Science and

Technology Park of the Twelfth Regiment in Alar City, Xinjiang

were used as the study area. The apparent conductivity at different

effective depths was used to predict the measured conductivity at

different periods and soil depths, and then a multiple linear

regression model of measured conductivity and soil depth at each

period was established by using the dummy variable processing

method, and the model was corrected by the Kalman filtering

algorithm to improve the accuracy of the model. In this way, the

measured conductivity data can be used to predict the conductivity

data at different depths of the soil layer, and then the Kalman filter

algorithm can be used to correct the multivariate linear model of

conductivity and soil depth. With the help of the above

methodology, the relationship between soil depth and profile

salinity is investigated, and the soil profile salinity is monitored

and predicted in different periods, which provides a reference for

planting and quantitative irrigation in cotton fields. This paper

focuses on answering the questions of whether the data assimilation

algorithm improves the accuracy of the prediction model and how

much the accuracy of the prediction model is improved.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Study area overview

The study area is located within the Twelfth Regiment of Alar

Reclamation District, Xinjiang Uygur Autonomous Region. This

region (see Figure 1) is situated on the south bank of the upper

Tarim River, on the northern edge of the Taklamakan Desert, at the

center of the Tarim Basin, and directly across the Tarim River from

Alar City, the central city of the Corps in southern Xinjiang. The

area of the district is 524.8 km2, with 318,000 acres of cultivated

land, of which 240,000 acres are dedicated to cotton and 78,000

acres to forestry and fruit industry. The elevation of this area ranges

from 990 to 1040 m, with the water table fluctuating between 1.4-

11.7 m. The primary rainfall period is June through August, the

region experiences anthe evapotranspiration ratio of 40:1,

characteristic of an extremely arid climate. Rich in light and heat

resources, and the frost-free period extends from206 to 220 days.

The geographic location of the study area is between 81°29′-81°35′E
and 40°48′-40°51′N, covering a total area of 4.45 km2. The soil

texture type is predominantly sandy loam, and the primary crop

cultivated is cotton. A total of 15 hm2 of mechanically harvested

cotton were selected, located between 40°50′-40°51′N and 80°34′-
81°35′E. The dominant cotton variety is Xinluzhong 78, and

irrigation water is mainly from the Tarim River and upstream

reservoirs. The cotton fields in the study area were drip irrigated five

times throughout the growth cycle on 20 June, 8 July, 27 July, 14

August and 28 August, with additional diffuse irrigation on 21

November. The organic matter content is approximately 5.34 g kg-1.
2.2 Data collection and sampling

An EM38-MK2 geodesic conductivity meter manufactured

by Geonics was used to collect apparent conductivity data
FIGURE 1

Geographical location map of the study area.
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(see Figure 2) (Kasim et al., 2020). Apparent conductivity and soil

samples were collected in March, June, July and October 2021,

respectively. The instrument has a transmitting coil (Tx) and two

receiving coils (Rx). The distance between Tx and the two Rx is 0.5

m and 1.0 m respectively, so the instrument can measure two kinds

of apparent conductivity data under the same model (ECx0.5 and

ECx1.0, X represents mode). The EM38-MK2 instrument can collect

apparent conductivity measurement results from both vertical and

horizontal directions, generating four different data sets, namely

ECh0.5, ECh1.0, ECv0.5, and ECv1.0. The instrument recording mode

record data automatically with the frequency of one point per

second from both vertical and horizontal directions. Approximately

1000 sets of apparent conductivity data were collected for each

period, with a sampling interval of 1 m. The apparent conductivity

data collected in the ‘S’ linear test area were used to determine the

best model apparent conductivity data set for different soil layers for

linear inverse modeling of soil salinity and its quantitative

relationship with soil depth.

Soil samples were systematically collected in compliance with

principles of typicality and representativeness, corresponding to the

same timeframes as the conductivity data. Employing a stratified

random sampling (SRS) approach, samples were collected using soil

auger at depths of 0-20, 20-40, 40-60, 60-80 and 80-100 cm. Each

sample was promptly placed in a sealed bag, labeled, and

transported to the laboratory for soil salinity test.
2.3 Soil moisture content and soil
electrical conductivity

The soil moisture was determined using the drying method,

which involved the following steps: (1) Soil samples were first placed

in small aluminum containers and then baked in an oven at 105°C for

2 hours, followed by cooling to room temperature (25°C) in a

desiccator. The samples were subsequently weighed, ensuring

consistent weightings with an accuracy of 0.001 g). (2) The mixed

soil sample was transferred to an aluminum container using an

angular spoon, and its mass was recorded using a precision balance.

(3) The aluminum container was opened, and the soil was baked in

an oven at 105 ± 2°C for 6 h. After removing the lid, the container was
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cooled in a desiccator to cool to room temperature and

immediately weighed.

The soil electrical conductivity was measured using the

conductivity method (Rooij and Schulz, 2020). The generally high

soil conductivity in the study area, such as the 1:1 soil-to-water extracts,

often exceeded the measurement range of the assay instrument,

rendering direct measurement impractical. Therefore, a water-to-soil

mass ratio of 5:1 was typically employed. The mixture was thoroughly

shaken, allowed to settle, and the leachate was filtered before

determining the electrical conductivity (ECe) using a conductivity

meter. To minimize the measurement errors, duplicate samples were

prepared for parallel determinations of both moisture content and

electrical conductivity. For the five sampling sites in March, measured

soil conductivity (ECe), PH, soil sample moisture content (q) and

salinity content (a) were determined, and the nearest-neighbor

interpolation method in the MATLAB R2020a Griddata function

was utilized to map the depth profile display of the 0.2-1.0 m soil

layer at the sampling sites (see Figure 3), whereas for the other soil

samples only ECe and soil sample moisture content of the soil samples.
2.4 Modelling approach

Time series, also known as dynamic series, is a numerical

sequence of indicators of a phenomenon arranged in

chronological order. Time series analysis can be divided into

three major parts, namely, describing the past, analyzing the law

and predicting the future (Debella-Gilo and Gjertsen, 2021).

Because the time series is a long-term change in the numerical

value of an indicator of numerical performance, so the time series of

numerical changes behind the inevitable numerical changes in the

numerical transformation of the regularity of these regularities is

the entry point of time series analysis. In general, the law of change

of the value of the time series has the following four kinds of change:

(1) long-term trend; (2) seasonal changes in the law; (4) cyclical

changes in the law; (4) irregular changes (random perturbation

term) (Reddy and Henze, 2011). A time series is often a

superposition of the above four types of variability.

The sample series used in this paper are affected by soil depth,

and the soil depth adjustment method with dummy variables is
FIGURE 2

EM38-MK2 simple diagram.
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utilized to eliminate the effect with soil depth. This soil layer

adjustment method is based on the fact that the soil layer depth

obeys an additive model Y = T + S + C + I, where Y ,T represent

aggregate indicators with the same units; and S,C, I produce either

positive or negative deviations from the long-term trend. A multiple

linear regression prediction model was then developed using soil

depth xi and sample T as variables:

y = b0t + bixi + C
Frontiers in Plant Science 05
Where, bi and C for constant coefficient; y represents the

predicted value of ECe; t represents the number of samples; xi
represents apparent conductivity.

For sample selection, 12 groups were randomly selected from the

18 groups of measured conductivity data in each period at a ratio of

1:2 as the modeling set, and the remaining 6 groups were used as the

validation set. In the above way, time series analysis can help us to

understand the change of ECe with soil depth and capture the pattern

and trend of observations over time. And it also makes the data
FIGURE 3

Contour plots of various soil properties measured at five sampling points, including: (A) measured electrical conductivity of the soil (EC1:5, dS m-1),
(B) PH value, (C) soil water content (q), and (D) salinity content (a g kg-1). Data are for reference only and are subject to some uncertainty.
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smoother and reduces the interference of random fluctuations in the

analysis, providing a strong guarantee for the later work.

For the prediction of yield, sample T is not considered. The seed

cotton yield of the first three years (2016-2018) is used as the

modeling set, and the data of the last two years (2019-2020) is used

as the validation set. The different soil conductivity data at the bud

stage (June) and the boll stage (July) are used as modeling factors to

establish a multivariate linear model:

y = bixi + C

Where, C and b represents a constant; x1 represents 0-20 cm

conductivity data.; x2 represents 20-40 cm conductivity data; x3
represents 40-60 cm conductivity data; x4 represents 60-80 cm

conductivity data; x5 represents 80-100 cm conductivity data. In this

way, the cotton production of this year can be predicted based on

the predicted conductivity data.
2.5 Data assimilation

Data assimilation algorithms can generally be classified into two

mains: sequential assimilation and continuous data assimilation.

The earliest of the sequential data assimilation algorithms is the

Kalman filter algorithm, and its idea lays a theoretical foundation

for other sequential data assimilation algorithms. The Kalman filter

algorithm takes the observed data and the statistical characteristics

of the error between the model and the data as the basis, and

estimates the state quantities with the restriction of obtaining the

minimum error of the state estimation value (Akram et al., 2019).

The specific modeling is as follows.

2.5.1 Forecasting

Xf
k+1 = Mk,k+1X

a
k (1)

where k and   k + 1 are the two states and the k+1 is the next

state of k :     f   and a represent the predicted and analyzed values,

respectively; Xf
k+1 represents the predicted value of k+1, which the

sMk,k+1 represents the linear relationship from k state change to k+1

state; the Xa
k   represents the analyzed value of k.

Pf
k+1 = Mk,k+1P

a
kM

T
k,k+1 + Qk (2)

where   Pf
k+1   and Pa

k     represent the error covariance matrix

between the predicted and analyzed values; QK is the model error

variance matrix. From Equations 1 to 2, it completes the calculation

of the pair from k state to k + 1 state.

2.5.2 Updates
After the observations are acquired in the k + 1 state, the

corresponding analyzed values and error covariances are updated

based on the observations at this moment in time, see Equations 3–5.

Xa
k+1 = Xf

k+1 + Xk+1(Y
o
k+1 −Hk+1X

f
k+1) (3)
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where the superscript o represents the observation; Xf
k+1 is

calculated from equation 1; Xa
k+1   represents the analyzed value at

the k+1 state; Kk+1 represents the Kalman gain solved at the k+1

state; YO
k+1 represents the observation acquired at the k+1 state; Hk+1

represents the observation operator solved at the k+1 state.

Kk+1 = (Hk+1Pk+1)
T ½Hk+1(Hk+1P

f
k+1)

T + Rk+1�−1 (4)

Pa
k+1 = (I − Kk+1Hk+1)P

f
k+1 (5)

where Pf
k+1 are calculated from Equation 2, respectively; Pa

k+1

represents the error covariance matrix thatis solved for the analyzed

values at the k+1 state. Equations 3–5 are based on the observations

acquired in the k+1 state and adjusted to the background field to

obtain the analytical values Xa
k+1 and the error covariance matrix

Pa
k+1 at the state and provide the data base for the operations in the

next k + 2  state.

In this paper, the mean value of 0-20 cm soil sample data is set

as the initial state; the difference between the first sample value and

the mean value is used as the initial error value. The process noise

and observation noise are set to white noise, which means that the

noise has no dependence on time and is statistically independent of

each other. Regarding data preprocessing, soil salinity data generally

have significant trends and fluctuate with seasonality, which may

cause the data to deviate from Gaussian distribution. In this case, a

moving average method is used to remove these components,

making the data more stationary and consistent with Gaussian

assumptions. For the processing of outliers, use statistical methods

to detect and remove outliers to ensure that the data set more

closely conforms to the Gaussian distribution. Draw technology

flow diagrams (see Figure 4).

In contrast to the optimal interpolation algorithm, the Kalman

filter algorithm takes into account the state of the model and its

changes, and its prediction error varies with the model dynamics

process. Compared with the variational algorithm, the Kalman

filtering algorithm is easier to implement and its arithmetic

process does not need to take into account the accompanying

patterns of the model. However, for the use of Kalman filtering

algorithms, it is also important to consider whether the data

conforms to a Gaussian distribution and whether the state

changes conform to linear changes so that the optimal solution

can be obtained (Huang et al., 2019). Therefore, whether the

Kalman filtering algorithm can be applied in real-world problems

requires further model validity tests to be carried out.
2.6 Model validation

The quantitative response model of soil depth to profile salinity

was developed by firstly establishing a multiple linear regression

equation between measured conductivity and soil depth using

dummy variable treatment and least squares method, and then

calibrating the model using Kalman filter algorithm. After dividing

the sample data into modelling and validation sets, they can be

validated using cross-validation. Secondly the coefficient of
frontiersin.org
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determination R2 and the root mean square error RMSE can be used

to further judge the effectiveness of the fit between the predicted

values and the actual measurements.

R2 =o(ŷ i − �y)2=o(yi − �y)2 (6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No(ŷ i − yi)

2

r
(7)

Where ŷ i, yi and �yi displays the predicted value, true value and

average value of the variable, respectively. And the larger the R2

value, the smaller the RMSE, the higher the model accuracy, the

stronger the predictive ability and the better the stability. On the

contrary, the smaller the R2 value and the larger the RMSE, the

worse the model accuracy and the weaker its predictive ability.
3 Results and analysis

3.1 Inverse modelling of conductivity in soil
layers at different depths

The soil conductivity data (ECe) was measured primarily using

the saturated paste method on soil samples collected during various

periods. Since the detection range of the data collected through the

EM38-MK2 is limited to the free state electrolyte content in the

deep soil space, the conductivity ECe was used to provide an

accurate expression of the salinity status of the agricultural soil,

and there was a high correlation between the conductivity ECe

collected using the saturated slurry method and the soil salinity.

Referring to the research idea of Wang et al., descriptive statistics of

soil properties established in the study area for 75 sampling points

were carried out considering the sensing range of EM38-MK2 and

its degree of response under the change of soil depth under different

modes, which can be accessed from the horizontal and vertical
Frontiers in Plant Science 07
aspects of the modelling factors, respectively (Wang et al., 2021).

Taking the data collected in June 2021 as an example, the apparent

conductivities of 0.5 m and 1.0 m in the horizontal mode and 0.5 m

and 1.0 m in the vertical mode were selected as the independent

variables, which were denoted by ECh0.5, ECh1.0, ECv0.5 and ECv1.0,

respectively. With the measured conductivity of different soil depths

collected, a linear model was established and the accuracy was

compared (see Figure 5).

The R2 of ECh0.5 in the horizontal mode reached a maximum

value of 0.87 at 20-40 cm, and thereafter, showed a decreasing trend

with increasing soil depth. And the R2 of ECv1.0 in vertical mode

reaches its highest value of 0.76 at 80-100 cm. From the above table,

it can be seen that ECh0.5 can be chosen as the modelling factor for

the 0-40 cm range. Whereas after 40-80 cm, either ECh1.0 in the

horizontal mode or ECv0.5 in the vertical mode can be chosen as the

modelling factor. In this paper, ECv0.5 in the vertical mode is chosen

as the modelling factor. At 80-100 cm, only ECv1.0 can be selected as

a modelling factor. The results of the analyses in the above table,

which are the same as those analyzed by Li et al, are consistent with

the response function model between the conductivity data and the

change in soil depth in this measurement model (Li et al., 2020).
3.2 Effect of soil moisture content on the
accuracy of conductivity inversion models

The EM38-MK2 instrument measures the free conductive

medium in the soil, and its accuracy is influenced primarily by

soil moisture and salinity. To assess the effect of moisture content

on model accuracy, soil samples were categorized into three

moisture gradients: 0-10%, 10-20%, and >20%. The samples were

divided into modeling and prediction sets in a 2:1 ratio, ensuring

that the prediction set covered the full range of moisture content.

Linear models were constructed to analyze the relationship between
FIGURE 4

Technical flow chart.
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apparent conductivity and measured soil conductivity at

each gradient.

From Figure 6, it can be observed that the model’s R² was 0.72,

and the RMSE was largest when soil moisture was in the 0–10%

range, indicating poor model accuracy. In contrast, for soil moisture

levels between 10–20% and above 20%, the R² values were 0.84 and

0.86, respectively, with smaller RMSE values. These findings suggest

that soil moisture levels above 10% have less impact on model

accuracy. To ensure model accuracy, soil moisture should be

maintained above 10% during modeling. The inverse model was

further developed for different periods, and the model accuracy for

each period is shown in Tables 1 and 2.

The accuracy of the conductivity interpretation model was

compared across different time periods. For the 0–40 cm soil

depth range, ECh0.5 in the horizontal mode was selected as the

modeling factor, while ECv0.5 and ECv1.0 in the vertical mode were

chosen for the 60–100 cm range. The results show that the model’s

accuracy and stability were higher in July and October, when soil

moisture levels were above 10%, compared to March and June when

moisture levels were lower.
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3.3 Kalman filter algorithm
and implementation

In March, June, July and October 2021, a total of four soil

sample collections were carried out, each time 18 fixed points were

selected to sample the soil profile at different depths, and measured

conductivity data were measured for each period. The optimal

sampling scheme is selected by comparing the effect of different

isotopes on the accuracy of the inversion model, so that the

measured conductivity of soil layers at different depths over time

can be predicted with the help of the apparent conductivity of soil

layers representing different effective depths in different

measurement modes. In order to further explore the relationship

between soil salinity in the profile and soil depth, the relationship

between soil depth and soil salinity in the profile was further

investigated with the help of measured conductivity ECe data

measured at different depths of the soil layer in each period.

Firstly, 12 sets of the 18 sets of measured conductivity data for

each period were randomly selected on a 1:2 basis as the modelling

set. The sample series used were affected by soil depth, and the effect

with soil depth was removed using a soil depth adjustment method

with dummy variables, followed by a multiple linear regression

prediction model using the least squares method.

From the Kalman filter and its variant forms, it can be seen that

the Kalman filter algorithm is more suitable for linear problems;

while the extended Kalman filter algorithm can be processed

through the Taylor’s formula, which can convert the nonlinear

problem into a linear problem to be processed; and the ensemble

Kalman filter algorithm is more suitable for the multi-dimensional

space which is strongly nonlinear (Khodarahmi and Maihami,

2023). In view of the strong linear correlation between the salt

content of the soil profile and the depth of the soil layer at different

times and at different depths, the Kalman filter algorithm was

chosen to further study the relationship between the salt content

of the profile and the depth of the soil layer.

Using the Kalman filter algorithm, the multivariate linear

inverse prediction models of measured conductivity and soil

depth for different periods were calibrated, and the accuracy of

the models was all improved to some extent. The best correlation

between predicted and measured conductivity data was found in

March, with an R2 of 0.79. It is significantly higher than the other

three months. However, the model accuracy before calibration

reached 0.78, with the lowest growth rate. The model-corrected

determination coefficients in June and October were slightly higher

than that in July, with R2 being 0.59 and 0.60 respectively; however,

the model-corrected determination coefficient R2 in July increased

the most, from 0.32 to 0.58, with an increase rate of 81.3%.

Therefore, using the dummy variable processing method and the

least squares method to establish the multivariate linear inversion

model of measured conductivity and soil depth in each period, and

then using the Kalman filter algorithm to correct the model, the

correlation between the model predicted value and the measured

value was obviously improved, and the model prediction effect

became better. Comparison of the accuracy of the corrected

predicted and measured values for different periods (see Figure 7).
FIGURE 5

Soil depth determination factor R2 for different modelling factors.
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In Figure 7, it can be seen that the best fit between the corrected

best predicted values and the measured values for the month of

March was the best, with a fitting accuracy (coefficient of

determination R2) as high as 0.79 and the smallest root mean

square error (RMSE) of 96.17 mS cm-1; The fit was relatively worst in

July, with a fitting accuracy R2 of only 0.58 and a root mean square

error (RMSE) of 53.74 mS cm-1. The fit is also better in October, and

the fitting accuracy R2 also reaches 0.60, while its root mean square

error (RMSE) is also lower at 105.58 mS cm-1. The fit between the

corrected best predictions and the measured values shows some

variability across time, which is due to a number of reasons.

Measurement errors caused by objective reasons such as ambient

temperature, soil moisture and instrument sensitivity all have a

certain impact on the experimental results and predicted values,

which in turn cause some variability in the measured data and

predicted results in different periods.

For the implementation of the Kalman filtering algorithm, the

observation equations are used as the basis for further determining

the state function, setting up the number of simulations (there are a
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total of 90 points in each period, so it is set to be 90, and the period

is 5), the simulation time, the system state noise, and the

observation noise, as well as further initializing the state

equations, the output equations, and the covariance matrix. The

initial value of the Kalman filter state is given and the error value is

initialized and set to 0. On this basis, the operation can be carried

out according to the idea of Kalman filter algorithm. In the

operation process, the prediction of the state is needed first, and

then the prediction error autocorrelation matrix is derived; Next,

the Kalman gain solution is performed; Finally, state estimation and

observation prediction can be obtained. After several iterative

MATLAB operations, the corrected best predicted values were

obtained. The simulated comparison between the measured

values and the corrected best predicted values for different

periods of time, and the correlation control plot between the two

(see Figure 8).

As can be seen in Figure 8, overall, the fit between the corrected

best predicted and measured values for different periods is better,

with a high degree of approximation between the two. The Kalman
TABLE 1 Model of conductivity interpretation in different periods.

ECe=a+b×ECh0.5 ECe=A+B×ECvx

0-20(cm) 20-40(cm) 40-60(cm) 60-80(cm) 80-100(cm)

Month a b a b A B A B A B

March -0.679 0.907 -0.665 0.834 -0.083 0.503 0.274 0.454 0.325 0.476

June -0.645 0.769 0.843 0.694 0.264 0.456 0.283 0.463 0.304 0.473

July -1.566 1.566 -1.424 1.011 -0.675 0.785 0.301 0.496 -0.079 0.521

October -0.671 0.863 -1.347 1.432 -0.372 0.534 -0.405 0.573 0.353 0.479
f

a, b, A, B represent constants; ECe represents measured conductivity data; ECh0.5 represents 0.5m apparent conductivity data in horizontal mode; ECvx represents 0.5 m and 1.0 m apparent
conductivity data in vertical mode.
FIGURE 6

Comparison diagram of model accuracy under different soil moisture gradient.
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filter algorithm was used to calibrate the multivariate linear model

of measured conductivity and soil depth for each period, to find out

the correlation between the measured and predicted values of the

model for each period after calibration, and to compare the

accuracy of the model with the accuracy of the model before

calibration. The results of the comparison of the fitting accuracy

between the corrected best prediction and the measured values are

obtained for different periods.

In order to further investigate the relationship between soil

profile salinity and soil depth, the results of this research were

combined with the results of previous studies. The predicted values
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obtained in each period were averaged according to the depth of the

soil layer. In order to facilitate the comparison of the results, the

overall effect of soil salinity accumulation between different months

corresponded to July, June, March and October in descending

order, and the related soil salinity accumulation process was

plotted (see Figure 9).

As can be seen in Figure 9, soil conductivity showed a gradual

accumulation trend at different periods. From the month of March,

we can see that salts appeared to accumulate significantly in the soil

layer from 40-80 cm and reached a peak value of 0.76 dS m-1 at 60-

80 cm. Whereas, soil conductivity in October is peaked at 40-60 cm
FIGURE 7

Comparison of observed and simulated values before and after assimilation at different time periods.
TABLE 2 Differences in model accuracy for different soil moisture content gradients.

Date Judging Indicators 0-20(cm) 20-40(cm) 40-60(cm) 60-80(cm) 80-100(cm)

2021/03/10 R2 0.81 0.78 0.89 0.86 0.77

RMSE 0.0673 0.1284 0.0627 0.0671 0.1307

2021/06/03 R2 0.71 0.82 0.81 0.80 0.72

RMSE 2.3875 0.9087 1.9132 0.9284 2.3894

2021/07/07 R2 0.79 0.89 0.87 0.88 0.85

RMSE 0.1387 0.0723 0.0834 0.0915 0.0882

2021/10/19 R2 0.77 0.84 0.86 0.85 0.86

RMSE 0.1289 0.0923 0.0627 0.0804 0.0757
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FIGURE 8

Measured and predicted values by period.
FIGURE 9

Salt accumulation process in soil layers in different months.
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with a value of 0.86 dS m-1. However, from 40-80 cm, it is still a

highly aggregated zone of salts at soil depth. In June and July salinity

showed an aggregation with increasing soil depth, and this trend

remained significant from 40-100 cm. Combined with the actual

growth cycle of cotton and planting methods in South Xinjiang, the

months of March, June, July and October can be defined as: pre-

sowing, bud stage, boll stage and harvesting period, respectively.

The months of June and July are the growing period of cotton,

during which cotton is grown using drip irrigation, and it can be

seen that the conductivity at 0-60 cm is significantly lower than in

the other two months. However, as can be seen in Figure 4, soil

salinity appeared to accumulate significantly in the 60-100 cm soil

layer, both in June and July (growing period) and in March and

October (non-growing period). Further explanation, although drip

irrigation can wash the salt in all directions, but in the vertical

direction, with the deepening of the soil layer, the washing effect will

gradually weaken, and the salt will eventually accumulate in the

deep soil. After the cotton harvest, it is necessary to carry out pre-

winter deep ploughing, irrigation and alkali pressure, drainage and

irrigation support, in order to achieve the purpose of salt washing

and desalination. From Figure 4, it can be seen that before sowing in

March, the conductivity from 0-40 cm was lower and less variable

than that in October (harvesting period), with a mean value of 0.47

dS m-1. This further indicates that, after winter irrigation, the

salinity of the soil surface was uniformly distributed, which is

basically in line with the findings of Feng J et al. (Feng et al., 2021).

From the above research results, it can be seen that using the

Kalman filter algorithm, the multivariate linear model can be

corrected in order to improve the model prediction accuracy.

Although the corrected model accuracy using Kalman filter

algorithm facilitates the search and discovery of intrinsic patterns

between soil profile salinity and soil depth. However, the initial

model and its accuracy before correction are still important when

using soil profile conductivity to study the real relationship between

soil profile salinity and soil depth. This is because in Kalman

filtering, the initial model and its accuracy determine the filter’s

initial performance, convergence speed, and the benchmark for
Frontiers in Plant Science 12
subsequent corrections. If the initial state estimate deviates too

much from the true value, the filter will need more time or iteration

steps to converge to the correct state, and it may also directly affect

the filter’s performance and cause the system to diverge. Therefore,

reasonably setting the initial state, error covariance, and model

parameters can not only ensure the stability of the filter, but also

provide a reliable basis for subsequent correction and optimization.
3.4 Application of data assimilation models
in cotton yield and economic
efficiency forecasting

The whole life span of cotton is the total number of days from

the cotton seeding to the end of the flower harvest, about 210 days.

It can be divided into five reproductive stages: seedling emergence,

seedling stage, bud stage, boll stage and harvest stage (Lu et al.,

2022). And Xinjiang because of the special geographic location, the

use of under-membrane drip irrigation for planting, the study area

has been used 1 membrane 2 tubes 4 rows of under-membrane drip

irrigation technology planting cotton, in which the membrane

width of 1.25 m, wide rows, narrow rows, as well as the distance

between the membrane were 0.65 m, 0.12 cm and 0.2 cm,

respectively, the drip irrigation belt laying (see Figure 10).

Cotton goes through four key periods from nutrient growth to

reproductive growth: seedling stage (April), bud stage (June), boll

stage (July), and fluffing stage (August). Considering the sampling

date, the information collected in the previous five years was

utilized, so the bud stage and boll stage were selected to

determine the best yield estimation factor for cotton (see

Figure 11). The relevant information of Cotton Plant Height,

Chlorophyll and Production are shown in Table 3.

In this study, the seed cotton yield of the first three years was

used as the modeling set and the data of the last two years as the

validation set, respectively. Different soil conductivity data at bud

stage (June) and boll stage (July) were used as modeling factors to

establish multivariate linear models.
FIGURE 10

Cotton fertility period and drip irrigation belt arrangement (m).
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Table 4 shows the feasibility of multivariate linear modeling

using different soil conductivities in June and July to predict seed

cotton yield. Bringing the conductivity data predicted using data

assimilation into the model yields 5203-5551 kg hm-2, while the

study area is 15 hm-2, so the total production should be: 78048-

83269 kg. According to the survey statistics of cotton purchase price

of 2020 face of each regiment of Aral Reclamation Area, the

purchase price of cotton is in the range of 4.88 - 5.34 RMB kg-1,

the government subsidized price of 2.26 RMB kg-1, but the more

frequent cotton purchase activities in the early and middle stage, the

final farmers per kilogram of cotton revenue average price of about

7.15 RMB. And seeds, fertilizers, pesticides, mulch, drip irrigation

belt, water, electricity, machine power, machine picking fee and

other planting costs of about 32,250 RMB hm-2. Based on the

statistical results of cotton unit price and planting costs in Alar

Reclamation Area, combined with the cotton production in the

study area, the study area in 2021, the revenue should be: 74,296.67-

111,621.54 RMB.
4 Discussion and conclusions

4.1 Effectiveness of modeling factors

This study evaluated the suitability of different apparent

conductivity modeling factors across various soil depths, using

the EM38-MK2 geophysical conductivity meter. By comparing

the performance of different modeling factors in multiple

measurement modes, the most effective factors were identified for

each depth range. The findings of the present study are in

agreement with those of some previous studies using conductivity

instruments for soil salinity prediction, while also presenting new
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insights. Although, Song and Zhao et al. (Zhao et al., 2013; Song

et al., 2019) have used EM38 and combined with soil measured

conductivity data (ECe) to analyze salinization at different soil

depths and achieved better research results. However, it is

modeled by selecting the apparent conductivity data (ECa) at a

specific soil depth, at the same depth, and in different measurement

modes (horizontal and vertical modes), in order to determine which

mode has applicability for ECa. Instead, this paper is not limited to

the measurement model, but is modeling ECe at different soil

depths using ECa at different depths and in different modes,

respectively, to determine the most effective factor in each depth

range. Compared to Song and Zhao et al, this study does not need to

re-collect ECa at a specific soil depth, and extends the scope of

consideration, which has the advantage of rapidity and simplicity,

and saves financial and material resources. As for the research

results, Sun et al. (Sun et al., 2012) had used EM38 to identify

heavily saline soils and found that EM38 horizontal mode

measurements were more sensitive to shallow soils, while vertical

mode measurements were more sensitive to deep soils, which was

further verified by the results of the present study, especially in

the depth ranges of 0-40 cm and 80-100 cm, with ECh0.5 in the

horizontal mode and ECv1.0 in the vertical mode The performance

was superior and the results of this study were reliable. The reasons

for the consistency are as follows: First, the research areas of this

article and the scholars are both in the Tarim Basin in southern

Xinjiang, where rainfall is scarce, evaporation is strong, and soil

salinization is serious. Secondly, EM38 is used to predict soil salinity

in different soil layers with the help of apparent conductivity. The

selected methods are all linear modeling, and the fitting effect

is significant.

In this paper, by optimizing the sampling strategy based on the

performance of different modeling factors, the accuracy of the soil

salinity prediction model has been significantly improved, reducing

the need for labor-intensive field sampling, but there are some

limitations. The data were mainly derived from samples under a

single climatic condition, so the broad applicability of the model

may be limited. The results of this study have yet to be validated

under a wider range of regional and climatic conditions than those

of Mello et al. (Mello et al., 2022) who used datasets with different

lithologies, landforms and soil types. Future research should focus

on improving the accuracy of global models for large-scale

applications, potentially through the integration of other

methods, such as multiple regression and covariance modeling, to

enhance prediction accuracy and extend these findings to broader

geographic regions.
4.2 The advantages of the Kalman
filter algorithm

The Kalman filtering algorithm was called LLMS (Linear Least

Mean Squares) when it was first proposed, because it optimizes a

linear stochastic system with noise-containing sensor

measurements in a least-square manner to obtain an optimal

solution. In other words, it optimizes the collected data that do

not contribute or interfere with the system. As for the application of
TABLE 3 2016-2020 cotton plant height, chlorophyll and seed
cotton production.

Year Plant
height/cm

Chlorophyll/
SPAD

Cotton seed yield/
(kg·hm-2)

2016 84.65 ± 9.03 36.49 ± 1.74 4 984.37 ± 112.95

2017 83.31 ± 6.63 40.39 ± 4.35 5 355.61 ± 98.13

2018 82.63 ± 2.5 42.29 ± 3.41 5 229.44 ± 179.02

2019 67.31 ± 5.01 32.85 ± 2.0 4344.70 ± 115.10

2020 59.65 ± 2.51 31.78 ± 2.41 4046.56 ± 243.63
SPAD stands for Soil Plant Analysis Development.
TABLE 4 Cotton yield prediction model based on different
critical periods.

Month Model R2 RMSE
(kg·hm-2)

June . y = 5630:70 − 157:7125x3 −
33:93x4.

0.98 1023.23

July y = 5280:58 + 259:50x2 − 338:78x5 0.99 1086.03
x2 represents 20-40 cm conductivity data; x3 represents 40-60 cm conductivity data; x4
represents 60-80 cm conductivity data; x5 represents 80-100 cm conductivity data; y
represents cotton production.
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Kalman filter algorithm, some scholars have long applied it to soil

moisture forecasting and achieved good research results (Gruber

et al., 2019). The vast majority of scholars use Kalman filter

algorithm research object in soil moisture, for with the help of

soil apparent conductivity data, the study of soil salinization results

is less. Huang et al. (Huang et al., 2017a) have used electromagnetic

conductivity imaging and ensemble Kalman filter to monitor and

model soil water dynamics. The results of EnFK modeling (Lin’s

concordance = 0.89) were superior to the physical model, and

superior or equivalent to the empirical model (Artificial Neural

Networks) on loamy, clayey, and biphasic soil profiles. This shows

the feasibility of combining soil apparent conductivity data with the

ensemble Kalman algorithm. While the study area of this paper is

arid saline soil and the soil salinity prediction model is a linear

model, the Kalman filter algorithm is preferred to calibrate and

validate the model to verify the feasibility of the scheme. The results

showed that the Kalman filter method significantly improved the

accuracy of the model. Although the corrected R²values for June

and October were slightly higher than those for July (0.59 and 0.60,

respectively), the model showed the greatest improvement in July,

with an 81.3% increase in R². However, the intense heat and high

temperatures in July may have interfered with the sensitivity of the

instrument, resulting in the worst model performance during this

period, with an R² of only 0.58 and a maximum RMSE of 337.22 mS
cm-1. The model performance for the month of March was also

higher than that for the month of October (0.59 and 0.60,

respectively). In March, on the other hand, its coefficient of

determination (R²) reached 0.79, which is higher than the values

of the other months, but the R²of its linear model is 0.78, and the

linear model calibrated by the Kalman filter algorithm is equivalent

to the linear model. It can be seen that compared with the
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traditional model, the Kalman filter algorithm is able to

dynamically adjust the model predictions so as to continuously

improve the predicted values according to the observed data.

Although, the results of these studies show that the Kalman

filter method algorithm can be an important tool to improve the

accuracy of soil salinity prediction, especially when applied to the

linear relationship between soil depth and salinity content.

However, there are still some limitations of the research results.

First, the study area of this method is extremely arid salinized soil.

The feasibility of this idea needs to be further verified if the

salinization degree of the soil is studied in a non-arid area.

Secondly, the prerequisite salt prediction model using Kalman

filter algorithm is a linear model, and once the model is

nonlinear, the algorithm has to be re-selected for validation

(Huang et al., 2017b). Therefore, future research will have to

explore the selection of suitable data assimilation algorithms

according to the actual situation.
4.3 Implications for cotton cultivation

Cotton production areas in South Xinjiang are deeply affected

by soil salinization, which on the one hand will lead to soil loss of

fertility, crop yield reduction; on the other hand, it will also have a

great impact on the ecological environment (Li et al., 2014).

Therefore, the monitoring, management and improvement of

salinized farmland is particularly important, and how to obtain

soil salinity information quickly, accurately and in real time is the

basic premise of management and improvement of farmland. In this

paper, Kalman filter algorithm is applied to the multivariate linear

model of conductivity and soil depth, which greatly improves the
FIGURE 11

Salt accumulation processes in the 0-100 cm soil layer, 2016-2020.
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accuracy of the model. The relationship between soil profile salinity

and depth was clearly established, and the model predictions were

validated by comparing the measured and predicted conductivity

values. For the spatial and temporal scale changes of salinity in the

0-100 cm soil layer of drip-irrigated cotton under the membrane at

different times, the salinity in the 0-20 cm soil layer in the vertical

direction at the inter-membrane site was less, and the salinity in the

60-100 cm layer was accumulated to a greater extent. Drip irrigation

water washed the salts in all directions, and in the vertical direction,

as the soil layer deepened, the washing effect gradually weakened,

and the salts eventually accumulated in the deep soil layer.

Although drip irrigation water has a significant leaching effect on

salts, but this is a certain number of times and short-lived (Zhao

et al., 2016). In contrast, under strong transpiration, the root system

of cotton absorbs water continuously, and the root system absorbs

water so that salts are transported to the root system. Although

cotton can absorb and utilize some of the trace elements in brackish

water, most of the salts remain in the root zone.

The numerical simulation results of this study showed that the

80-100 cm soil layer was relatively stable with a small range of salinity

dynamics due to less water infiltration. In the 40-60 cm soil layer, the

salinity is significantly higher than that in the 0-20 cm layer, and the

deep soil water and salt have a tendency to migrate to the bare surface

at the edge of the membrane due to evaporation and root absorption.

In this study, we found that soil salts accumulated during the

reproductive period of cotton fluctuated in a sawtooth pattern, and

showed a gradual accumulation trend. This is due to the increase in

soil water content after irrigation led to a transient decrease in the

salinity of each soil layer, and then soil water gradually evaporated

and dissipated as well as being absorbed and utilized by cotton,

resulting in a gradual rebound of soil salinity (Liu et al., 2013); Drip

irrigation is effective in reducing salinity in the upper soil layer (0-60

cm), but salts tend to accumulate at greater depths over time,

suggesting the need for additional salt management practices such

as deep plowing, winter irrigation, and drainage. Generally, no

irrigation is required during the seedling stage, but when the

relative soil moisture content is lower than 50%, small irrigation

will be carried out; when the relative soil moisture content is lower

than 60% during the bud stage, timely irrigation and topdressing of

water-soluble fertilizers are required. Generally, irrigation is carried

out 1-2 times during this period, and the irrigation cycle is 10-12

days; when the relative soil moisture content is lower than 70%

during the flower and boll stage, timely irrigation and topdressing of

flower and boll fertilizers are required. Generally, irrigation is carried

out 8-10 times during this period, and the irrigation cycle is 7-10

days. After the full boll stage, the amount of irrigation gradually

decreases, and irrigation will be stopped before defoliation. However,

during the growth period, specific measures must be taken according

to the specific situation. For example: if the temperature is high in

autumn, the water stop time must be appropriately postponed (Datta

et al., 2019). These measures can help prevent salt accumulation at

deeper depths and support the sustainable cultivation of cotton in

arid regions. And this study can better simulate the spatial and

temporal distribution of soil salinity in drip-irrigated cotton fields

and predict the yield and production of cotton fields, but in the future

simulation process need to take into account the factors of soil
Frontiers in Plant Science 15
evaporation, plant transpiration and root water uptake, so that the

more reasonable optimization of the model parameters, the closer the

simulation results are to the actual measurement values (Li

et al., 2019).
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