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expression analysis of the WRKY
gene family in Sophora
flavescens during tissue
development and salt stress
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Tianzeng Niu1* and Ake Liu1*

1Department of Life Sciences, Changzhi University, Changzhi, China, 2College of Life Science,
Nanyang Normal University, Nanyang, China
Sophora flavescens is a traditional Chinese medicinal herb rich in various

bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits

remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family

is one of the largest plant-specific TF families and plays a crucial role in plant

growth, development, and responses to abiotic stress. However, a

comprehensive genome-wide analysis of the WRKY gene family in S.

flavescens has not yet been conducted. In this study, we identified 69 SfWRKY

genes from the S. flavescens genome and classified them into seven distinct

subfamilies based on phylogenetic analysis. Transposed duplications and

dispersed duplications were found to be the primary driving forces behind the

expansion of the SfWRKY family. Additionally, several cis-acting elements related

to the stress response and hormone signaling were discovered within the

promoter regions of SfWRKYs. Transcriptomic analyses across five tissues

(leaves, flowers, pods, roots, and stems) revealed that genes exhibiting high

expression levels in specific tissues generally showed high expression across all

the examined tissues. Coexpression network constructed based onmetabolomic

and transcriptomic analyses of root and pod development indicated that

SfWRKY29 may play a significant role in regulating the biosynthesis of

secondary metabolites during tissue development. The RT-qPCR results of

gene expression analysis revealed that several SfWRKY genes were significantly

induced in response to the accumulation of secondary metabolites or salt stress.

Our study systematically analyzed WRKY TFs in S. flavescens, which provides

valuable reference data for further studies on the key roles of SfWRKY genes in

growth development as well as their responses under salt stress conditions.
KEYWORDS

Sophora flavescens, WRKY gene family, phylogenetic analysis, tissue development,
salt stress
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1 Introduction

The WRKY family is one of the largest transcription factor (TF)

families, which has been reported extensively involved in regulating

the biosynthesis of secondary metabolites, developmental processes

and stress responses (Goyal et al., 2022; Song et al., 2023). Since the

first WRKY protein structure was found in sweet potato (Ipomoea

batatas L.) (Ishiguro and Nakamura, 1994), WRKY TFs have been

extensively identified in many plants, such as Polygonum

cuspidatum, Artemisia annua, Fagopyrum tataricum etc (Bao

et al., 2018; Lv et al., 2020; Chen et al., 2021). The WRKY proteins

are named for their highly conserved WRKY domain (~60 amino

acids), which contains a conserved motif (WRKYGQK) located at

the N-terminus, followed closely by a zinc finger motif (Eulgem

et al., 2000; Cheng et al., 2019). The WRKY region consists of four

lines with a b-fold composition of Zn2+ that coordinates with Cys/

His residues to form a zinc finger structure (Yamasaki et al., 2005;

Duan et al., 2007).

In terms of phylogeny, WRKY proteins are classified into three

groups (I-III) based on the number of WRKY domains and the type

of zinc finger structure. Group I proteins contain two WRKY

domains and a C2H2 (CX4-5CX22-23HXH) zinc finger motif. In

contrast, both Group II and Group III proteins possess only a single

WRKY domain along with either a C2H2 or a modified C2HC

(CX7CX23HXC) zinc finger motif (Goyal et al., 2022; Long et al.,

2023). Furthermore, Group II can be subdivided into five distinct

subgroups (IIa~IIe). The amino acid sequences of WRKY proteins

specifically bind to the W-box cis-regulatory element (TTGACT/C)

within target gene promoters, thereby inducing their expression.

This interaction plays a crucial role in regulating plant secondary

metabolite synthesis, growth and development, as well as responses

to biotic and abiotic stresses (Wani et al., 2021; Zhang et al., 2018).

Increasing evidence suggested that WRKYs serve as important

regulatory foundations for plant growth and development (Jiang

et al., 2017; Wang et al., 2023). Under short-day conditions,

WRKY12 and WRKY13 were involved in regulating the flowering

time of Arabidopsis thaliana (Li et al., 2016; Ma et al., 2020). In rice,

OsWRKY78 plays a role in stem elongation and seed development

(Zhang et al., 2011). WRKY26, WRKY45, and WRKY75 participate

alongside ethylene in inhibiting the growth of primary roots and

lateral roots during shade-avoidance response (Rosado et al., 2022).

Following treatment with As + Fe, the expression of rice

OsWRKY71 increases, promoting root system development while

also participating in the regulation of gibberellin synthesis pathways

(Mirza and Gupta, 2024). In both A. thaliana and rapeseed,

WRKY70 was primarily expressed in leaves where it plays a

significant role in leaf senescence (Ülker et al., 2007; Liu et al.,

2023). Furthermore, it has been demonstrated that WRKY TFs

possess functions that regulate the biosynthesis of terpenoids,

alkaloids, flavonoids, etc. AaWRKY1 positively regulates

artemisinin biosynthesis by promoting the expression of DBR2,

CYP71AV1, and ADS genes within A. annua (Han et al., 2014).

VqWRKY31 activates salicylic acid defense signals, which alter the

accumulation of quercetin, flavonoids, and proanthocyanidins (Yin

et al., 2022). In Coptis chinensis, CcWRKY7, CcWRKY29 and
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CcWRKY32 may regulate berberine alkaloid biosynthesis (Huang

et al., 2023). PeWRKY30 serves as a key factor for flavonoid

biosynthesis in passion fruit (Ma et al., 2024).

Previous studies have demonstrated that WRKY TFs play a

crucial role in plant defensive responses to environmental stress

(Jiang et al., 2017; Goyal et al., 2022; Feng et al., 2023). The

overexpression of SlWRKY8 in tomato significantly enhances its

resistance to pathogen infection and positively regulates responses

to drought and salt stress (Gao et al., 2019). Furthermore, in tomato,

SlWRKY57 functions as a negative regulator in the response to salt

stress by directly inhibiting the transcription of salt-responsive

genes (SlRD29B and SlDREB2) as well as ion homeostasis genes

(SlSOS1) (Ma et al., 2023). Under low temperature and drought

conditions, the overexpression of PoWRKY1 in A. thaliana has been

shown to improve seed germination activity and promote root

growth in transgenic plants (Wei et al., 2021). In addition, under

drought and salt stress, the overexpression ofMfWRKY40 facilitates

taproot elongation, enhances osmoregulation, and improves

tolerance in A. thaliana plants (Huang et al., 2022). In wheat, the

TaWRKY plays a role in regulating the response to aluminum and

manganese ion stress (Luo et al., 2024). Tomato WRKY23 can

enhance the salt and osmotic stress tolerance of transgenic

Arabidopsis by modulating the ethylene and auxin pathways

(Singh et al., 2023). Overexpression of TaWRKY17 can

significantly enhance the salt tolerance of wheat (Yu et al., 2023).

Therefore, WRKY TFs can regulate the growth and development

and environmental adaptation from multiple dimensions.

Sophora flavescens (Kusen), a Chinese herbal medicine, is

widely used in the treatment of inflammation, solid tumors, and

analgesic effect (Lee et al., 2018; Cheng et al., 2022). The main active

ingredients in S. flavescens are alkaloids and flavonoids (Dong et al.,

2021), which are involved in treating diseases such as hepatitis,

tumors, and diabetes. Comparative genomics analysis can provide

us with an efficient way to identify members of certain gene family

and conduct studies on their potential functions (Liu et al., 2024).

Given the significant contribution of the WRKY gene family to

plant stress tolerance and secondary metabolite biosynthesis, in this

study, we conducted phylogenetic analysis, sequence characters,

tissue-specific expressions of WRKY genes in S. flavescens. Our

findings will provide insight into the mechanism of environmental

adaptability and secondary metabolite biosynthesis in S. flavescens,

and also provide reference information for molecular breeding.
2 Materials and method

2.1 WRKY gene identification and sequence
retrieval in S. flavescens

The genome and protein sequences of S. flavescens and Sophora

moorcroftiana were obtained from previous studies (Qu et al., 2023;

Yin et al., 2023). The HMM configuration file for WRKY domain

(PF03106) was downloaded from the Pfam database (El-Gebali

et al., 2019). Candidate WRKY members coding in the genomes of

S. flavescens and S. moorcroftiana were identified using HMMER
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(v3.2.1) software, with an E-value threshold set at 10-2 (Prakash

et al., 2017). Only sequences containing the WRKY domain were

considered as members of the WRKY family. To ensure the

completeness of SfWRKY repertoire, we also examined the

assembled novel transcripts obtained from the transcriptome

assembly in section 2.5 for member identification. Furthermore,

the WRKY genes in A. thaliana were derived from previous study

(Abdullah-Zawawi et al., 2021).
2.2 Physicochemical properties of
WRKY TFs

TheWRKY genes of S. flavescens were named according to their

relative positions on the chromosomes. To investigate their protein

properties, we utilized the ProtParam program (ExPASy tools,

http://web.expasy.org/protparam/) to estimate the molecular

weights (MWs) and theoretical isoelectric points (pI).
2.3 Phylogenetic analysis of the
WRKY family

To construct the phylogenetic tree of the WRKY members, we

utilized the ClustalW program in MEGA 7 (v7.0.26) software

(Kumar et al., 2016) to perform multiple sequence alignments of

the WRKY domain regions from above mentioned three species.

Subsequently, we employed the Neighbor-Joining (NJ) method

within MEGA 7 to build the phylogenetic tree, selecting Poisson

model for amino acid substitution and applying pairwise deletion

for gap treatment. To ensure the accuracy, we assessed the support

for each relative branch through 1000 bootstrap replicates.
2.4 Prediction of gene duplications and
cis-acting regulatory elements

The DupGen_finder software (Qiao et al., 2019) was employed

to conduct analysis of gene duplication patterns in S. flavescens. It

includes whole genome duplication (WGD), tandem duplication

(TD), transposed duplication (TRD), proximal duplication (PD),

and dispersed duplication (DSD). The non synonymous

substitution rate (Ka) and synonymous substitution rate (Ks) for

TD gene pairs were calculated using KaKs_calculator3 (Zhang,

2022). The YN (Yang and Nielsen) model (Yang and Nielsen,

2000) was selected to compute the Ka/Ks ratio, which serves as

an indicator of selective pressure on duplicated gene pairs. The gene

density and intergenomic syntenic block analysis were conducted

following the methods of Feng et al. (2024). Based on the genomic

annotation information, TBtools software was utilized to obtain the

upstream two kb genome sequence of SfWRKY genes from start

codon. Subsequently, potential cis-regulatory elements were

predicted and identified using default parameters via the

PlantCARE website (Lescot, 2002).
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2.5 Analysis of SfWRKY expression profiles
based on transcriptome sequencing

To investigate the expression patterns of the SfWRKY genes in

different tissues and growth stages, we collected four tissues (stem,

flower, leaf, and root) of S. flavescens cultivated for over five years at

Changzhi International Shennong Traditional Chinese Medicine

Cultural Expo Park (Shangdang District, Changzhi City, Shanxi

Province) on July 12, 2021. Additionally, we sampled pods at six

different developmental stages between July 12 and August 6, 2021,

with sampling conducted every five days. The roots of S. flavescens

at eight distinct developmental stages, which were sown in

September 2022, were collected on the 20th day of each month

from April to November 2023 in Dianshang County (Lucheng

District, Changzhi City, Shanxi Province). Each sample comprised

three biological replicates collected in 50 mL centrifuge tubes and

immediately frozen in liquid nitrogen before being stored at -80°C

for further analysis. The experimental methods and analytical

approaches for transcriptomics (stem, flower, leaf, and root; pod

and root development) and metabolomics (pod and root

development) were adapted from Zhong et al. (2024). The raw

data from RNA-seq samples were archived in the NCBI database

under accession number PRJNA1136989. The co-expression

network of transcriptomes and metabolomes for pods and roots

was constructed using R (v 4.2.2) with the WGCNA (v1.71)

(Langfelder and Horvath, 2008) following the methods of Liu

et al. (2024). The networks with inter-gene weight values greater

than 0.3 were visualized using Cytoscape (v.3.8.2) (Otasek

et al., 2019).
2.6 Expression analysis of SfWRKY genes
based on RT-qPCR

The roots of S. flavescens cultivated in Dianshang County were

collected for real-time quantitative PCR (RT-qPCR) analysis. The

plants included two different cultivation years, C and S represent the

S. flavescens sowed in 2024 and 2022, respectively (sowing occurs every

April), with samples collected in July 2024. For salt stress treatment,

one-year-old seedlings of S. flavescens were irrigated with 250 mM

NaCl solution (Salt), while the normal condition (NC) irrigated with

equivalent distilled water. After treatment for 14 days, leaves were

collected for RT-qPCR analysis. Each sample consisted of three

biological replicates were collected into 50 mL centrifuge tubes and

immediately frozen in liquid nitrogen before being stored at -80°C.

Total RNA was extracted from the tissues of S. flavescens using

the polysaccharide polyphenol total RNA extraction kit (Beijing

GeneBetter, China). The integrity of the RNA was confirmed with a

Nanodrop 2000 spectrophotometer (Thermo Fisher, USA). Reverse

transcription was performed using the HiScript II Q RT SuperMix

kit (Takara, Takara Biomedical Technology (Beijing) Co., Ltd.),

followed by qPCR utilizing the SYBR qPCR Master Mix kit

(Vazyme, Nanjing, China). Specific primers were designed using

Primer5 software (v5.00) (Supplementary Table S1). EF-1a was
frontiersin.org

http://web.expasy.org/protparam/
https://doi.org/10.3389/fpls.2024.1520786
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1520786
utilized as the reference gene. All reactions were performed in

triplicate, and the relative expression levels of genes were calculated

using the 2−△△Ct method. Statistical significance was assessed

using Student’s t test.
3 Results

3.1 Sixty-nine SfWRKY genes identified in
S. flavescens genome

We totally identified 69 SfWRKY genes based on genomic and

transcriptomic data, which were named SfWRKY01-SfWRKY69

according to their positions on the chromosomes (Figure 1;

Supplementary Table S2). The 69 SfWRKY genes encoded

proteins of varying sizes, ranging from the largest protein

(SfWRKY12) with a molecular weight (MW) of 83.5 kD and

composed of 757 amino acids, to the smallest protein

(SfWRKY56) with an MW of 18.8 kD and containing 167 amino

acids. The theoretical isoelectric point (pI) ranges from 4.8

(SfWRKY05) to 9.78 (SfWRKY18), indicating that different

SfWRKY proteins perform various functions under different

microenvironments. The 69 SfWRKY genes are unevenly

distributed across nine chromosomes of S. flavescens (Figure 1),

with the majority located on chromosome 4 (Chr4, 15 genes) and

Chr6 (12 genes), followed by Chr7 with 10 genes, and the least on

Chr9 with only three genes.

Through correlation analysis between theWRKY gene numbers

from the previous studies and their corresponding genome size, the

former was not linearly correlated with the latter (Pearson’s

correlation coefficient (r) = -0.0440, p > 0.05; Supplementary

Figure S1). The number of SfWRKY genes was lower than those
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of A. thaliana (72), S. moorcroftiana (83),Medicago sativa (91), and

Arachis hypogaea (158). However, it is relatively higher compared

to other plants, such as Panicum miliaceum (32), Platycodon

grandiflorus (42), and Dendrobioum catenatum (62). This

indicates that there is no significant correlation between the size

of a species’ genome and the size of the WRKY gene family.
3.2 Multiple sequence alignment,
phylogenetic analysis and classification
of SfWRKY genes

To further understand the evolutionary diversity of the

SfWRKY genes, we constructed an NJ tree for the WRKY family

members of S. flavescens, S. moorcroftiana, and A. thaliana based on

their WRKY domains (Figure 2). Accordingly, the SfWRKY

members were classified into three well defined groups. The 69

SfWRKY genes were unevenly distributed among the three groups,

with 16 members in Group I, 44 members in Group II, and nine

members in Group III (Figure 2B). The majority of S. flavescens and

S. moorcroftiana WRKY members exhibit a one-to-one clustering

pattern on the evolutionary tree, whereas the Arabidopsis WRKY

members tend to form a cohesive cluster. Members in Group I have

two WRKY domains located in N-terminal and C-terminal regions.

Group II has largest member number, which is further subdivided

into five subfamilies (Figure 2C, IIa-IIe). Groups IIa and IIb tend to

cluster into one branch, while groups IId and IIe tend to cluster

together. In Group III, four closely located members (within 0.32

Mb) on the chromosome of S. moorcroftiana tend to cluster

together, possibly originating from tandem duplication events.

Among these groups or subfamilies, the member number in S.

flavescens and S. moorcroftiana was similar (Figures 2B, C).
FIGURE 1

Chromosome distribution of SfWRKY genes. The chromosomal position of each SfWRKY gene was mapped according to the genome annotation file
of S. flavescens. The chromosome number is labeled at the top of each chromosome. The scale is in mega bases (Mb) on the left.
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Subsequently, multiple sequence alignments were conducted for

the WRKY domains of the three SfWRKY groups (Figure 2D). The

results revealed that the WRKY domains were highly conserved

across all categories, containing a heptapeptide domain

(WRKYGQK) and a zinc-finger domain (C2H2 or C2HC).

Additionally, there were six WRKY domain variants, five of

which were WRKYGEK (SfWRKY56, and SfWRKY61). The other

three variants included WRKYGKK (SfWRKY35 and SfWRKY47),

WKKYAQT (SfWRKY29), and WRVKGQE (SfWRKY28). The

gene structure and motif distribution analyses showed members

from same group or subfamily showed similar characteristics

(Figure 3), which also provided evidence for the classification

based on only phylogenetic analysis.
3.3 Gene duplication and collinearity of
WRKY genes in S. flavescens

The DupGen_finder was used for analysis of SfWRKY gene

duplication pattern, which included one pair of genes derived from

WGD (such as SfWRKY04 and SfWRKY33), 8 pairs from TRD

(such as SfWRKY20 and SfWRKY33), and 10 pairs of DSD (such as

SfWRKY61 and SfWRKY20) events (Figure 4A). Among these TRD

and DSD gene pairs, it is generally presenting one gene

corresponding to multiple duplicate genes rather than one

corresponding to one, which may be related to multiple rounds of

duplication occurred in S. flavescens genome. For example, the TRD

genes corresponding to SfWRKY33 are SfWRKY03, SfWRKY20,
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SfWRKY30, SfWRKY61, and SfWRKY68, and the DSD genes

corresponding to SfWRKY53 are SfWRKY06, SfWRKY31, and

SfWRKY48. We further calculated the Ka, Ks, and Ka/Ks values

for the duplicated SfWRKY gene pairs, and the results showed that

the Ka/Ks values ranged from 0.09 to 0.39 (< 1), indicating that

these genes underwent strong purifying selection during evolution

(Table 1). This implies that gene duplications may contribute to the

diversification and expansion of the SfWRKY gene family, while

these duplicated genes are subject to strong functional constraints.

We also conducted a collinearity analysis among the three species,

S. flavescens, S. moorcroftiana, and A. thaliana. The results showed

that 16 SfWRKY genes from S. flavescens are present in collinear

blocks with 11 counterparts from A. thaliana, and 24 SfWRKY genes

from S. flavescens are present in collinear blocks with 12 counterparts

from S. moorcroftiana (Figure 4B). It was observed that collinear genes

tended to cluster into the same groups in phylogenetic tree (Figure 2),

implying that they have a common evolutionary origin.
3.4 Cis-regulatory element distribution
of SfWRKY genes

To understand the potential roles of the SfWRKY family

members in plant growth and development, response to plant

hormones, and environmental stresses, we analyzed the

distribution of cis-elements in the upstream promoter regions of

the SfWRKY genes (Figure 5). Totally, 18 plant growth and

development related cis-elements were identified. The most
FIGURE 2

Phylogenetic analysis of SfWRKY genes. (A) Phylogenetic tree of WRKY proteins of S. flavescens, S. moorcroftiana, and A. thaliana. Different shapes
(square, circle, and triangle) labeled at the end of each branch are used to mark the corresponding species, while different colors represent different
groups. (B) The gene number comparison of 3 WRKY groups (I, II and III) among the S. flavescens, S. moorcroftiana and A. thaliana; (C) The member
number comparison of five subfamilies in group II (IIa, IIb, IIc, IId, and IIe) among the S. flavescens, S. moorcroftiana and A. thaliana; (D) The
comparative analysis of the conserved motif for the three groups of SfWRKYs based on multiple sequence alignment. The overall height of each
stack represents the conservation degree of the sequence at the position. The letter at the top indicates the amino acid residue that occurs most
frequently at that position.
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abundant elements were the Box-4 (ATTAAT) and the G-box

(TACGTG), which were involved in light responsiveness. They

accounted for 30% and 20% of the total elements identified in this

category. SfWRKY51 contains the highest number of such elements

(13). Other elements were also observed, such as circadian control

and tissue-specific motifs like the GT1-motif (photosynthetic

reaction regulation), TCT-motif (light-responsive elements), and

GATA-motif (plant development). Regarding the phytohormone

responsive elements, the ABRE element involved in ABA

responsiveness, the TCA-element involved in salicylic acid

responsiveness, the TGACG-motif involved in MeJA-

responsiveness and the ERE element involved in ethylene signal

regulation were identified abundant in upstream regions of the

SfWRKY genes. These four pattern elements represent more than

45% of the total hormone-responsive elements. In SfWRKY67, the
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number of ABRE elements is the highest (8), while in SfWRKY11,

the number of ERE elements is the highest (7). In addition, other

elements were also found, like the as-1 element involved in SA and

oxidative stress responsiveness, and the CGTCA-motif involved in

MeJA-responsiveness in this category.

In the abiotic and biotic stress category, different elements

associated with stress responses, such as oxidation, defense,

drought, wounding, heat, and low temperature, were observed.

After our analysis in S. flavescens, the largest part of the elements

belonging to the abiotic and biotic stress category corresponds to

two general stress-responsive motifs, namely the MYB (CCAAT

box) and MYC (CACATG box) binding sites, representing 30% and

20% of the total identified cis-elements, respectively. In addition,

other stress-specific cis-elements were identified. Several of them

were responsive to wounding and pathogens—including the
FIGURE 3

The motif distribution and gene structure of SfWRKY genes. The distribution of MEME motifs among the 69 WRKY members of S. flavescens was
analyzed to unveil conserved motifs shared by related proteins. Additionally, the gene structure of these 69 SfWRKY genes was examined, with gray
lines representing intron regions within the gene sequence. Different colors were employed to denote distinct motifs or gene regions, as depicted in
the upper right corner of the figure.
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WRKY-box (W-box), the TC-rich repeats, and the wound

responsive motif (WUN-motif). Temperature-related elements,

such as the stress responsive element (STRE) and the low-

temperature responsive (LTR) motifs; drought related elements,

such as the MYB BINDING SITE (MBS) and the Dehydration

-responsive element (DRE)-core; and anaerobic conditions like the

Anaerobic response element (ARE) motif (Figure 5). Among them,

SfWRKY37 contains the highest number of such elements, followed

by SfWRKY60.
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3.5 Expression profiles of SfWRKY genes
among different tissues

To investigate the expression patterns of SfWRKY family

members among different tissues, we analyzed their expression

levels in four different tissues, including leaves, flowers, roots, and

stems, as well as different development stages of pods and roots. The

results showed significant variations in the expression patterns of

different SfWRKY genes across various tissues (Figure 6). Notably,
FIGURE 4

Gene duplication patterns and syntenic analyses of WRKY genes in S. flavescens, S. moorcroftiana, and A. thaliana. (A) The chromosome locations of
duplicated SfWRKY genes resulted from WGD, TRD and DSD events on the Circos diagram. The different colors (red to yellow to green) in the
middle track indicated high to low gene density (the number of genes per bin determined by sliding window analysis). (B) The intergenomic syntenic
blocks identified among A. thaliana (Atha), S. flavescens (Sfla), and S. moorcroftiana (Smoo). The collinear blocks are represented by gray lines, while
the WRKY gene collinearity is highlighted by green and red lines.
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SfWRKY52 and SfWRKY66 exhibited consistently high expression

levels throughout all examined tissues and developmental stages.

We can classify the expression patterns of SfWRKY genes among

different tissues mainly into three categories based on the tissue

expression profiles: the first category includes genes with high

expression levels, such as SfWRKY52, SfWRKY66, SfWRKY43,

and SfWRKY52, which are highly expressed among the root,

stem, leaf, and flower tissues, and across all the six developmental

stages of the pod tissue. The second category includes low-expressed

genes among many tissues, such as SfWRKY28, SfWRKY68, and

SfWRKY47, among all the four tissues; SfWRKY12 and SfWRKY28

across the pod tissues; and SfWRKY12, SfWRKY28, and SfWRKY21

across the root tissues. The third category includes genes that do not

express, such as SfWRKY61, SfWRKY63, and SfWRKY62, which are

not expressed in any of the five tissues. It is noteworthy that the
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genes exhibiting high expression levels in one tissue or nearly

ubiquitous high expression across all tissues, implying their

predominant involvement in plant growth and development.

The gene coexpression networks were constructed based on

transcriptome and metabolome data obtained from developmental

stages of S. flavescens pods and roots. The results revealed that

SfWRKY29 and SfWRKY41 were identified as hub-genes among

the pod network (Figure 6B), indicating their pivotal roles in

regulating the biosynthesis of secondary metabolites during pod

development. IFR (2’-hydroxyisoflavanone reductase) and IFS

(2-hydroxyisoflavanone synthase) emerged as key enzymes within

the highly interconnected metabolic pathways. We further analyzed

the coexpression network constructed based on the transcriptomics

and metabolomics of S. flavescens root development, revealing

SfWRKY29 as a central hub with the highest connectivity to other
FIGURE 5

Analysis of the cis-elements located in the promoter regions of SfWRKY genes. (A) The different intensity colors indicate the numbers of different
cis-elements in the promoter regions of SfWRKY genes (upstream 2kb region). (B) The different colored histograms represent the sum of the cis-
acting elements in each category.
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genes (Figure 6C), indicating its crucial involvement in regulating

biosynthesis of secondary metabolites during root development.

Notably, only I2’H (isoflavone 2’-hydroxylase) and I3’H (isoflavone

3’-hydroxylase) were identified as pivotal enzymes operating within

this metabolic pathway.
3.6 Expression analysis of SfWRKY genes in
S. flavescens roots with different cultivated
years based on RT-qPCR

As we know, the roots of S. flavescens can accumulate secondary

metabolites such as flavonoids and alkaloids as they grow, and the

accumulation increases with the growing years (Lei et al., 2021).

Excessive accumulation often leads to autotoxicity, which inhibits

plant growth or causes continuous monocropping obstacle. Given

the outstanding performance of WRKY genes in resistance to

adverse conditions, we used RT-qPCR technology to analyze the

expression patterns of WRKY family members in the roots of S.
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flavescens with cultivated years. As shown in Figure 7, among the 15

selected SfWRKY genes, all showed significantly higher expression

in the SR (roots from S. flavescens sowed two years ago) than in the

CR (roots from S. flavescens sowed in current years), with the

greatest expression difference being observed in SfWRKY44

(upregulated by more than 335 times), followed by SfWRKY41

and SfWRKY39. Other SfWRKY genes also showed varying degrees

of significant upregulation. This result implies that WRKY genes in

S. flavescens play an important role in the response to the

accumulation of secondary metabolites.
3.7 Expression analysis of WRKY genes in
leaves of S. flavescens under salt stress
based on RT-qPCR

To investigate the expression patterns of WRKY family

members in the leaf tissues of S. flavescens under salt stress, we

used RT-qPCR to analyze the expression patterns of 9 SfWRKY
FIGURE 6

Expression patterns of SfWRKY genes among different tissues. (A) Expression profiles of the SfWRKY genes among different tissues or developmental stages.
(B) Coexpression network of SfWRKY genes reconstructed based on transcriptome and metabolome during the pod development. (C) Coexpression
network of SfWRKY genes reconstructed based on transcriptome and metabolome during the root development.
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genes (Figure 8). The results showed that seven SfWRKY genes

(SfWRKY18, SfWRKY20, SfWRKY35, SfWRKY52, SfWRKY55,

SfWRKY66, and SfWRKY67) were downregulated under salt

stress, while two genes (SfWRKY03 and SfWRKY50) were

upregulated. The downregulation of SfWRKY55 was the most

significant, while the SfWRKY03 was upregulated by 1.8 times

when exposed to salt stress. Their significant expression

differences under salt stress may suggest that they are involved in

the response of S. flavescens to salt stress.
4 Discussion

S. flavescens is an herbaceous plant whose roots are often used

in traditional Chinese medicine. It contains various active

ingredients, including alkaloids, flavonoids, and others, which

have shown significant effects in treating inflammation, fever,

cancer, and skin diseases (He et al., 2015; Gao et al., 2024). S.

flavescens also has a wide suitable growth range, including in barren

gullies, shrublands, or fields. The plants exhibited robust stress

resistance, demonstrating practical cold tolerance, heat resistance,

and saline-alkali tolerance. It has been reported that the members of
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the WRKY family participate in various stress regulation networks

in plants (Jiang et al., 2017; Goyal et al., 2022). Recently, studies

were mainly focused on the analysis of effective components in S.

flavescens and their related therapeutic mechanisms (Kong et al.,

2024; Lin et al., 2024), but the regulatory roles of WRKY TFs in the

growth and development of S. flavescens, especially in the regulation

of stress conditions, are not clear. In this study, we conducted a

comprehensive analysis of the 69 S. flavescens WRKY members

based on the recently published genome of S. flavescens (Qu et al.,

2023), suggesting the evolutionary diversity and complexity of the

SfWRKY gene family. It has a significantly lower count than the 74

WRKYs in Arabidopsis and the 109 WRKYs in Oryza sativa

(Supplementary Table S3) (Abdullah-Zawawi et al., 2021) but

higher than those in Nelumbo nucifera (65), Ananas comosus

(54), and Glycyrrhiza uralensis (52) (Xie et al., 2018; Li et al.,

2019; Xiao et al., 2024).

Our evolutionary analysis classified the SfWRKY genes into

three main groups, with the second group having the highest

number of members, further divided into five subgroups,

consistent with classifications in other plants (Eulgem et al., 2000;

Rushton et al., 2010; Liu et al., 2020). Following the well-defined

classification, the SfWRKY gene family was subdivided into three
FIGURE 7

Expression analysis of SfWRKY genes in S. flavescens roots with different cultivated years by RT-qPCR. Panels (A–O) represent the relative expression
of SfWRKY11, SfWRKY16, SfWRKY18, SfWRKY26, SfWRKY29, SfWRKY30, SfWRKY37, SfWRKY38, SfWRKY39, SfWRKY40, SfWRKY41, SfWRKY44,
SfWRKY50, SfWRKY62, and SfWRKY66 genes, respectively. Each sample included three biological replicates. The symbols *, **, and *** above the
error bar indicate a statistically significant difference between CR (roots from S. flavescens sowed in current years) and SR (roots from S. flavescens
sowed two years ago) samples at p < 0.05, p < 0.01, and p < 0.001 significance level.
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groups (Figure 2A). Notably, Group II contains the highest number

of SfWRKY genes, which may be attributed to gene duplication. In

Group II, a total of 11 gene duplications were identified (Table 1). It

also revealed extensive collinearity between S. flavescens, A.

thaliana, and S. moorcroftiana, suggesting a common ancestor

before the divergence of these lineages. The variation in

collinearity between S. flavescens and S. moorcroftiana, compared

to A. thaliana, is consistent with their evolutionary relationships.

The presence of conserved motifs in SfWRKY genes supports their

functional conservation across different plants. Gene and genome

duplications have long been considered as a fundamental source of

evolutionary innovation, offering an expanded molecular reservoir

for the adaptive evolution of key pathways, plant development, and

ecological transitions (Panchy et al., 2016). Previous studies suggest
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that the expansion of the WRKY gene family was mainly due to

tandem and segmental duplication events (Chen et al., 2019). Gene

duplication analysis suggests that TRD and DSD have greatly

contributed to the expansion of SfWRKY gene family (Table 1).

Selection pressure analysis showed that SfWRKYs have undergone

purifying selection, offering an explanation for the observed

differences. The Ka/Ks ratio calculations for all inferred

duplicated genes were less than one. Therefore, these gene pairs

may have experienced negative selection after duplication, with

limited functional divergence, indicating stable changes in amino

acid sequences and subfuncitionalization during the evolution of S.

flavescens (Cusack and Wolfe, 2007).

WRKY TFs are crucial in the regulation of gene expression, as

they specifically bind to theW-boxmotif located within the promoter
FIGURE 8

Expression analysis of SfWRKY genes in the leaves of S. flavescens under salt stress by RT-qPCR. Panels (A–I) represent the relative expression of
SfWRKY03, SfWRKY18, SfWRKY20, SfWRKY35, SfWRKY50, SfWRKY52, SfWRKY55, SfWRKY66, and SfWRKY67 genes, respectively. Each sample contain
three biological replicates. The symbols *, **, and *** above the error bar indicate a statistically significant difference between the NC (normal
condition) and Salt (250 mM NaCl) treatments at p < 0.05, p < 0.01, and p < 0.001 significance level (Student’s t test). N.S., not significant.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1520786
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1520786
regions of target genes (Jiang et al., 2017). Similar to other plant

species, the majority of SfWRKY proteins possess a WRKYGQK

domain. Nevertheless, multiple variants of the SfWRKY gene have

been identified (Figure 5); for instance, the WRKYGKK variant in

soybean failed to effectively bind to the W-box (Zhou et al., 2008).

The similarities in characteristics between SfWRKY35 and

SfWRKY47 in S. flavescens require further investigation.

The cis-acting elements within gene promoters are crucial for

understanding gene regulation, as they interact with transcription

factors (Hernandez-Garcia and Finer, 2014). The promoters of

SfWRKY genes contain various cis-acting elements that are closely

associated with stress responses, plant hormone signaling, and plant

growth and development. This indicates their significant roles in the

response to both biotic and abiotic stresses. Previous study indicates

that the expression of WRKY genes in specific tissues significantly

influences plant growth and development (Wang et al., 2023). In this

study, we observed significant differences in the expression levels of

various SfWRKY genes across the leaves, flowers, pods, roots, and

stems of S. flavescens. Among these, SfWRKY52 and SfWRKY66

exhibited consistently high expression levels across all the tissues and

developmental stages (Figure 6A), suggesting their crucial roles

involved in plant growth and development. Furthermore, through

a coexpression network analysis of transcriptomic and metabolomic

data from the pods and roots of S. flavescens, we identified

SfWRKY29 as a core gene. This finding implies its key regulatory

role in biosynthesis during pod and root development.

The WRKY gene family plays a crucial role in regulating plant

responses to various abiotic and biotic stresses (Jiang et al., 2017).

To investigate the response of SfWRKY genes under salt stress, we

analyzed their expression levels. The results indicated that eight
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SfWRKY genes exhibited differential expression under salt stress

conditions. Overexpression of the GmWRKY34 gene in A. thaliana

significantly enhanced the plants’ salt tolerance (Zhou et al., 2015),

while CdWRKY2 was found to negatively regulate lateral root

growth under salt stress (Shao et al., 2023). Therefore, we

hypothesize that these eight SfWRKY genes may be involved in

the regulation of leaf responses to salt stress in S. flavescens. Of

course, more studies are required to provide functional validation of

SfWRKY genes through molecular biology techniques.
5 Conclusion

Our study conducted a comprehensive analysis of the SfWRKY

gene family in S. flavescens through bioinformatic methods. A total

of 69 SfWRKY genes were identified and classified into seven

subfamilies (I, IIa, IIb, IIc, IId, IIe, and III), and characterize the

physicochemical properties, chromosomal locations, phylogenetic

relationships, synteny features, gene structures and cis-regulatory

elements were characterized. Coexpression analysis of the

transcriptomes and metabolomes from different tissues or

different stages, it was found that SfWRKY29 exhibited the

highest connectivity with other genes, indicating that it plays a

crucial role in regulating the biosynthesis of secondary metabolites.

The RT-qPCR results of gene expression analysis revealed that some

SfWRKY genes of S. flavescens were significantly induced in

response to the accumulation of secondary metabolites or salt

stress. Our study would lay a foundation for understanding the

roles ofWRKY genes in the growth and development of S. flavescens

as well as their molecular mechanisms under abiotic stress.
TABLE 1 Synonymous and nonsynonymous substitution rates for the duplicated gene pairs among S. flavescens WRKY genes.

Duplicate gene 1 Duplicate gene 2 Duplication pattern Ka Ks Ka/Ks

SfWRKY04 SfWRKY33 WGD 0.127513 0.416783 0.305945

SfWRKY11 SfWRKY25 DSD 0.186373 0.531341 0.350759

SfWRKY41 SfWRKY40 TRD 0.330525 1.78668 0.184994

SfWRKY19 SfWRKY25 DSD 0.563535 2.83681 0.198651

SfWRKY06 SfWRKY53 DSD 0.452041 2.89165 0.156326

SfWRKY48 SfWRKY53 DSD 0.625776 3.7787 0.165606

SfWRKY16 SfWRKY52 TRD 0.526062 3.89375 0.135104

SfWRKY15 SfWRKY45 TRD 0.630472 3.92101 0.160793

SfWRKY31 SfWRKY53 DSD 0.538184 3.99948 0.134563

SfWRKY10 SfWRKY25 DSD 0.523031 4.0695 0.128525

SfWRKY68 SfWRKY33 TRD 0.625876 4.20783 0.148741

SfWRKY20 SfWRKY33 TRD 0.497031 4.21263 0.117986

SfWRKY61 SfWRKY33 TRD 0.576182 4.22011 0.136532

SfWRKY03 SfWRKY33 TRD 0.513669 4.30337 0.119364

SfWRKY30 SfWRKY33 TRD 0.561847 4.31147 0.130314
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