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Kiwifruit (Actinidia deliciosa)-derived actinidin, a cysteine protease, is renowned for

its meat-tenderizing and milk-clotting activities. Despite its potential in various

biotechnological applications, an efficient expression platform for actinidin

production has not yet been developed. Instead, actinidin has traditionally been

purified directly from the fruits of various plants. This study aimed to produce

kiwifruit-derived actinidin in the leaves of Nicotiana benthamiana. The expressed

actinidin was directed to the lumen of the endoplasmic reticulum (ER) using the

binding immunoglobulin protein (BiP) signal sequence and an ER retention signal.

To facilitate cost-effective purification, the family 3 cellulose-binding module

(CBM3) was employed as an affinity tag, along with microcrystalline cellulose

beads that bind efficiently to CBM3. A significant portion of the expressed actinidin

was recovered in the soluble fraction without proteolytic degradation. The purified

actinidin exhibited b-casein-degrading activity, with optimal efficiency observed at

55°C and pH 7.0. These results establish a promising plant-based platform for the

efficient production and functional application of kiwifruit-derived actinidin in

diverse biotechnological processes.
KEYWORDS
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Introduction

Actinidin (EC 3.4.22.14) is a cysteine protease found in various fruits, including kiwifruit

(Actinidia deliciosa), mango, pineapple, and papaya. Kiwifruit-derived actinidin, in particular,

is widely recognized for its applications in meat tenderization and milk clotting, making it a

valuable tool in the food industry (Aminlari et al., 2009; Katsaros et al., 2010; Nicosia et al.,

2022; Abril et al., 2023; Mohd Azmi et al., 2023). Despite its potential, active actinidin is still

primarily extracted and purified directly from kiwifruit (Nam et al., 2006; Wang et al., 2016;

Maskey and Karki, 2024). Previous attempts to express actinidin derived from Chinese wild

kiwifruit in Escherichia coli resulted in the formation of inclusion bodies, necessitating

additional refolding steps to obtain active protein (Lee and Hahm, 2007). Consequently,
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despite its numerous applications, the commercial utilization of

actinidin remains limited due to the lack of an efficient and

scalable production platform.

Plant molecular farming, the production of valuable proteins in

plants, has emerged as a promising strategy to overcome the limitations

of traditional protein production systems (Buyel, 2019; Schillberg and

Finnern, 2021; Jadhav and Khare, 2024). This approach offers several

advantages, including cost-effectiveness, scalability, and safety, as plants

are free from animal pathogens or endotoxins from E. coli. Among

various plant species, Nicotiana benthamiana, a close relative of

tobacco, has become a popular host for recombinant protein

expression due to its rapid growth, ease of genetic manipulation, and

high biomass yield (Bally et al., 2018; Ranawaka et al., 2023; Vollheyde

et al., 2023). Moreover, using N. benthamiana as biofactories not only

reduces production costs but also provides a sustainable and

environmentally friendly alternative because as a plant-based system,

N. benthamiana does not involve the use of harmful chemicals, such as

the ones required for mammalian or insect cell cultures, and produces

fewer waste products. Notably, transient expression systems have

emerged as a highly efficient and versatile tool in plant molecular

farming. One of the primary benefits is the speed of protein production.

Unlike stable expression systems, which can take months to generate

transgenic plants and produce the target protein, transient expression

systems allow for rapid production within days or weeks. In addition,

transient expression systems are less susceptible to the problem of gene

silencing, which often occurs in stable transgenic plants (Vaucheret

et al., 1998; Rajeevkumar et al., 2015).

In this study, we explored the potential of N. benthamiana as a

plant-based expression system for producing kiwifruit-derived

actinidin. The expressed actinidin was directed to the

endoplasmic reticulum (ER) lumen using a BiP signal sequence

and an ER retention signal to enhance its stability and

accumulation. To facilitate purification, we utilized cellulose-

binding module 3 (CBM3), achieving a high yield of active

enzyme. The functionality of the plant-produced actinidin was

validated through its ability to degrade b-casein as a substrate.

These findings underscore the feasibility of usingN. benthamiana as

a sustainable platform for producing functional actinidin, paving

the way for its industrial applications.
Materials and methods

Plant materials and growth conditions

N. benthamiana plants were cultivated in soil under greenhouse

conditions maintained at 23–24°C with 40–65% relative humidity

and a 16-hour light/8-hour dark photoperiod. Leaves from 6- to 7-

week-old plants were harvested for agro-infiltration experiments.
Plasmid DNA construction

Actinidin is a vacuolar protein containing an N-terminal

hydrophobic signal peptide required for cotranslational

translocation into the ER lumen (Paul et al., 1995). In this study,
Frontiers in Plant Science 02
we expressed the actinidin sequence (amino acids 25–381) without

the N-terminal signal peptide, as this hydrophobic region could

affect the solubility of the expressed protein. The GenBank

accession number for the actinidin used in this study is

MT463287. To generate the construct BiP-M-CBM3-bdSUMO-

Actinidin-HA-HDEL (MCS-Actinidin), the sequence for Actinidin-

HA-HDEL was synthesized (BIONICS Co., Ltd. Korea). A NaeI

restriction site and a GGA codon for Gly were added at the 5′ end,
while sequences coding for the HA tag, HDEL ER retention signal,

TAA stop codon, and XhoI restriction site were added at the 3′ end.
The synthesized actinidin-HA-HDEL was digested with NaeI and

XhoI restriction endonucleases and ligated into a pUC-based vector

pre-digested with the same enzymes. The pUC-based vector used in

this study contained sequences coding for the BiP signal sequence,

the M-domain of the human receptor-type tyrosine-protein

phosphatase C, family 3 cellulose-binding module (CBM3), the

small ubiquitin-like modifier (bdSUMO) cleavage site of

Brachypodium distachyon, and the HSP transcriptional terminator

(Nagaya et al., 2010; Islam et al., 2019). The resultant plasmid was

further digested with XbaI and EcoRI and ligated into the pCambia

1300 binary vector, which had been digested with the same

restriction enzymes. All restriction endonucleases were purchased

from New England Biolabs (Ipswich, MA, USA).
Agro-infiltration of MCS-Actinidin into the
leaves of N. benthamiana

The MCS-Actinidin construct was introduced into

Agrobacterium tumefaciens (EHA105) via electroporation. The

transformed A. tumefaciens cells were subsequently infiltrated

into N. benthamiana leaves using syringe infiltration (Islam et al.,

2019). During each agro-infiltration procedure, A. tumefaciens

carrying the p38 gene, derived from the Turnip crinkle virus and

encoding a suppressor of host gene silencing, was co-transformed to

enhance expression.
Purification of actinidin from
N. benthamiana leaves

The purification of the expressed actinidin was performed as

previously described (Islam et al., 2019; Zaikova et al., 2022; Lee

et al., 2024). Frozen leaf tissues (10 g fresh weight), harvested on

days 3, 5 and 7 after agro-infiltration, were ground in liquid

nitrogen. Total protein extracts were prepared by homogenizing

the ground leaves in 30 mL of protein extraction buffer (50 mM

Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM DTT, 1% (v/v) Triton X-

100, and 1× EDTA-free protease inhibitor cocktail (Roche,

Switzerland)). After incubation at 4°C for 15 min, the extracts

were filtered through Miracloth (Merck Millipore, USA). A 100 mL
aliquot of the total extract was collected as the total (T) fraction. The

remaining extracts were centrifuged at 19,400 ×g for 15 min at 4°C,

and a 100 mL aliquot of the supernatant was collected as the soluble

(S) fraction. The pellets were resuspended in 30 mL of protein

extraction buffer, and a 100 mL aliquot was collected as the pellet (P)
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fraction. The soluble (S) fraction was used for purifying MCS-

Actinidin with microcrystalline cellulose (MCC) beads (Sigma-

Aldrich, St. Louis, MO, USA; CAS Number 9004-34-6) as

described previously (Islam et al., 2019). Following MCC bead-

based purification, the N-terminal domains containing CBM3 and

bdSUMO were removed using His-bdSENP1 protease, which had

been separately purified from E. coli BL21 (DE3) (Islam et al., 2019).

All protein samples were analyzed by SDS-PAGE, followed by

Coomassie Brilliant Blue (CBB) (BioShop, Canada; CAS Number

6104-59-2) staining or Western blotting using an anti-HA antibody

(Roche, Basel, Switzerland; CAS Number 11867423001).
Western blot analysis

Western blotting was performed as described previously

(Geem et al., 2021).
Degradation of b-casein by actinidin
expressed in N. benthamiana

The purified actinidin was dialyzed against 0.1 M Tris-HCl, pH

7.0. Separately, 0.1 mg of b-casein (Merck & Co., Inc., USA) was

dissolved in 0.1 M Tris-HCl, pH 7.0. Dialysis was carried out using

Slide-A-Lyzer Dialysis Cassettes with a molecular weight cutoff of

10 kilodaltons (Thermo Scientific, catalog #66380). After dialysis,

the concentration of actinidin was determined using a

bicinchoninic acid assay kit (Abbkine, catalog no. KTD 3001,

Wuhan, China). Subsequently, the yield of produced actinidin per

biomass was calculated based on the initial mass of transformed

leaves and the concentration of purified actinidin. Then, 7 mg of b-
casein was incubated with 70 ng of the purified actinidin at the

indicated temperatures and durations. The degradation of b-casein
was analyzed by SDS-PAGE, followed by CBB staining. The band

intensity of b-casein was quantified using ImageJ software

(National Institutes of Health, USA).
Results

Construct design for the expression of
MCS-Actinidin in N. benthamiana leaves

In this study, we aimed to accumulate kiwifruit-derived

actinidin in the ER lumen of N. benthamiana, a strategy that has

proven successful for the expression of various foreign proteins in

plants (Islam et al., 2019; Kim et al., 2022; Zaikova et al., 2022). To

achieve ER localization, we incorporated the N-terminal signal

peptide of binding immunoglobulin protein (BiP) and the C-

terminal ER retention signal, HDEL, into the MCS-Actinidin

construct (Figure 1A). Additionally, the M domain of the human

receptor-type tyrosine-protein phosphatase C was included to

enhance translational efficiency and stability of ER-localized

proteins (Kang et al., 2018). For affinity purification, the CBM3

tag, which binds irreversibly to MCC beads, was added to the
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construct (Figure 1A) (Islam et al., 2019). Since the N-terminal

region containing the BiP signal sequence, M domain, and CBM3

tag is unnecessary for actinidin activity post-purification, a

bdSUMO domain was included before the actinidin-coding

sequence to facilitate its removal. The bdSUMO domain enables

specific cleavage by His:bdSENP1 protease, which recognizes the

bdSUMO sequence and cleaves after the conserved two glycine

residues (Islam et al., 2019). To ensure high expression levels, the

expression cassette was driven by the cauliflower mosaic virus 35S

promoter and terminated with the HSP transcriptional terminator

(Figure 1A) (Nagaya et al., 2010).
Expression and purification of actinidin
from N. benthamiana leaves

TheMCS-Actinidin construct was introduced intoN. benthamiana

leaves via agro-infiltration (Islam et al., 2019). At 3, 5, and 7 days post-

infiltration, total protein extracts were prepared and subjected to

centrifugation. The total, soluble, and pellet fractions were analyzed

by Western blotting with an anti-HA antibody (Figure 1B). The

majority of the expressed MCS-Actinidin was found in the soluble

fraction, which facilitated the subsequent affinity purification process

(Figure 1B). MCS-Actinidin was then purified from the soluble fraction

using MCC beads (Figure 1C) (Islam et al., 2019). To remove the

domains upstream of actinidin, the MCS-Actinidin conjugated to

MCC beads was incubated with His:bdSENP1 protease, which

recognizes the SUMO domain and cleaves immediately after Gly-Gly

motif (Figures 1A, 2A) (Islam et al., 2019). After the cleavage reaction,

the His:bdSENP1, which was no longer necessary, was removed using

Ni2+-NTA beads (Figure 2B) (Islam et al., 2019). The yield of purified

actinidin was approximately 10 mg per kg of fresh N.

benthamiana leaves.
Actinidin expressed in N. benthamiana
effectively degrades the substrate b-casein

b-casein is a well-known substrate for kiwifruit-derived

actinidin (Lo Piero et al., 2011; Puglisi et al., 2012). To verify the

activity of actinidin expressed in N. benthamiana, b-casein was

incubated with or without the purified enzyme at 37, 45, 55, and 65°

C for 1 hour (Figure 3A). The purified actinidin exhibited the

highest activity at 55°C (Figure 3A). Next, b-casein was incubated

with or without the purified actinidin at 55°C for varying durations,

ranging from 1 to 60 minutes (Figure 3B). Compared to the

untreated control, b-casein was progressively degraded as the

incubation time increased (Figure 3B).
Discussion

The heterologous expression of foreign proteases presents a

significant challenge due to their ability to cleave peptide bonds in

various intracellular proteins, potentially disrupting cellular

metabolism (Luniak et al., 2017). In this study, we successfully
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FIGURE 1

Purification of MCS-Actinidin expressed in N. benthamiana leaves. (A) Schematic representation of MCS-Actinidin construct. BiP, the signal sequence of BiP;
M, extracellular domain (amino acid residues 231–290) of human protein tyrosine phosphatase receptor type C; CBM3, cellulose-binding module 3 of
Clostridium thermocellum; bdSUMO, SUMO domain of Brachypodium distachyon; HDEL, ER retention signal; L, flexible linker. (B) Expression of MCS-
Actinidin in the leaves of N. benthamiana. Leaves infiltrated with MCS-Actinidin were harvested at 3, 5, and 7 days post-infiltration (dpi). Total protein extracts
were subjected to centrifugation at 19,400 ×g for 10 minutes. The total (T), soluble (S), and pellet (P) fractions were analyzed by Western blotting using an
anti-HA antibody. Proteins were resolved on a 10% SDS-PAGE gel. RbcL: large subunit of the Rubisco complex stained with Coomassie Brilliant Blue (CBB).
(C) Affinity purification of MCS-Actinidin from N. benthamiana leaves. The soluble fraction from (B) was incubated with MCC beads. After centrifugation, the
unbound fraction (UB) was collected. The MCC beads containing MCS-Actinidin were washed three times (W1–W3). MCS-Actinidin bound to MCC beads (B)
was eluted by boiling in protein sample buffer. Each fraction was analyzed by Western blotting using an anti-HA antibody. Proteins were resolved on a 10%
SDS-PAGE gel. CBB, Coomassie Brilliant Blue.
FIGURE 2

Removal of M, CBM3, and bdSUMO domains by His:bdSENP1 protease. (A) The purified MCS-Actinidin (Figure 1C) was incubated with His:bdSENP1
protease, which was purified from E. coli. After the reaction, the removal the domains upstream of actinidin was confirmed by Western blotting with
an anti-HA antibody. Proteins were resolved on a 10% SDS-PAGE gel. CBB, Coomassie Brilliant Blue. (B) Removal of His:bdSENP1. The supernatant
fraction from (A) was passed through a Ni2+-NTA column to remove His:bdSENP1. Proteins were resolved on a 10% SDS-PAGE gel. Lane 1, non-
transformed control; Lane 2, total fraction; Lane 3, unbound fraction; Lane 4, supernatant fraction after His:bdSENP1 removal; Lane 5, fraction
bound to Ni2+-NTA column. CBB, Coomassie Brilliant Blue.
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expressed kiwifruit-derived actinidin, a cysteine protease, in N.

benthamiana leaves, as no expression platform for actinidin has been

established despite its diverse applications. The actinidin was targeted

to the ER lumen, which provides an optimal environment for protein

folding and post-translational modifications essential for functional

protein expression. Notably, a previous study demonstrated the

successful expression of the full-length adipose triglyceride lipase

(ATGL) enzyme in N. benthamiana – a protein that could not be

efficiently expressed in E. coli, mammalian, or insect cells (Kulminskaya

et al., 2021; Zaikova et al., 2022). These findings highlight that a

transient expression system utilizing N. benthamiana and the ER

lumen as a subcellular organelle for protein accumulation provides a

robust platform for the production of difficult-to-express proteins.

Another potential reason for the successful expression of actinidin inN.
Frontiers in Plant Science 05
benthamiana could be the plant-specific posttranslational

modifications (PTMs) that occur in the ER (Gomord and Faye,

2004; Singh et al., 2021). Given that actinidin originates from

kiwifruit, a plant species, it is plausible that PTMs such as

glycosylation in the ER of N. benthamiana contribute to the

solubility, stability, and functionality of the expressed actinidin.

MCS-Actinidin was purified using MCC beads, which irreversibly

bind to the CBM3 tag (Islam et al., 2019). The upstream domains of

actinidin were then removed by His-bdSENP1 protease, which

specifically cleaves immediately after the SUMO domain. This

purification strategy has been successfully applied to various proteins,

including enzymes, growth factors, cytokines, and vaccines (Islam et al.,

2019, 2020; Razzak et al., 2020; Geem et al., 2021; Kim et al., 2022;

Zaikova et al., 2022). The protein yield (approximately 10 mg/kg of
FIGURE 3

Activity of actinidin expressed in N. benthamiana. (A) The substrate b-casein (7 mg) was incubated in the absence (-) or presence (+) of purified
actinidin (70 ng) at the indicated temperatures and pH 7.0 for 1 hour. After incubation, the protein samples were subjected to SDS-PAGE followed by
Coomassie Brilliant Blue (CBB) staining. Proteins were resolved on a 15% SDS-PAGE gel. Band intensities were measured using ImageJ software. The
relative band intensities of b-casein in the presence of actinidin (+) compared to the absence (-) at the same temperature were quantified to assess
substrate degradation efficiency. (B) The substrate b-casein (7 mg) was incubated in the absence (-) or presence (+) of purified actinidin (70 ng) at 55°
C and pH 7.0 for varying durations. Proteins were resolved on a 15% SDS-PAGE gel. Following incubation, protein samples were analyzed by SDS-
PAGE and stained with CBB. Band intensities were measured using ImageJ software. The relative band intensities of b-casein in the presence of
actinidin (+) compared to the absence (-) were quantified to determine substrate degradation efficiency over time.
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fresh mass from transformed leaves) remains insufficient for industrial

applications. To scale up actinidin production, several strategies could

be considered, including the establishment of stable transgenic N.

benthamiana lines and incorporating viral replicons into the vector to

enhance transformation efficiency (Kim et al., 2024). However, as

mentioned above, because actinidin is a protease, it is possible that its

expression may adversely affect the growth of transgenic N.

benthamiana by targeting cellular proteins. The purified actinidin

exhibited temperature-dependent b-casein-degrading activity.

Consistent with previous findings, activity increased with

temperature, peaking at 55°C, but dropped dramatically at 65°C,

likely due to protein denaturation (Figure 3A) (Homaei and

Etemadipour, 2015). Taken together, these results suggest that N.

benthamiana-expressed actinidin, derived from kiwifruit, holds

significant potential for applications in food processing industries,

such as milk clotting or meat tenderization, leveraging its

proteolytic properties.
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