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The Amazon forest is the largest source of isoprene emissions, and the seasonal

pattern of leaf-out phenology in this forest has been indicated as an important driver

of seasonal variation in emissions. Still, it is unclear how emissions vary between

different leaf phenological types in this forest. To evaluate the influence of leaf

phenological type over isoprene emissions, we measured leaf-level isoprene

emission capacity and leaf functional traits for 175 trees from 124 species of

angiosperms distributed among brevideciduous and evergreen trees in a central

Amazon forest. Evergreen isoprene emitters were less likely to store monoterpenes

and had tougher and less photosynthetically active leaves with higher carbon-to-

nitrogen ratios compared to non-emitters. Isoprene emission rates in brevideciduous

trees were higher with a higher diversity of stored sesquiterpenes and total phenolics

content. Our results suggest that the way isoprene emissions relate to growth and

defense traits in central Amazon trees might be influenced by leaf phenological type,

and that isoprene may participate in co-regulating a chemical-mechanical defense

trade-off between brevideciduous and evergreen trees. Such knowledge can be used

to improve emission estimates based on leaf phenological type since, as a highly-

emitted biogenic volatile organic compound (BVOC), isoprene affects atmospheric

processes with implications for the Earth’s radiative balance.
KEYWORDS

terpenes, phenolics, leaf traits, Amazon trees, biogenic volatile organic
compounds, BVOCs
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1 Introduction

Volatile isoprenoids (VIs; isoprene, monoterpenes, and

sesquiterpenes) emitted by plant leaves constitute the largest

share of global Biogenic Volatile Organic Compound (BVOC)

emissions (Guenther et al., 2012), being involved in a wide range

of processes from plant cell regulation to forest-atmosphere

interaction dynamics. On the individual scale, isoprene (C5H8)

has been assigned numerous roles in plant growth and defense

responses. Its association with increased thermotolerance (Singsaas

et al., 1997; Pollastri et al., 2014, 2019) has led to different

mechanistic hypotheses, from improved thylakoid membrane

stability (Velikova et al., 2011; Harvey et al., 2015), to direct

antioxidant activity (Velikova, 2008) and serving as a sink of

excessive reducing power (Morfopoulos et al., 2013, 2014;

Rodrigues et al., 2020). Currently, multi-omic studies suggest

more complex associations between the presence of isoprene

emissions and multiple signaling networks, linking it to changes

in transcription factors involved in plant growth and in the

production of defense and stress tolerance compounds (Behnke

et al., 2010; Harvey and Sharkey, 2016; Lantz et al., 2019; Zuo et al.,

2019; Frank et al., 2021; Monson et al., 2021; Dani et al., 2022;

Weraduwage et al., 2023; Srikanth et al., 2024). On the scale of plant

populations, species, and communities, monoterpenes (C10H16) and

sesquiterpenes (C15H24) - and recently isoprene - are suggested to

have diverse chemical signaling roles in direct and indirect defense

against herbivory, plant-plant communication, and attraction of

pollinators (Pichersky and Gershenzon, 2002; Gershenzon and

Dudareva, 2007; Laothawornkitkul et al., 2008; Fineschi and

Loreto, 2012; Xiao et al., 2012; Monson et al., 2021). On regional

and global atmospheric scales, VI emissions have an impact on the

oxidative capacity of the atmosphere as these compounds are

rapidly oxidized and decomposed in the presence of ozone (O3),

hydroxyl radical (OH), and nitrogen oxides (NOx), and can

influence light scattering and precipitation through the formation

and growth of secondary organic aerosols and cloud condensation

nuclei (Griffin et al., 1999b, 1999a; Kuhn et al., 2007; Lelieveld et al.,

2008; Pöschl et al., 2010; Kulmala et al., 2013; Pfannerstill et al.,

2018; Yáñez-Serrano et al., 2020).

Isoprene and monoterpenes are produced in the chloroplast of

leaves through the methyl-erythritol 4-phosphate (MEP) pathway

(Zhao et al., 2013), while sesquiterpenes are produced in the

cytosolic mevalonic acid (MVA) pathway (Vranová et al., 2013).

About 90% of isoprene production originates from recently

assimilated photosynthetic carbon under non-stressful conditions

(Delwiche and Sharkey, 1993; Affek and Yakir, 2003; Loreto et al.,

2004; Sharkey and Monson, 2017), although there can be alternative

carbon sources under stress (Kreuzwieser et al., 2002; Funk et al.,

2004; Schnitzler et al., 2004; Jardine et al., 2014; de Souza et al.,

2018). Similar to isoprene, light-dependent constitutively-emitted

monoterpenes are produced and emitted from recently assimilated

carbon in some plant species, although much less frequently than

isoprene (Loreto et al., 1996; Jardine et al., 2017). More frequently,

monoterpenes and sesquiterpenes form storage pools in the cell wall

or specialized storage structures (e.g., resin ducts, oil glands,
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glandular trichomes) and are released slowly under constitutive

conditions or emitted rapidly upon breakage of these structures

(e.g., under herbivore feeding) (Arneth and Niinemets, 2010;

Niinemets et al., 2013; Rasulov et al., 2019; Nagalingam et al., 2023).

The generally observed light and temperature dependence of VI

emissions makes tropical forests the largest source of global fluxes,

accounting for around 80% of global BVOC emissions (Guenther

et al., 2012). In addition, recent studies have reported that c. 76% of

tropical forest tree species are isoprene emitters (Mu et al., 2022).

Considering its high plant biomass and species diversity (Fauset

et al., 2015; Cardoso et al., 2017), the Amazon forest can be the

greatest and most diverse - in terms of compound diversity - source

of VI emissions (Yáñez-Serrano et al., 2020; Gomes Alves et al.,

2023). Measuring leaf-level VI emission at remote and often

inaccessible locations of the Amazon forest is logistically

challenging but fundamental to identify the factors that determine

global isoprene emissions, and to improve emission predictions

considering global changes in temperature and precipitation.

Besides light and temperature, another important driver of

isoprene emissions is leaf age and possibly different leaf

phenological types (Dani et al., 2014), and seasonal variation in

emissions in the central Amazon forest was shown to be determined

by leaf age and leaf flushing events (Alves et al., 2014, 2016, 2018;

Gomes Alves et al., 2023). More specifically, this variation has been

attributed to age-driven changes in leaf physiology and tree crown

architecture: concerning leaf physiology, the activity of isoprene

synthase is lower or even absent in young leaves, peaking in mature

leaves and decreasing with leaf senescence (Schnitzler et al., 1997);

concerning tree crown architecture, older leaves of evergreen trees

may experience lower amounts of intercepted light because of

shading caused by the flushing of new leaves, leading to lower

emission rates (Niinemets et al., 2004, 2010). Other studies have

proposed that isoprene emissions are probably replaced by

emissions of stored terpenes in evergreen plants as a way to better

handle recurrent and extended periods of stress or that, compared

to evergreen species, deciduous plants would be higher isoprene

emitters due to associations between emissions, resource-

acquisition strategies, and shorter leaf lifespan (Harrison et al.,

2013; Dani et al., 2014, 2022), but these studies tend to be biased by

temperate forest tree species due to the larger data availability for

these forests.

Different from temperate forests, where leaf flushing is mostly

determined by temperature seasonality (Perry, 1971), leaf flushing

in Amazon forests is determined by precipitation seasonality, with

massive flushing crowns occurring during the driest months (Lopes

et al., 2016; Wu et al., 2016; Aleixo et al., 2019). Also, in temperate

forests, deciduous trees lose all of their foliage and remain bare for

several months, while in central Amazon forests, deciduousness is

more subtle: brevideciduous trees may not lose all their foliage at the

same time, and tree crowns become fully deciduous for shorter

periods, of up to one month before flushing a new cohort of leaves

(Lopes et al., 2016; Gonçalves et al., 2020). Previous leaf-out

phenology studies in central Amazon forests have shown the co-

occurrence of brevideciduous and evergreen trees, with a prevalence

of evergreen over brevideciduous trees (Condit et al., 2000; Aleixo
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et al., 2019). Brevideciduous trees lost part or all of their foliage and

flushed new leaves concentrated in the drier months of the year,

whereas evergreen trees were divided into trees that had detectable

but irregular flushing events and massively flushed new leaves -

predominantly in the drier months of the year - and trees that did

not show visually detectable flushing events and lost and produced

leaves more gradually throughout the year (Gonçalves et al., 2020;

Mesquita Pinho, 2021; Botıá et al., 2022). Recently, Gomes Alves

et al. (2023), examined the isoprene emission trait for 194

PhenoCam-monitored trees in a central Amazon forest and

observed similar fractions of potential isoprene emitters in all leaf

phenological types, yet leaf-level measurements and variations in

isoprene emission rates between different leaf phenological types in

this forest have not been done or evaluated.

Considering the importance of climate seasonality, leaf age, and

possibly leaf phenological type over isoprene emissions in Amazon

forests, our study seeks to evaluate whether leaf phenological type and

leaf functional traits drive variation in the presence and magnitude of

isoprene emission capacity (Ec; emission measured at standard

conditions: light of 1000 μmol m-2 s-1 photosynthetically active

radiation and leaf temperature of 30°C) and terpene storage in

central Amazon trees. We measured leaf-level isoprene Ec and leaf

functional - physiological, morphological, and chemical - traits for

175 trees from 124 species of angiosperms distributed among

brevideciduous and evergreen trees in a central Amazon forest.

Because isoprene is lighter in terms of carbon atoms per molecule

(C5), non-storable in leaves, and has been associated with resource-

acquisition strategies and shorter leaf longevity, we hypothesized that

a higher presence and/or magnitude of isoprene emissions would be

associated with a brevideciduous behavior (i.e., annual leaf turnover);

at the same time, because monoterpenes and sesquiterpenes are

heavier (C10 and C15), can be stored inside the leaves, serve as

herbivore deterrents, and have been associated with resource-

conservation strategies and higher leaf longevity, we hypothesized

that a higher presence and/or magnitude of their storage would be

associated with evergreen trees (Wright et al., 2004; Harrison et al.,

2013; Dani et al., 2014).
2 Materials and methods

2.1 Study site

We performed measurements in an upland forest (locally called

terra firme) permanent plot at the Amazon Tall Tower Observatory

(ATTO) site in central Amazonia. The ATTO site is located about

150 km northeast of Manaus in the Uatumã Sustainable

Development Reserve (02° 08.9’ S, 59° 00.2’ W, 130 m a.s.l.). The

site is situated in a humid tropical climate zone, with a mean annual

temperature of 26.7°C and precipitation of 2376 mm and

characterized by a pronounced wet season from December to

May and a dry season from July to October, with a transitory

moderately wet period in between the seasons (Botıá et al., 2022).

Vegetation in the terra firme plot is dense (leaf area index of 5.3 m2

m-2), mature, and non-flooded, with a mean canopy height of 35 m

(Gomes Alves et al., 2023). The soil is a highly weathered and well-
Frontiers in Plant Science 03
drained ferralsol (Chauvel et al., 1987). More details on the

experimental site are provided by Andreae et al. (2015).
2.2 Leaf phenological type

Located inside the terra firme plot is an 80 m high tower

(INSTANT, 02°08.7520′ S, 58°59.9920′W) with a StarDot RGB

camera (model NetCam XL 3MP) installed on top of it at 81 m

height facing west. For more details on the camera setup,

radiometric calibration, and detection of phenological stages see

Lopes et al. (2016). The camera (PhenoCam) monitored upper-

crown surfaces of 194 liana-free trees from July 2013 to November

2018 generating an image-derived leaf longevity dataset (i.e.,

PhenoCam dataset) that allowed the classification of trees into

three categories of leaf phenological type which were defined as

follows: i) brevideciduous (BD) - trees that lost all of their foliage/

part of their foliage and flushed new leaves concentrated in the drier

months of the year; ii) evergreen (EV) - trees that showed detectable

flushing events and massively flushed new leaves, predominantly in

the drier months of the year; and iii) no flushing detected (NF) -

evergreen trees that possibly added and lost leaves throughout the

years and did not show detectable flushing crown events during the

monitoring period (Botıá et al., 2022). Leaf phenological type

classifications agree with satellite vegetation indices retrieved from

MODIS-MAIAC (Multi-Angle Implementation of Atmospheric

Correction) for this region (Gonçalves et al., 2020) and branch-

level monitoring of leaf age distributions for trees from this plot

(Gomes Alves et al., 2023). At the PhenoCam view, the BD group

contained 49 trees from 45 species, the EV group 83 trees from 60

species, and the NF 62 trees from 53 species. Only 36 species in the

dataset had replicate trees available, and trees of the same species

showed different leaf phenological types. Such intra-specific

variability in leaf phenological type has been observed in another

tropical forest (Park et al., 2019). Moreover, leaf phenological types

are subject to phenotypic plasticity, and studies have observed that

“random” events such as herbivore attacks, pathogens, and

environmental changes caused by extreme events can alter leaf-

out phenology patterns in some trees (Borchert, 1999; Cleland et al.,

2007; Gonçalves et al., 2020).
2.3 Branch collection

Of the 194 trees in the PhenoCam dataset, we were able to

sample branches from 175 trees from 124 species of angiosperms.

All of the trees occupied the upper canopy layer of the plot and were

the most representative in terms of canopy dominance. For all trees,

we measured diameter at breast height (DBH, diameter at 1.3 m

height), leaf-level isoprene Ec, net photosynthesis rate (An), leaf

morphological traits (leaf dry matter content, LDMC; leaf mass per

area, LMA; leaf thickness, LT; leaf toughness or Force to Punch,

FtP) and collected leaves for leaf stable C isotope and elemental

analyses, terpene (mono- and sesquiterpene) storage analysis and

total phenolics content analysis. We sampled the trees and

performed measurements between October 15 - November 9,
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2022. This period corresponds to the transition between dry and

wet seasons, when tree canopies are mostly composed of mature

leaves (Alves et al., 2018; Gonçalves et al., 2020), and variation in

leaf age is expected to be low.

Given the logistical challenges of studying tall tropical trees,

often exceeding 20 meters in height, leaf measurements were

obtained from cut branches immediately placed in water. This

method provides a practical solution for conducting gas exchange

and isoprene emission measurements, enabling the capture of key

ecological processes without compromising leaf viability (Llusia

et al., 2014; Albert et al., 2018; Jardine et al., 2020; Taylor et al., 2021;

Gomes Alves et al., 2022). Branches with diameters of at least 2 cm

were collected from sun-exposed areas of the canopy to avoid

shade-adapted leaves. Senescent, immature, or visibly damaged

leaves were excluded, ensuring that only physiologically active

leaves were analyzed. After collection, branches were immediately

re-cut underwater to prevent embolism formation in open vessels,

stored in water bottles for transport, and re-cut once more under

water at the field camp to restore xylem flow before isoprene Ec and

gas exchange measurements (section 2.5).
2.4 Leaf samples for isoprene emission
capacity and functional trait measurements

We selected one visibly mature and healthy leaf of the branch to

measure leaf-level isoprene Ec and An, then removed the branch from

the water, wrapped the lower end of the stem in moist absorbent

paper, and placed it in a closed plastic bag for further leaf

morphological trait measurements. We selected between 10-20

leaves (fewer larger leaves and more smaller leaves were collected)

that were immediately frozen in liquid nitrogen and further taken to

Manaus for terpene storage analysis and selected another set of 10-20

leaves that were dried in an oven at 60°C for 72 h, ground and weighed

for leaf stable C isotope and elemental analyses and total phenolics

content analysis at the Max Planck Institutes for Biogeochemistry

(MPI-BGC) and Chemical Ecology (MPI-CE). Finally, we selected

four leaves (including the one used tomeasure isoprene Ec) to measure

LDMC, LMA, and LT, and another four leaves to measure FtP. For

compound leaves, we considered a leaflet as an equivalent of a simple

leaf for all leaf measurements described below. Detailed descriptions of

leaf morphological trait measurements, terpene storage analysis, stable

C isotope and elemental analyses, and total phenolics content analysis

are presented in the Supplementary Material (Supplementary

Methods S1–S4).
2.5 Isoprene emission capacity and gas
exchange measurements

We measured leaf-level isoprene Ec using a combined LI-6800

portable gas exchange (LiCor Inc., USA) and proton-transfer-

reaction quadrupole mass spectrometer (PTR-QMS, IONICON

Analytik, Innsbruck, Austria) system, which allows real-time

measurements of isoprene emissions under defined environmental
Frontiers in Plant Science 04
conditions of the LI-6800 leaf chamber. We installed a hydrocarbon

filter (Restek Pure Chromatography, Restek Corporations, USA) at

the air inlet of the LI-6800 to remove isoprene from incoming

ambient air. All tubing in contact with the sampling air was PTFE

and does not exchange isoprene. At the beginning of each day and

before each measurement, we obtained a chamber blank sample from

the empty leaf chamber. We separately enclosed the leaf (for

compound leaves we considered a leaflet as the equivalent of a

simple leaf lamina) in the leaf chamber under standard conditions:

photosynthetic photon flux density (PPFD) of 1000 mmol m-2 s-1, leaf

temperature of 30°C, flow rate of air going into the leaf chamber of

400 mmol s-1, CO2 and H2O concentrations of 420 mmol mol-1 and 21

mmol mol-1 and relative humidity of ~60%. The stability criterion for

measurements was defined as one standard deviation of the mean An,

and we visually monitored An until the value reached a plateau,

beginning measurements when the instrument had reached the

defined stability criterion. Leaves displaying no signs of

photosynthetic activity were excluded from analyses. An was

transformed to photosynthesis per leaf dry mass (Amass) and

expressed in units of mg C g-1 h-1.

The air exiting the LI-6800 leaf chamber was redirected to the

PTR-QMS, which operated in standard conditions with a drift tube

voltage of 600 V, drift tube pressure of 2.2 mbar, and E/N 120 Td.

Measurements were performed for 10 minutes, and during each PTR-

QMS measurement cycle the following mass-to-charge ratios (m/z)

were monitored: 21 (H3
18O+), 32 (O2

+), and 37 (H2O-H3O
+) with a

dwell time of 500 ms each; 41 (isoprene fragment), 69 (isoprene) with a

dwell time of 1 s each. Humidity-dependent calibrations (using water-

bubbled nitrogen to dilute standard gas, simulating ambient relative

humidity) were performed with a certified standard gas provided by

Apel-Riemer Environmental, Inc. (Supplementary Table S1), at the

beginning and end of the measurement campaign. The mixing ratios of

isoprene were calculated from the calibration curves (R2 = 0.99). The

detection limit of the PTR-QMS was calculated as three times the

standard deviation of isoprene (ppb) detected in the water-bubbled

nitrogen background of the calibration curves and was equal to 0.93

ppb. Cross-validation for isoprene data obtained by in situ PTR-QMS

measurements and by adsorbent cartridges analyzed via GC-FID was

performed in a previous study showing a coefficient of determination

(r2) of 0.88 (Yáñez-Serrano et al., 2015). Once mixing ratios of isoprene

(ppb) from the samples were obtained, isoprene emission capacity per

area Ec,A was determined using the equation (Ec,A = Rppb × Q/S),

where Ec,A (nmol m-2 s-1) is the leaf flux of isoprene emission; Rppb

(nmol mol-1) is isoprene concentration of the outgoing air; Q is the

flow rate of air into the leaf chamber (400 x 10-6 mol s-1); S is the area of

leaf within the chamber (0.0002 m² or 0.0006 m²). Values of isoprene

Ec,A were transformed to units of isoprene emission capacity per dry

mass (Ec,M, μg C g-1 h-1).
2.6 Statistical analyses

Because the number of replicates per species available in our

sampling plot prevented characterizing species-level variation, we

focused on individual-level analyses and controlled potential
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species-level effects by performing mixed-effects models with

species as random factor. To evaluate if the presence of isoprene

emissions or terpene storage changed between leaf phenological

types, we performed chi-squared (c2) analysis to compare observed

and expected proportions of detected isoprene Ec,A, and mono-/

sesquiterpene storage in the full dataset and to compare observed

and expected proportions of detected isoprene Ec,A and mono-/

sesquiterpene storage in each leaf phenological type.

To evaluate if the magnitudes of isoprene emissions and terpene

storage changed between leaf phenological types, we performedmixed-

effects pair-wise comparisons of the magnitude of isoprene Ec,A and

relative abundances of stored mono-/sesquiterpenes between leaf

phenological types. To evaluate whether the interactions between leaf

phenological types and functional traits influenced the presence of

isoprene emissions or the variation in isoprene emission rates, we

performed univariate mixed effects linear regression models

(UMELMs) of detected isoprene Ec,M/magnitude of isoprene Ec,M ~

functional trait * leaf phenological type + (1| Species). Given that some

traits had missing data (NA), UMELMs were performed with a

reduced sample size of n = 154 for detected isoprene Ec,M and n =

81 for the magnitude of isoprene Ec,M (only trees with detected

isoprene Ec,M). We performed univariate models instead of a single

multiple model containing all functional traits measured because our

number of observations did not allow for the inclusion of all these
Frontiers in Plant Science 05
variables and their interactions in a single multiple model (Harrell,

2001; Burnham and Anderson, 2002; Babyak, 2004).

UMELMs were performed using the lmer function of the LME4

R package (Bates et al., 2015). The p-values of mixed effects pairwise

comparisons and UMELMs were obtained with the EMMEANS

package (Lenth, 2024). Distributions of detected isoprene Ec,A, and

mono-/sesquiterpene storage between leaf phenological types and

results of mixed effects models are presented as plots from the

GGPLOT2 package (Wickham, 2016). All statistical analyses were

performed using R version 4.3.2 through the platform RStudio

2023.9.1.494 (R core team, 2023).
3 Results

Values of mean, standard deviation, and ranges of values for all

variables used in this study are presented in Table 1. We found a total

of 14 different stored monoterpenes and 25 stored sesquiterpenes

(Table 2). The distribution of detected isoprene Ec,A between leaf

phenological types showed that there was a significantly higher

occurrence of isoprene non-emitters among evergreen (EV) trees

(chi-squared test (c2), p = 0.04; Figure 1A). There were no

significant differences in percentages of detected terpene storage

comparing leaf phenological types (Figures 1B, C). We detected
TABLE 1 Units and values of mean, standard deviation (SD), and range of values in the dataset for isoprene emission capacity per area (Ec,A) and per
leaf dry mass (Ec,M) and leaf functional traits measured for 175 trees from 124 species of angiosperms in a central Amazon forest.

Variable Unit Mean SD Range of values

Isoprene emission capacity per area (Ec,A) nmol m-2 s-1 6.2 8.4 0 - 40.1

Isoprene emission capacity per dry mass (Ec,M) μg C g-1 h-1 1.8 2.4 0 - 11.5

Leaf dry mass per area (LMA) g cm-2 0.08 0.04 0.03 - 0.4

Leaf dry matter content (LDMC) mg g-1 469.9 76.1 216.1 - 698.7

Leaf thickness (LT) mm 0.2 0.07 0.1 - 0.6

Force to Punch (FtP) N mm-1 0.3 0.1 0.04 - 0.5

Carbon-to-nitrogen ratio (CN) 27.7 8.0 8.6 - 52.8

Phosphorus concentration (Pmass) mg g-1 0.6 0.3 0.2 - 2.1

Foliar d13C ‰ -30.9 1.5 -34.4 - -27.2

Net photosynthesis per area (An) mmol m-2 s-1 3.7 3.5 0.004 - 15.0

Photosynthesis per mass (Amass) μg C g-1 h-1 223.2 222.0 0.303 - 1098.1

Relative abundance of stored monoterpenes % 1.6 9.3 0 - 100

Relative abundance of stored sesquiterpenes % 2.9 10.3 0 - 100

Total phenolics % 8.4 15.0 0 - 100

Stored monoterpene diversity n of compounds 1.5 2.4 0 - 13

Stored sesquiterpene diversity n of compounds 3.1 3.6 0 - 15

Presence of stored monoterpenes 0.46 0.5 0 or 1

Presence of stored sesquiterpenes 0.71 0.5 0 or 1
Relative abundances of stored monoterpenes and sesquiterpenes are calculated as the sum of peak areas of stored monoterpenes (sum of stored monoterpenes) and stored sesquiterpenes (sum of
stored sesquiterpenes) found in a given sample, normalized by the largest sum observed in the dataset for each group of compounds. Stored monoterpene and sesquiterpene diversity refer to the
number of different mono- and sesquiterpene compounds found in each sample.
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isoprene Ec,A in 88 trees (50%) (Figure 1D), monoterpene storage in 78

trees (46%) (Figure 1E), and sesquiterpene storage in 121 trees (71%)

(Figure 1F), and there was a much higher number of sesquiterpene-

storing trees than expected by chance (p < 0.001, Figure 1F). There

were no significant differences in isoprene emission rates and relative

abundances of stored terpenes between leaf phenological

types (Figure 2).

Results of UMELMs of detected isoprene Ec,M and functional traits

(Table 3) showed that the interactions between leaf phenological type

and Force to Punch (FtP), photosynthesis per mass (Amass), presence of

stored monoterpenes, and carbon-to-nitrogen (CN) ratio were

significantly related to the presence or absence of isoprene emissions

(Supplementary Table S2). Meanwhile, results of UMELMs of the

magnitude of isoprene Ec,M, and functional traits (Table 3) showed that

FtP, CN, and Amass alone, and the interactions between leaf
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phenological type and the diversity of stored sesquiterpenes and total

phenolics content, were significantly related to variations in isoprene

emission rates (Supplementary Table S2).

Isoprene-emitting trees from the no-detectable flushing (NF)

group were significantly less likely to store monoterpenes (Table 4).

These trees also showed significantly tougher (Figure 3) and less

photosynthetically active (Figure 4) leaves with a higher carbon-to-

nitrogen ratio (Figure 5). On the other hand, isoprene emission

rates in brevideciduous (BD) trees were significantly higher with

higher diversity of stored sesquiterpenes (Figure 6) and total

phenolics content (Figure 7). Lastly, independent of the leaf

phenological type, isoprene emission rates were significantly

lower with FtP and CN, while higher with Amass (Figure 8).
4 Discussion

Our study presents a unique dataset of isoprene emission capacity

(Ec) measurements, combined with leaf phenological type and

functional - physiological, morphological, and chemical - trait data

for 175 trees from 124 species of angiosperms in an upland terra firme

Amazon Forest. Many of these measurements represent the first-ever

recorded data for numerous species. Evergreen trees that flushed leaves

in the drier months of the year (EV) containedmore non-emitters than

emitters of isoprene, and sesquiterpene storage was detected in many

more trees than expected by chance. Contrary to our hypothesis,

isoprene emission rates and relative abundances of stored

monoterpenes and sesquiterpenes did not vary between leaf

phenological types. Yet, interactions between leaf phenological type

and functional traits were significantly related to the presence of

isoprene emissions and variations in isoprene emission rates. These

relationships revealed that, for trees that continuously produced/lost

leaves (NF), isoprene emitters were less likely to store monoterpenes

and had significantly tougher and less photosynthetically active leaves,

with a higher carbon-to-nitrogen ratio compared to non-emitters.

Meanwhile, in brevideciduous (BD) trees, isoprene emission rates

were significantly higher with a higher diversity of stored

sesquiterpenes and total phenolics content. Finally, independent of

leaf phenological type, isoprene emission rates were higher in softer

(lower FtP) leaves, with lower carbon-to-nitrogen ratios, and higher

photosynthesis per dry mass. In the following sections we discuss the i)

distribution of isoprene emissions and terpene storage in the different

leaf phenological types, ii) the relationships between leaf phenological

type, functional traits and variations in the presence of isoprene

emissions and isoprene emission rates, and iii) present a summary of

the results and implications for emission modeling.
4.1 Distribution of isoprene emission
capacity and terpene storage in different
leaf phenological types

We have detected isoprene emissions in 88 trees from 69 species,

which corresponds to c. 50% of all trees and 55.6% of all species. Most

studies so far have reported only between 20-38% of tropical tree
TABLE 2 List of detected stored monoterpenes and sesquiterpenes and
number (n) of trees in which each compound was detected.

Monoterpenes Sesquiterpenes

Compound n of trees Compound n of trees

Limonene 56 Caryophyllene 97

Linalool 39 Copaene 94

p-Cymene 35 a-Calacorene 31

a-Terpineol 33 Alloaromadendrene 31

a-Pinene 17 a-Cubebene 27

g-Terpinene 16 a-Muurolene 24

b-Ocimene 13 cis-a-Bergamotene 23

Terpinen-4-ol 10 Globulol 22

Camphene 7 g-Muurolene 18

Eucalyptol 7 Ylangene 17

a-Phellandrene 5 Aromandendrene 16

p-Menthatriene 5 Selina-3-7-11-diene 13

b-Myrcene 4 a-Guaiene 13

endo-Borneol 4 a-Maaliene 12

t-Muurolol 11

Guaiol 11

b-Bourbonene 10

t-Cadinol 8

Humulene 8

Isoledene 8

g-Elemene 7

trans-Calamenene 7

cis-Muurola-4-15-
5-diene 6

Neointermedeol 5

b-Bisabolene 4
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FIGURE 1

Distribution of (A) detected isoprene Ec,A, (B) stored monoterpenes, and (C) stored sesquiterpenes between leaf phenological types and observed
proportions of (D) detected isoprene Ec, (E) stored monoterpenes and (F) stored sesquiterpenes for 175 trees from 124 species of angiosperms in a
central Amazon forest. BD, brevideciduous, trees that lost all their foliage/part of their foliage and flushed new leaves concentrated in the drier
months of the year; EV, evergreen, trees that showed detectable flushing events and massively flushed new leaves, predominantly in the drier
months of the year; NF, no flushing detected, evergreen trees that possibly added and lost leaves throughout the year and did not show detectable
flushing crown events during the monitoring period. Chi-squared (c2) p-values in a-c correspond to comparisons between observed and expected
proportions of emission/storage in each leaf phenological type (heat map of residuals for panel (A) is presented in Supplementary Figure S1), and c2

p-values in d-f correspond to comparisons between observed and expected proportions of emission/storage in the full dataset.
FIGURE 2

Comparisons of the magnitude of (A) detected isoprene Ec,A (nmol m-2 s-1, n = 88), (B) relative abundances of stored monoterpenes (%, n = 78), and
(C) stored sesquiterpenes (%, n = 121) between leaf phenological types. BD, brevideciduous, trees that lost all their foliage/part of their foliage and
flushed new leaves concentrated in the drier months of the year; EV, evergreen, trees that showed detectable flushing events and massively flushed
new leaves, predominantly in the drier months of the year; NF, no flushing detected, evergreen trees that possibly added and lost leaves throughout
the year and did not show detectable flushing crown events during the monitoring period. Pairwise comparisons are mixed effect models that
include tree species as a random effect.
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species as isoprene emitters (Harley et al., 2004; Loreto and Fineschi,

2015), but recent studies have shown that this number can be even

larger, up to 76% (Jardine et al., 2020; Mu et al., 2022). Results of the

distribution of isoprene emitters between leaf phenological types
Frontiers in Plant Science 08
showed slight differences compared to what has been observed by

Gomes Alves et al. (2023) through emission probability modeling,

suggesting a prevalence of non-emitters of isoprene within the group of

massively flushing evergreen (EV) trees. Because evergreen trees are
TABLE 3 Statistical parameters of univariate mixed effects linear regression models (UMELMs) of detected isoprene Ec,M and magnitude of isoprene Ec,M.

Dependent variable Independent variables df1 df2
F

ratio
p

trait
p

Pheno.type
p

interaction

Detected isoprene Ec,M FtP * Pheno.type 2 148 4.69 0.15 0.05 0.01

Amass * Pheno.type 2 148 4.62 0.1 0.06 0.01

Presence of stored monoterpenes * Pheno.type 2 141 4.13 0.4 0.07 0.02

CN * Pheno.type 2 146 3.05 0.9 0.05 0.04

LT * Pheno.type 2 130 2.41 0.6 0.06 0.09

Presence of stored sesquiterpenes * Pheno.type 2 148 2.32 0.4 0.2 0.1

LDMC * Pheno.type 2 134 1.85 0.4 0.09 0.2

Diversity of stored monoterpenes * Pheno.type 2 148 1.50 0.5 0.07 0.2

LMA * Pheno.type 2 147 1.48 0.3 0.06 0.2

Relative abundance of stored sesquiterpenes
* Pheno.type

2 127 1.21 0.1 0.2 0.3

Diversity of stored sesquiterpenes * Pheno.type 2 148 0.98 0.2 0.06 0.4

Total phenolics * Pheno.type 2 140 0.57 0.8 0.07 0.6

Pmass * Pheno.type 2 148 0.45 0.6 0.06 0.6

Relative abundance of stored monoterpenes
* Pheno.type

2 138 0.26 0.5 0.2 0.8

d13C* Pheno.type 2 137 0.10 0.2 0.08 0.9

Magnitude of isoprene Ec,M Diversity of stored sesquiterpenes * Pheno.type 2 60 4.82 0.9 0.7 0.01

Total phenolics * Pheno.type 2 49 3.23 0.6 0.8 0.05

LMA * Pheno.type 2 22 3.07 0.006 0.65 0.07

Presence of stored sesquiterpenes * Pheno.type 2 50 2.35 1.0 0.3 0.1

Relative abundance of stored sesquiterpenes
* Pheno.type

2 54 1.35 0.2 0.9 0.3

d13C * Pheno.type 2 59 1.26 0.4 0.7 0.3

Diversity of stored monoterpenes * Pheno.type 2 70 1.24 0.8 0.8 0.3

FtP * Pheno.type 2 74 1.10 0.01 0.5 0.3

CN * Pheno.type 2 68 0.88 0.001 0.9 0.4

Relative abundance of stored monoterpenes
* Pheno.type

2 66 0.70 0.8 0.9 0.5

LT * Pheno.type 2 56 0.64 0.1 0.7 0.5

LDMC * Pheno.type 2 60 0.48 0.07 0.7 0.6

Amass * Pheno.type 2 49 0.18 0.0002 0.6 0.8

Presence of stored monoterpenes * Pheno.type 2 62 0.02 1.0 0.8 1.0

Pmass * Pheno.type 2 73 0.02 0.3 0.8 1.0
Models were constructed as y ~ x * Pheno.type + (1|Species), where y = detected isoprene Ec,M or magnitude of isoprene Ec,M (dependent variable), x = functional trait (independent variable), and
Pheno.type = leaf phenological type (interaction term). df1, degrees of freedom of interaction term; df2, degrees of freedom associated with the residual variance; F ratio, ratio of variance
explained by a factor to the residual variance; p trait, p-value of x; p pheno, p-value of Pheno.type; p interaction, p-value of the interaction between x and Pheno.type. Models of detected isoprene
Ec,M were performed with all trees (n = 154), and models of the magnitude of isoprene Ec,M were performed with trees that showed detected isoprene Ec,M (n = 81); both had species as a random
factor. Statistically significant variables are in bold.
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more dominant in the central Amazon forest compared to

brevideciduous trees (Condit et al., 2000; Aleixo et al., 2019), a

higher fraction of non-emitters in this group may imply lower

regional fluxes in this region. However, contrary to our hypothesis,

we did not see significant differences in isoprene emission rates

comparing leaf phenological types. The fact that brevideciduous trees

in this forest may not lose all their foliage and only remain leafless/

partially leafless for shorter periods, combined with the fact that this

forest is mostly composed of dry-season flushing evergreen trees

(Condit et al., 2000; Aleixo et al., 2019; Mesquita Pinho, 2021), could

indicate that the observed seasonality of higher isoprene emissions at

the end of the dry season/early wet season is probably being driven by a

higher fraction of mature leaves in the canopy, regardless of leaf

phenological type (Alves et al., 2018; Gomes Alves et al., 2023).

Meanwhile, we have detected sesquiterpene storage in a

significantly large number of trees, with no differences in relative

abundances of monoterpene and sesquiterpene storage comparing
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leaf phenological types, contradicting our initial hypothesis. These

results show that terpene storage is widespread regardless of leaf

phenological types and emphasize how tropical tree species are more

complex and do not hold to general assumptions or plant trait

coordinations found in temperate tree species (Dani et al., 2014).

Sesquiterpenes require more carbon for production (15C) compared to

isoprene (5C), with a yield rate of secondary organic aerosol (SOA)

formation that can reach up to 70% (Griffin et al., 1999b, 1999a), while

for isoprene it has been reported as <6% (Kroll et al., 2005; Xu et al.,

2014). Studies have observed significant temperature-induced

emissions of these heavier terpenes at temperatures above 35°C

(Nagalingam et al., 2023; Robin et al., in preparation). Considering

that tropical forest canopies can frequently experience such high

temperatures (Jardine et al., 2017; Manzi et al., 2024), the large

number of sesquiterpene-storing species we observed may indicate a

strong potential for higher fluxes of these compounds than previously

estimated by emission models (e.g., Guenther et al., 2012), and may
TABLE 4 Contingency table and chi-squared (c2) p-values of comparisons of proportions of detected isoprene Ec,M and detected monoterpene
storage in each leaf phenological type (n = 154).

No detected monoterpene storage Detected monoterpene storage c2 p-value

EV No detected isoprene Ec,M 6 7 0.9

Detected isoprene Ec,M 13 11

BD No detected isoprene Ec,M 24 16 0.3

Detected isoprene Ec,M 13 16

NF No detected isoprene Ec,M 8 12 0.04

Detected isoprene Ec,M 20 8
BD, brevideciduous, trees that lost all their foliage/part of their foliage and flushed new leaves concentrated in the drier months of the year; EV, evergreen, trees that showed detectable flushing
events and massively flushed new leaves, predominantly in the drier months of the year; NF, no flushing detected, evergreen trees that possibly added and lost leaves throughout the year and did
not show detectable flushing crown events during the monitoring period.
FIGURE 3

Mixed effects linear regression model of detected isoprene Ec,M (No, not detected; Yes, detected) varying as a function of force to punch (FtP, N
mm-1) per leaf phenological type. BD, brevideciduous, trees that lost all their foliage/part of their foliage and flushed new leaves concentrated in the
drier months of the year; EV, evergreen, trees that showed detectable flushing events and massively flushed new leaves, predominantly in the drier
months of the year; NF, no flushing detected, evergreen trees that possibly added and lost leaves throughout the year and did not show detectable
flushing crown events during the monitoring period. The model was performed with all trees as sample units (n = 154) and had species as a random
factor. Dashed and solid lines represent p < 0.1 and p < 0.05, respectively.
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incur higher carbon losses to the atmosphere if the forest is under more

frequent stress (e.g.; heatwaves, insect outbreaks), but more research is

needed to test this.
4.2 Interactions between leaf phenological
type, functional traits, and isoprene
emission capacity

Even though isoprene emission rates did not vary between leaf

phenological types, interactions between functional traits and leaf
Frontiers in Plant Science 10
phenological types were significantly related to variations in the

presence and magnitude of isoprene emissions. Much had been

discussed on the roles of isoprene in increased thermotolerance

(Singsaas et al., 1997; Pollastri et al., 2014, 2019) and oxidative stress

protection (Vickers et al., 2009; Morfopoulos et al., 2013, 2014;

Rodrigues et al., 2020), and recent research has demonstrated that

the presence of isoprene emissions is related to multiple up and down

regulations of gene expression, transcription factors, and protein

abundance (Behnke et al., 2010; Harvey and Sharkey, 2016; Lantz

et al., 2019; Zuo et al., 2019; Frank et al., 2021; Monson et al., 2021;

Dani et al., 2022; Weraduwage et al., 2023; Srikanth et al., 2024). The
FIGURE 4

Mixed effects linear regression model of detected isoprene Ec,M (No, not detected; Yes, detected) varying as a function of photosynthesis per leaf dry
mass (Amass, µg C g-1 h-1) per leaf phenological type. BD, brevideciduous, trees that lost all their foliage/part of their foliage and flushed new leaves
concentrated in the drier months of the year; EV, evergreen, trees that showed detectable flushing events and massively flushed new leaves,
predominantly in the drier months of the year; NF, no flushing detected, evergreen trees that possibly added and lost leaves throughout the year and
did not show detectable flushing crown events during the monitoring period. The model was performed with all trees as sample units (n = 154) and
had species as a random factor. The solid line represents p < 0.05.
FIGURE 5

Mixed effects linear regression model of detected isoprene Ec,M (No, not detected; Yes, detected) varying as a function of carbon-to-nitrogen ratio
(CN) per leaf phenological type. BD, brevideciduous, trees that lost all their foliage/part of their foliage and flushed new leaves concentrated in the
drier months of the year; EV, evergreen, trees that showed detectable flushing events and massively flushed new leaves, predominantly in the drier
months of the year; NF, no flushing detected, evergreen trees that possibly added and lost leaves throughout the year and did not show detectable
flushing crown events during the monitoring period. The model was performed with all trees as sample units (n = 154) and had species as a random
factor. Dashed and solid lines represent p < 0.1 and p < 0.05, respectively.
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current view is that isoprene occupies a unique metabolic position,

mediating processes that govern the supply of photosynthetic

substrates and the requirements for secondary metabolite products,

enabling plants to allocate resources to defense while minimizing the

impact on growth (Monson et al., 2021).

Isoprene-emitting trees from the NF group were less likely to

store monoterpenes and had tougher and less photosynthetically

active leaves (i.e., higher mechanical defense). Meanwhile, in

brevideciduous trees, isoprene emission rates were higher with a

higher diversity of stored sesquiterpenes and higher total phenolics

content (i.e., higher chemical defense). There are only a few multi-

omic studies evaluating how the presence of isoprene emissions
Frontiers in Plant Science 11
regulates chemical and mechanical defenses (Harvey and Sharkey,

2016; Zuo et al., 2019; Monson et al., 2020, 2021). In isoprene-

emitting (IE) poplar leaves, for example, the presence of isoprene

emissions was associated with increased expression of genes

involved in the accumulation of lignin, supporting our

observation of isoprene emitters from the NF group with higher

FtP and CN ratios (Monson et al., 2020, 2021). On the other hand,

opposite relationships between isoprene emission and terpene

accumulation have been observed: in IE poplar and tobacco

leaves, the presence of isoprene emissions was related to

reductions in the expression of genes and proteins involved in

terpene biosynthesis (Zuo et al., 2019; Monson et al., 2020, 2021);
FIGURE 6

Mixed effects linear regression model of isoprene Ec,M (µg C g-1 h-1) varying as a function stored sesquiterpene diversity (n of compounds) per leaf
phenological type. BD, brevideciduous, trees that lost all their foliage/part of their foliage and flushed new leaves concentrated in the drier months
of the year; EV, evergreen, trees that showed detectable flushing events and massively flushed new leaves, predominantly in the drier months of the
year; NF, no flushing detected, evergreen trees that possibly added and lost leaves throughout the year and did not show detectable flushing crown
events during the monitoring period. The model was performed with all trees that showed detected isoprene Ec,M as sample units (n = 81), and had
species as a random factor. Dashed and solid lines represent p < 0.1 and p < 0.05, respectively.
FIGURE 7

Mixed effects linear regression model of isoprene Ec,M (µg C g-1 h-1) varying as a function of total phenolics content (% of relative abundance) per leaf
phenological type. BD, brevideciduous, trees that lost all their foliage/part of their foliage and flushed new leaves concentrated in the drier months of the
year; EV, evergreen, trees that showed detectable flushing events and massively flushed new leaves, predominantly in the drier months of the year; NF, no
flushing detected, evergreen trees that possibly added and lost leaves throughout the year and did not show detectable flushing crown events during the
monitoring period. The model was performed with all trees that showed detected isoprene Ec,M as sample units (n = 81), and had species as a random
factor. The solid line represents p < 0.05.
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however, Harvey and Sharkey (2016) observed increases in

transcript abundances of terpene synthesis-related genes under

fumigation with isoprene for Arabidopsis plants. As for phenolics,

the observed relationship between higher isoprene emission rates

and higher phenolics content in BD trees corroborates with Behnke

et al. (2010) and Monson et al. (2020), which showed that the

presence of isoprene emissions was associated with an upregulation

in the expression of genes in the phenylpropanoid pathway with

consequent increases in production of phenolic compounds.

Trees from EV and BD groups presented regular flushing events in

the early and mid-dry seasons, respectively, which means that their

canopies have a more homogeneous leaf age composition (Lopes et al.,

2016; Gonçalves et al., 2020). In contrast, since NF trees did not show

detectable flushing events and probably flushed/lost new leaves

continuously throughout the years, canopies from these trees likely

have greater leaf age heterogeneity. Although we did not measure

visually old leaves, and this group did not show significantly lower

Amass or LMA compared to the other groups (Supplementary Figure

S2), it is possible that we measured slightly older leaves for these trees,

and isoprene emissions decrease together with photosynthesis as leaves

get older (Schnitzler et al., 1997; Gomes Alves et al., 2023). On the other

hand, part of the NF group could be composed of trees that did not

have detectable flushing events because they flush dark green leaves

that are not detected as young by the PhenoCam, hence more research

at the branch or leaf levels on these trees is needed to understand the

mechanisms driving their leaf renewal.

One hypothesis to explain the evolutionary drivers of leaf-out

phenology in upland central Amazon forests suggests that trees

flush new leaves in the dry season as a way to avoid increased

herbivory pressure in the wet season, since young leaves have fewer

structural defenses (i.e., softer, thinner), and are more palatable to

herbivores, which are more abundant in the rainy season (Wright

and van Schaik, 1994; Coley and Barone, 1996; Lopes et al., 2016).

Perhaps, in brevideciduous trees, the presence of isoprene emissions

could be influencing metabolic regulation towards a more

functionally diverse chemical-based defense, that protects the

large fractions of synchronized newly flushed and vulnerable

young leaves (Coley and Barone, 1996; Lopes et al., 2016).
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Meanwhile, in evergreen trees that continuously flushed/lost

leaves (NF), isoprene may be associated with an upregulation of

defense towards a more long-term, lignin-based structural defense

that supports longer leaf longevities (Monson et al., 2021). This

suggests that isoprene emission in this forest could be involved in

the co-regulation of a chemical-mechanical defense trade-off (van

der Meijden et al., 1988; Pedersen et al., 1995) between

brevideciduous (BD) and evergreen trees with continuous

flushing (NF), which is reinforced by the observation that

isoprene emitters in NF are also less likely to store monoterpenes.

Recent studies have demonstrated how isoprene is intrinsically

interconnected with broad patterns of gene expression, and that leaf

phenological types are under strong genetic control, being less of an

observable trait and more of a dynamic response that results from

gene-environment interactions (Satake et al., 2024). For example,

studies on the seasonal expression of BVOC synthesis-related genes

in two tree species of Fagaceae (Quercus glauca and Lithocarpus

edulis) showed that genes downstream of the MVA pathway,

involved in sesquiterpene production, had increased expression

during the period that matches leaf flushing for these trees (Satake

et al., 2023, 2024). Even though we did not measure visually young

leaves, brevideciduous trees possibly produce new leaves earlier than

evergreen trees, so it is possible that their canopies were overall

composed of slightly younger leaves in comparison to other leaf

phenological types, and thus had increased expression of

sesquiterpene synthase genes. Considering this underlying

molecular component of plasticity in leaf phenological types and

associations with pathways of isoprene and sesquiterpene synthesis,

perhaps our results suggest that, in this resource-abundant, species-

rich, ecologically-complex upland terra-firme central Amazon forest,

the direction of isoprene’s regulation over growth and defense is

possibly being influenced by leaf phenological type, although more

research is needed to test this hypothesis.

Lastly, isoprene emission rates were significantly higher with

characteristic resource-acquisition traits (Wright et al., 2004), like

lower mechanical resistance (low FtP), and higher nitrogen

content (lower CN) and Amass. It is reasonable that, independent

of leaf phenological type, emission rates from isoprene emitters
FIGURE 8

Mixed effects linear regression models of isoprene Ec,M (µg C g-1 h-1) varying as a function of (A) force to punch (FtP, N mm-1), (B) carbon-to-
nitrogen ratio (CN), and (C) photosynthesis per leaf dry mass (Amass, µg C g-1 h-1). The model was performed with all trees that showed detected
isoprene Ec,M as sample units (n = 81), and had species as a random factor. The solid lines represent p < 0.05.
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would be higher with such traits that enable faster leaf

metabolism, hence providing sufficient carbon uptake to support

stronger emission rates (Loreto and Sharkey, 1990; Delwiche and

Sharkey, 1993; Loreto et al., 1996; Magel et al., 2006; Sharkey and

Monson, 2017). Still, isoprene emitters from evergreen trees were

generally constrained towards more resource-conservative

strategies (higher FtP and lower Amass, and CN) which, given

the predominance of evergreen trees in central Amazon forests

(Condit et al., 2000; Aleixo et al., 2019), emphasizes the

importance of incorporating leaf phenological type when

estimating regional and global fluxes.
4.3 Summary and implications for
emission modeling

Although our results showed that isoprene emissions and

terpene storage did not significantly vary between evergreen and

brevideciduous trees, they revealed that interactions between traits

and leaf phenological types drive variations in the presence of

isoprene emissions and isoprene emission rates. Isoprene-emitting

trees with no detectable flushing were less likely to store

monoterpenes and had tougher and less photosynthetically active

leaves, while brevideciduous trees showed higher isoprene emission

rates with a higher diversity of stored sesquiterpenes and total

phenolics content. Recent studies have revealed that isoprene is an

integrative compound that co-regulates both growth and defense

responses by promoting changes in gene expression patterns and

protein abundances. Our results perhaps suggest that the direction

of this co-regulation is influenced by leaf phenological types, and

that isoprene emissions participate in co-regulating a chemical-

mechanical defense trade-off between brevideciduous and evergreen

trees with continuous flushing in central Amazonia. Moreover, we

detected isoprene emissions and sesquiterpene storage in a greater

number of trees than expected, which indicates a greater potential

for emissions of these compounds than previously thought (Harley

et al., 2004; Guenther et al., 2012; Loreto and Fineschi, 2015).

Isoprene and sesquiterpene emissions, directly and indirectly,

influence atmospheric processes and cloud formation, with

sesquiterpenes having a yield rate of particle formation almost 10

times that of isoprene (Griffin et al., 1999b, 1999a; Kroll et al., 2005;

Xu et al., 2014). Warmer climates might favor the predominance of

thermotolerant isoprene-emitting trees (Singsaas et al., 1997; Pollastri

et al., 2014, 2019; Taylor et al., 2018), and increased heat stress and

herbivore outbreaks can induce stronger sesquiterpene emissions

(Nagalingam et al., 2023; Robin et al., in preparation), but the exact

effects of current global climate changes and multiple stressors (e.g.

extreme heat events, more frequent and intense droughts and

flooding, elevated CO2 and O3) on forest-atmosphere emission

feedbacks are uncertain (Yáñez-Serrano et al., 2020; Satake et al.,

2024). The Amazon forest is the greatest source of volatile isoprenoid

emissions to the atmosphere (Jardine et al., 2020; Mu et al., 2022), and

a better understanding of the dynamics between emissions, leaf

phenological types and functional traits in this forest is essential to

provide a more mechanistic understanding of emissions and improve

their representation in models.
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Vranová, E., Coman, D., and Gruissem, W. (2013). Network analysis of the MVA
and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol 64, 665–700.
doi: 10.1146/annurev-arplant-050312-120116

Weraduwage, S. M., Whitten, D., Kulke, M., Sahu, A., Vermaas, J. V., and Sharkey, T.
D. (2023). The isoprene-responsive phosphoproteome provides new insights into the
putative signalling pathways and novel roles of isoprene. Plant Cell Environ. 47, 1099–
1117. doi: 10.1111/pce.14776

Wickham, H. (2016). ggplot2: elegant graphics for data analysis (New York, NY, USA:
Springer-Verlag).

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al.
(2004). The worldwide leaf economics spectrum. Nature 428, 821–827. doi: 10.1038/
nature02403

Wright, S. J., and van Schaik, C. P. (1994). Light and the phenology of tropical trees.
Am. Nat 143, 192–199. doi: 10.1086/285600

Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T.,
et al. (2016). Leaf development and demography explain photosynthetic seasonality in
Amazon evergreen forests. Science 351, 972–976. doi: 10.1126/SCIENCE.AAD5068/
SUPPL_FILE/WU.SM.PDF

Xiao, Y., Wang, Q., Erb, M., Turlings, T. C. J., Ge, L., Hu, L., et al. (2012). Specific
herbivore-induced volatiles defend plants and determine insect community
composition in the field. Ecol. Lett 15, 1130–1139. doi: 10.1111/j.1461-
0248.2012.01835.x

Xu, L., Kollman, M. S., Song, C., Shilling, J. E., and Ng, N. L. (2014). Effects of NOx
on the volatility of secondary organic aerosol from isoprene photooxidation. Environ.
Sci. Technol 48, 2253–2262. doi: 10.1021/es404842g
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