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Editorial on the Research Topic

Crop abiotic stress: advances in germplasm/gene discovery and utilization
Global climate variability exerts multiple abiotic stresses on crops, disrupting their growth

and development, and resulting in substantial yield losses (Lobell and Gourdji, 2012). This

alarming situation highlights the urgent need to explore the mechanisms through which

plants mitigate these stressors (Lobell and Gourdji, 2012; Long et al., 2015; Song et al., 2024).

Cultivated crops, despite their economic importance, often display limited genetic diversity,

whereas their wild relatives, with higher genetic variability, exhibit stronger tolerance to both

abiotic and biotic stresses (Fu, 2015; Salgotra and Chauhan, 2023). Thus, collecting,

characterizing, and integrating both cultivated and wild germplasm has become a critical

component of modern breeding programs. These diverse genetic resources offer significant

opportunities for crop improvement but also pose challenges regarding their effective use

(Fu, 2015; Liu et al., 2022; Salgotra and Chauhan, 2023). Developing core germplasm

collections has therefore become a long-term strategy for optimizing the management and

utilization of genetic resources.

The modern crop seed industry is evolving rapidly, but the current utilization of

germplasm resources remains inadequate to meet its demands (Yan et al., 2023). A major

bottleneck lies in the insufficient characterization of these resources, leading to limited

access to high-quality germplasm with broad genetic diversity (Fu, 2015; Salgotra and

Chauhan, 2023). Integrating germplasm exploration with investigations into plant

responses to abiotic stresses will provide a robust framework for identifying superior

materials and facilitating the development of breakthrough crop cultivars.

This Research Topic focuses on recent advances in germplasm and gene discovery related

to abiotic stress management in crops, aiming to enhance our understanding of crop

responses to abiotic stresses and promote the efficient utilization of genetic resources to

support sustainable agricultural practices. Out of 30 submissions, 17 articles were accepted

following rigorous peer review, including 16 research papers and 1 review. These studies
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cover various abiotic stresses—such as cadmium, calcium, CO2, cold,

drought, heat, salt, selenium, waterlogging, and zinc—affecting crops

such as peanut, rice, soybean, tobacco, and wheat. The findings offer

valuable insights for exploring stress responses across diverse

plant species.
Studies on physiological and
biochemical responses

Three articles examine physiological and biochemical responses

to abiotic stresses. In soybean, foliar applications of amino acids and

zinc not only maintained yield but also enhanced pod and branch

numbers while promoting zinc biofortification (Han et al., 2024).

Another study explored the unclear relationship between

anthocyanin levels and salt stress in peanut, demonstrating that

high anthocyanin content activates the antioxidant system,

alleviating oxidative stress, and preserving photosynthetic

efficiency under salt conditions (Li et al.). In another experiment,

calcium-sensitive and calcium-tolerant peanut cultivars were

compared under calcium-deficient conditions (Tang et al.).

Calcium-sensitive cultivars exhibited a 22.75% reduction in yield,

along with increased activities of antioxidant enzymes (SOD, POD,

and CAT) and elevated MDA content (Tang et al.). In contrast,

calcium-tolerant cultivars maintained stable yield and physiological

performance, underscoring calcium’s essential role in crop

productivity (Tang et al.).
Studies on molecular responses

Several studies focused on molecular responses to abiotic

stresses. In rice, sequencing of 541 cultivars followed by genome-

wide association studies identified a candidate gene, OsTMF, as

responsive to salt stress (Liu et al., 2024). Knockout experiments

revealed that OsTMF promotes germination under salt conditions,

demonstrating its potential utility for salt-tolerant breeding (Liu

et al., 2024).

In wheat, researchers employed chromosome engineering

strategies to introgress chromosome 7el1L from Thinopyrum

species into wheat chromosome 7AL, producing recombinant

lines with enhanced salt tolerance (Tounsi et al.). These lines

exhibited notable physiological changes under salt stress,

including increased photosynthetic pigment levels, accumulation

of compatible solutes, and reduced antioxidant content (such as

ascorbate) (Tounsi et al.).

In peanut, bioinformatics analysis identified 16 TPS (Trehalose-

6-phosphate synthase) and 17 TPP (Trehalose-6-phosphate

phosphatase) genes involved in cold stress responses (Zhong et al.).

Notably, AhTPS9 exhibited differential expression under cold

treatment. Overexpression of AhTPS9 in Arabidopsis thaliana

improved cold tolerance by stabilizing the photosynthetic system

and regulating sugar metabolism, making this gene a promising

target for cold-tolerant peanut breeding (Zhong et al.).
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In chickpea, Meta-QTL analysis revealed several genes involved

in heat stress response, including pollen receptor-like kinase 3,

flowering-promoting factor 1, and heat stress transcription factor

A-5 (Kumar et al.). These genes influence flowering time, pollen

germination, and overall plant development, offering valuable

targets for heat-tolerant breeding programs (Kumar et al.).

In Brassica juncea, BjNRAMP1 (Natural Resistance-Associated

Macrophage Protein 1) was identified as a key gene involved in

cadmium stress tolerance (Li et al.). Expressed in vascular tissues of

roots, leaves, and flowers, BjNRAMP1 facilitates cadmium and

manganese accumulation when introduced into yeast and

Arabidopsis, though its overexpression negatively affects plant

growth (Li et al.).

A study in tobacco identified members of the Shaker K+ channel

family, with NtSKOR1B up-regulated under salt stress (Yuan et al.).

Mutants lacking ntskor1 exhibited increased biomass and higher K+

content under salt stress, highlighting its potential role in improving

salt tolerance (Yuan et al.). Another study used miRNA sequencing

to explore drought stress responses in tobacco (Dai et al.). Thirteen

miRNAs were differentially expressed under drought stress,

including both known (e.g., nta-miR156b, nta-miR166a) and

novel miRNAs (e.g., novel-nta-miR156-5p, novel-nta-miR209-5p)

(Dai et al.). These miRNAs targeted genes involved in cell wall

expansion, such as EXT1 and RWA2, whose expression decreased

under drought but recovered with selenium treatment (Dai et al.). A

key regulatory pathway—novel-nta-miR97-5p-LRR-RLK-catechin

—was identified, highlighting its importance in drought tolerance

(Dai et al.).

In Medicago sativa (alfalfa), RNA-seq analysis of plants treated

with methyl jasmonate (JA) and salt stress revealed two co-

expression modules associated with antioxidant enzyme activity

and ion homeostasis. Core genes identified included pyruvate

decarboxylase and RNA demethylase, suggesting that JA enhances

salt tolerance by modulating antioxidant responses and maintaining

ion balance.
Studies in non-crop plants

The Research Topic also includes studies on non-crop plants,

offering insights applicable to crop improvement. For example,

Kandelia obovata exhibits high tolerance to salt and waterlogging

(Liu et al.). RNA-seq analysis identified 45 salt-responsive and 16

waterlogging-responsive genes involved in secondary metabolism,

highlighting potential targets for enhancing abiotic stress tolerance

in crops (Liu et al.).
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