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In the field of biology, the current leaf segmentation method still has problems 
such as missed inspections and duplication in the number of large, dense, mutual 
obstruction and vague division tasks. The reason for the above is that image 
semantic extraction is not satisfactory and semantic parsing is still insufficient. To 
address the above problems, this paper proposes GrotUNet, a novel leaf 
segmentation method that can be trained end-to-end. The algorithm is 
reconstructed in three aspects: semantic feature coding, hopping connectivity, 
and multiscale upsampling fusion. The semantic coding structure consists of 
GRblock, WGRblock, and OTblock modules. The former two make full use of the 
design ideas of GoogLeNet parallel branching and Resnet residual connectivity, 
while the latter further mines the fine-grained semantic information distributed in 
the feature space on the feature map after extraction by the WGRblock module 
to make the feature expression richer. Unlike UNet++ dense connectivity, jump 
connection reconstruction only uses 1 x 1 convolution for feature fusion of 
feature maps from different network hierarchies to enrich the semantic 
information at each location in the space. The multi-scale upsampling fusion 
design mechanism incorporates higher-order feature maps into each shallow 
decoding sub-network, effectively mitigating the loss of semantic parsing 
information of feature maps. In this paper, the method is fully demonstrated on 
CVPPP, KOMATSUNA and MSU-PID datasets. The experimental results show that 
GrotUNet segmentation outperforms existential UNet, ResUNet, UNet++, 
Perspective + UNet and other methods. Compared with UNet++, GrotUNet 
improves  the  key  evaluation  metrics  (SBD)  by  0.57%,  0.30%,  and  
0.27%, respectively. 
KEYWORDS 

instance segmentation, feature coding, jump connection, multi-scale fusion, GoogLeNet 
1 Introduction 

Instance segmentation has been the most challenging task in the field of computer 
vision, and its techniques are widely used in the fields of intelligent driving, intelligent 
medical imaging, remote sensing images, and biological phenotyping. In the field of 
biology, the extraction and analysis of plant phenotypic features is a meaningful research 
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work for describing organisms, which is very useful for agricultural 
decision-making and plant breeding industry, and helps to improve 
varieties and genes for plant industry, increase yield and reduce 
resource consumption. Currently, most plant phenotyping work is 
still done under field conditions by manual marking, these methods 
are time consuming, tedious and error prone, exploring new 
methods is the best way out of the dilemma. Leaf segmentation is 
a powerful tool for plant phenotyping. Plant leaves are characterised 
by various features, mainly including leaf area, leaf shape, leaf 
number, leaf texture, petiole and so on. Plant modal leaves have 
dense, mutually occluding and overlapping, large number and 
complex petiole joints, which makes it difficult for traditional 
segmentation methods to perform optimally. 

The challenges of leaf segmentation and counting include two 
main aspects: on the one hand, challenges such as texture variations 
inherent to plant leaves, variations in leaf shape and size, overlap 
between leaves, and difficulty in distinguishing petioles. On the 
other hand, challenges such as variations in ambient brightness, 
shadows and blurring caused by wind shaking. Compared to the leaf 
blade, the petiole has different shapes, is very small, and exists in a 
very small localised area, making it difficult for some existing 
segmentation methods to achieve accurate segmentation. The 
reason is that traditional segmentation methods have insufficient 
extraction of fine-grained semantic features and insufficient 
semantic parsing reduction in the local region, which has a 
significant impact on segmentation performance. 

In terms of feature encoding, thanks to ResNet the residual 
linking mechanism allows both the network layers to be deep and 
prevents the gradient from vanishing, evolving multiple series of 
architectures (He et al., 2016). Most existing segmentation 
architectures use it as the feature encoding extraction backbone 
network. GoogLeNet (Yuan et al., 2022) adopts the parallel 
branching idea, which allows parallel multi-branch extraction and 
fusion of the same input feature map, with a view to mining richer 
semantic information (Szegedy et al., 2015). The Outlooker 
neighborhood attention mechanism of the VOLO model aims at 
further refining the extraction of fine-grained semantics, while the 
Transformer can aggregate local region feature encoding to generate 
global contextual semantic information (Khan et al., 2022; Yuan 
et al., 2022). In terms of semantic parsing, UNet++ realizes the 
reconstruction and retention of local and global information by 
reconfiguring the sliding connections so that each layer carries as 
much local and global information as possible, and each layer is 
interconnected with each other, and finally shared to the last layer 
(Zhou et al., 2019). UNet3+ fuses the encoding module’s output 
feature maps with multi-scale downsampling splicing into different 
sub-networks of the decoding backbone (Huang et al., 2020). At the 
same time, the decoding high-level semantics are fused into shallow 
sub-networks by multi-scale up-sampling, which preserves most of 
the semantic information to a certain extent. Bert et al (Bert De 
et al., 2017). proposed discriminative loss function, which uses 
clustering mainly in the embedding space to recover the test 
instances to perform segmentation. Based on the inspirations 
generated by the above methods, we reconstruct the design in the 
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feature encoding backbone network, hopping connection, and 
decoding backbone network, and propose a new method 
GrotUNet for plant leaf segmentation. The main contributions 
are as follows: 
 

 

1. Combining GoogLeNet parallel branching with the ResNet 
residual join idea, the feature encoding modules GRblock 
and WGRblock are designed. The former is used for 
shallow network feature extraction and the latter for 
high-level feature extraction. 

2. The Outlooker	 attention and Transformer self-attention 
mechanisms are introduced to further mine the fine-
grained semantic information of the feature maps output 
from the WGRblock module, the Outlooker being used to 
further refine the extraction of local regions of the feature 
maps, while the Transformer is used to gather the attention 
of the nearest neighbours to generate the global contextual 
semantic information. 

3. Reconfiguring the sliding links so that the shallow coding 
module outputs feature maps and the higher layer feature 
maps are spliced by channel after upsampling and then 
fused across channel features using 1 x 1 convolution, 
helping to enrich the semantic information at each location 
in space. 

4. The decoding backbone network adopts a multi-scale up-
sampling fusion design mechanism, which fuses the multi-

scale up-sampling of the feature maps output from the 
high-level network into the shallow subnetwork to mitigate 
the information loss in the semantic parsing process. 

5. This paper conducts comprehensive empirical studies on the 
CVPPP, KOMATSUNA, and MSU-PID datasets. The 
experimental results demonstrate that GrotUNet 
outperforms state-of-the-art segmentation algorithms. 
The paper is organized as follows: section 2 introduces the work 
related to instance segmentation. Section 3 gives a detailed 
description of the improved GrotUNet algorithm. Section 4 
provides an experimental validation of the proposed algorithm, 
describing the dataset, the evaluation metrics and analyzing and 
discussing the experimental results in detail. Section 5 gives the 
concluding  remarks  and  proposes  the  future  direction  
of development. 
2 Related work 

Instance segmentation is mainly categorized into candidate box 
extraction based and pixel classification based instance 
segmentation methods. He He et al (He et al., 2017). proposed 
the Mask R-CNN algorithm by adding a mask sub-network to the 
Faster R-CNN. The method connects the mask with candidate 
frame extraction learning and uses RoIAlign to replace RoIPooling 
to reduce the loss of semantic information. PANet improves the 
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structure of the feature pyramid in the backbone network on top of 
the Mask R-CNN, introduces a new bottom-up pathway on the 
FPN, and performs aggregation between the pathways (Liu et al., 
2018). DetNet introduces null convolution into the backbone 
framework of the network and proposes to re-train the backbone 
network for detection and segmentation tasks to achieve feature 
expressiveness and resolution (Li et al., 2018). PointRend optimizes 
the object edges for the up-sampling operation that get better 
boundary masks (Kirillov et al., 2020). RefineMask fuses more 
fine-grained information step-by-step in a multi-stage approach, 
and finally optimizes Mask R-CNN to generate rough mask edges 
using semantic segmentation information and edge profile 
information to output accurate boundary information (Zhang 
et al., 2021). Xue et al. (Sheng et al., 2023) improved YOLOv7 by 
optimizing the model structure and parameters, and then combined 
migration learning and optimized data enhancement methods to 
achieve good performance in detecting fine cigarette impurities in 
the  stems.These  methods  are  benchmarks  for  instance  
segmentation tasks combining target detection with target mask 
estimation. However, these methods become quite complex in 
method tuning and segmentation performance is limited when 
irregularly shaped targets are learned for detection. SSAP learns 
the pixel pair affinity pyramid. The probability of two pixels 
belonging to the same instance, and generates instances 
sequentially through cascaded graph segmentation (Gao et al., 
2019). These methods generate instance masks by categorising 
pixels into any number of object instances in the image. 

Leaf instance segmentation methods based on plant 
phenotypes. Romera et al. (Romera-Paredes and Torr, 2016) used 
LSTM network (Van Houdt et al., 2020) to train an end-to-end 
instance segmentation and counting network. Ren et al. (Mengye 
and Richard, 2017) proposed recurrent neural network combined 
with candidate box extraction, which showed good segmentation 
performance on plant leaf CVPPP dataset. Li et al. (Xingyou et al., 
2024) generated pseudo defective candy images based on 
StyleGAN2 to enhance the negative sample data, and then 
background separated the color domain features of defective 
candies to solve the interference of the imbalance between intact 
and defective candy data on the detection performance. Deep 
Coloring simplified instance segmentation into a semantic 
segmentation while class labels are used for non-adjacent objects 
and then analyze the connected components to retrieve the 
instances (Kulikov et al., 2018). Victor K et al. (Kulikov and 
Lempitsky, 2020) proposed Harmonic algorithm which describes 
each object instance by using the expectation of a finite number of 
sinusoids and adjusts it to a specific object size and density using 
phase and frequency tuning. Tran et al. (Tuan et al., 2021) 
proposed an end-to-end reinforcement learning-based end 
reinforcement learning instance segmentation algorithm 
ColorRL. Sandesh B et al. (Bhagat et al., 2022) proposed a 
plant leaf segmentation algorithm Eff-UNet++. The algorithm not 
only adopts the lightweight Efficient-net network as the feature 
extraction backbone network, but also reconstructs the 
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sliding connection part of UNet++, so that the number of 
parameters and the computation amount are greatly reduced. In 
the decoding backbone network, the high-dimensional and low-
dimensional features are spliced and fused to obtain the boundary 
information of the object effectively. Eff-UNet++ method 
shows excellent performance in the dataset of plant phenotype 
feature segmentation. 

In studies related to plant leaf segmentation, De Brabandere 
et al. (Bert De et al., 2017). used a discriminative loss function 
consisting of two parts: one part pushes the embedding means of 
different objects farther away from each other, and the other part 
pulls the embedded pixels of the same object closer to their means. 
The main idea is to embed the image pixels into the hidden high 
dimensional space, the pixels belonging to the same instance are 
close to each other in the space, while the pixels of different 
instances of the object will be embedded into different spaces, and 
then subsequently use clustering algorithms to generate separate 
instances, which is the basis of the study in this paper. In recent 
years, UNet architecture is widely used for segmentation tasks 
(Ronneberger et al., 2015). Diakogiannis et al. (Diakogiannis 
et al., 2020) proposed a ResUNet architecture by replacing the 
UNet feature extraction backbone network using a Resnet network 
to achieve better segmentation performance on remote sensing 
images. In the existing research instance segmentation end-to-end 
model still has more room for development. DeepLab v3+ added an 
effective decoder module to DeepLab v3 to recover object 
boundaries and achieved good performance (Chen et al., 2018). 
Zhou et al. (Zhou et al., 2019) proposed UNet++,interconnecting 
intermediate outputs between each layer with each other by means 
of thick connections, each module interacts with each other, and 
design a supervision mechanism to achieve better performance in 
medical image analysis. The disadvantage is that the introduction of 
dense connections leads to a drastic increase in the number of 
parameters in the model architecture, which consumes a lot of 
computational resources. Eff-UNet++ reduces the number of dense 
connections on the basis of UNet++, and fuses the high-level output 
feature maps into the decoding sub-networks of each layer by 
gradually up-sampling them, which greatly reduces the number 
of parameters. 

Plant leaf contours, colors, and other features are very similar, 
coupled with the presence of occlusion and overlap between leaves, 
leading to tricky detection of leaf overlap and petiole regions by 
traditional methods. The analysis found that the network 
architecture of these methods causes semantic loss for feature 
map downsampling and upsampling. Simultaneously, there are 
limitations in the sensory field and insufficient ability to capture 
information around the spatial location of the feature map. Plant 
petiole features exist in a small localized area, which makes it 
difficult to extract such fine-grained semantic information. In order 
to overcome the above difficulties, this paper reconstructs the 
feature extraction backbone network, sliding connection, decodes 
the backbone network, and proposes a new plant leaf 
segmentation method. 
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3 Method 

The method proposed in this paper is shown in Figure 1, with 
the reconstructed hybrid feature coding modules GRblock, 
WGRblock, and OTblock on the left part, the redesigned sliding 
connection in the middle part, and the multiscale upsampling 
fusion design mechanism represented in the right part. Next, the 
role of each part will be elaborated in detail. 
3.1 GROT hybrid feature encoding module 

The GrotUNet feature extraction backbone network consists of 
GRblock, WGRblock, and OTblock, as shown in Figure 2. 
Currently, the encoding backbone network of most mainstream 
segmentation methods is mainly based on the ResNet family of 
architectures. ResNet increases the depth of the network by stacking 
the residuals quickly, but its effective receptive field may not be as 
large as theoretically (He et al., 2016). Multiple Inception modules 
in GoogLeNet are able to capture richer feature information by 
applying convolution kernels of different sizes and pooling 
operations in parallel, but this can make the network structure 
relatively complex and seriously consume resources (Szegedy et al., 
2015). The GRblock and WGRblock modules incorporate the 
parallel branching design ideas of residual block and Inception 
block, which can not only encode and extract different ranges of 
spatial feature information to enrich the feature expression, but also 
Frontiers in Plant Science 04
prevent the problem of gradient disappearance, so that the network 
will be more stable in the training process. The GRblock network 
structure is relatively simple and is mainly used to extract shallow 
feature maps, while the WGRblock structure is more complex and is 
mainly used to extract higher-order feature maps. The OTblock 
module is used to further extract higher-order feature maps, aiming 
to make fine-grained semantics further characterized. Next, the 
design of each coding module is described in detail. 

3.1.1 GRblock encoding module 
GRblock is mainly used for feature extraction in low-

dimensional space, and its first half uses the idea of parallel 
branching and the second half uses residual join, as shown in 
Figure 2a. To reduce the loss of semantic information, the module 
reduces the feature map size using maximum pooling and 
convolutional parallel two-branch downsampling with a 
convolutional kernel of 2. In addition, a large number of 
asymmetric convolutions are used in the hidden space for 
reducing the network computation and the number of 
parameters, and asymmetric convolutions are also used in the 
subsequent coding module. With the fast encoding and the 
increase of network layers, the gradient backpropagation may be 
decayed at each layer, which is very likely to cause the gradient 
vanishing problem. Residual connection is a method that can 
effectively solve the gradient vanishing problem, different from 
ResNet’s residual connection, this paper adopts the cross-residual 
connection to prevent the gradient vanishing problem, as shown in 
FIGURE 1 

Overview of the framework. 
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Figure 2a. Suppose the input of the module is X. The GRblock 
module definition Equations 1–3 is shown: 

H = ½C33(Maxpool(X)), C13(C1 
11(X))] (1)11(X)), C31(C
1 

M = Relu(C33(H) +  C1 (2)11(H)) 

F i = Relu(C33(M) +  C11(H)) (3) 

Where  Maxpool and C1 represent  max  pooling  and  11 

convolutional downsampling, respectively. CXY represents a 
convolution operation with a kernel of X x Y . Relu denotes the 
activation function. 

3.1.2 WGRblock encoding module 
The WGRblock module structure is designed as shown in 

Figure 2b. The module uses the GoogLeNet parallel branching 
approach for feature extraction in different scale ranges of the input 
feature map, which consists of one maximum pooling branch, three 
stride =  2  convolut ional  downsampl ing  branches ,  and  
convolutional operations in tandem with each score. Maximum 
pooling preserves the leaf instance edge semantic information, while 
convolutional downsampling carries more local semantic 
information. Each branch, after the corresponding operation, 
splices and fuses the feature maps in channel direction to pass 
into the residual block for further feature extraction. Assuming that 
one of the intermediate inputs is F i, The definition of WGRblock is 
Frontiers in Plant Science 05 
 

shown as Equations 4–7: 

s1 = C11
1 (F i) (4) 

( )
s2 = C33 C11

1 (F i) (5) 

g = ½C1 (6)11(F i), C11(M(F i)), C13(s1), C31(s1), C13(s2), C31(s2)] 

F i−1 = Relu(C33(C33(g)) + C11(g)) (7) 

Where C1 
11, M represent convolution kernel 1 x 1, sliding to 2 

convolution and max pooling downsampling operations, 
respectively. CXY represents a convolution operation with a 
kernel of X x Y . ½·] represents the splicing fusion operation by 
channel direction. Relu represents the activation function. 
3.1.3 OTblock encoding module 
OTblock module consists of multiple Outlooker and 

Transformer attention layers, as shown in Figure 2c. The

Outlooker neighborhood attention mechanism originates from 
VOLO, which was initially created to make each spatial location 
on the image sufficiently representative, and is designed to aggregate 
the attention weights of each neighboring location in the generative 
space, to further refine the local features. Transformer has a 
powerful ability to encode contextual information, and can 
aggregate local spatial semantic information to generate global 
FIGURE 2 

Feature extraction coding module. 
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contextual information. OTblock uses 4 Outlooker neighborhood 
attention layers in combination with 12 Transformer self-attention 
layers to further mine each location semantic information in the 
higher-order feature space, which is then aggregated to generate 
globally richer semantic information. Assume hk−1 is the input of a 

ilayer in the middle of Outlooker, and sp is the intermediate data 
token obtained by downsampling after Outlooker extracts the 
neighborhood weights. The OTblock encoding definition is as 
shown in Equations 8–12: 

0 
hk = MHOA(LN(hk−1)) + hk−1 (8) 

0 
hk = MLP(LN(hk

0
)) + hk (9) 

1 2 nG0 = ½spw; spw; …; spw; ] + Wpos (10) 

0 
Gl = MHSA(LN(Gl−1)) + Gl−1 (11) 

0 
Gl = MLP(LN(Gl

0
)) + Gl (12) 

Where W ∈ R(p)2+D is the projection of the patch embedding. 
∈ RNxD  Wpos is the positional embedding vector, hk denotes the 

output of the k-th layer Outlooker, and Gl denotes the output of the 
l-th layer Transformer. MHOA、 MHSA、 MLP, and LN stand for 
Multi-Headed Outlooker Attention, Multi-Headed Self-Attention, 
Multi-Layer Perceptual Machine, and Layer Normalization 
Operation, respectively. 
3.2 Reconstructing Skip Connections 
(R-Skip) 

Compared with the UNet++ sliding connection, the sliding 
connection reconstructed by the method in this paper reduces a 
large number of intermediate nodes and retains at most one node 
per layer, as shown in the middle part of Figure 1. The role of this 
node is mainly to aggregate the output feature maps from the 
current layer coding block with the feature maps output from all 
coding blocks and nodes of the higher layer. The purpose of using 
1 x 1 convolution in the node is to realize cross-channel 
information aggregation retaining the semantic independence of 
each spatial location, providing rich spatial semantic features for the 
decoding backbone network. The definition of reconstructing the 
sliding connection is as shown in Equations 13–15: 

S3 = F 3,0 (13) 

S2 = C11(½F 2,0, U2(S3)]) (14) 

S1 = C11(½F 1,0, U2(F 2,0), U2(S2)]) (15) 

Where C11 denotes the convolution kernel for 1 x 1 
convolution operation, U2 represents a bilinear interpolation 
Frontiers in Plant Science 06
 operation with an upsampling factor of 2. Si denotes the output 
of reconstructed sliding connection. 
 

3.3 Multi-scale upsampling fusion decoder 

In the decoding stage, the traditional method of recovering 
semantic information by layer-by-layer up-sampling will cause part 
of the semantic information to be lost, resulting in limited 
segmentation performance enhancement. UNet3+ designs a 
multi-scale up-sampling feature map fusion mechanism in the 
decoding backbone network, which fuses feature maps at different 
scales together through bilinear interpolation up-sampling splicing 
and aims to alleviate the loss of semantic information in the process 
of semantic parsing. In this paper, we reduce the number of 
multiscale upsampling connections on the basis of the UNet3+ 
decoding design, as shown in the decoding section on the right side 
of Figure 1. Assume that the output of the encoding is F 4, Y4 = F 4. 
The decoding process is defined as shown in Equations 16–19: 

Y3 = C33(U2(Y4)) (16) 

Y2 = C33(½U2(Y3), U4(C11(Y4))]) (17) 

Y1 = C33(½U2(Y2), U4(C11(Y3)), U8(C11(Y4))]) (18) 

Y0 = C33(U2(Y1)) (19) 

Where CXY denotes the operation on the corresponding 
convolution. Ud represents a bilinear interpolation operation with 
an upsampling factor of d. ½·] stands for splicing operation by 
channel direction. 
3.4 Loss functions 

The discriminative loss function performs well in the field of 
leaf segmentation and is frequently used in many segmentation 
models (Bert De et al., 2017). This loss function is defined as shown 
in Equations 20–23: 

1 NcLvar = 
1

c=1
1 
oi=1½∥mc − xi∥ − d v]+ 

2 (20)
C o Nc 

1 C CLdist = cA =1ocB =1
½2d d − ∥mcA − mcB∥]2 

+,   (cA≠cB ) (21) C(C − 1) o 

1 CLreg = c=1∥mc∥ (22)
C o 

L = a ·Lvar + b ·Ldist + g · Lreg (23) 

Where C denotes the number of instances of the real labeled 
image, N c denotes the number of pixels in a particular instance C, xi 
denotes the i-th pixel in the instance that generates the embedding 
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 vector, and mc is the mean vector of the real labeled instances C, 
which represents the clustering center. ∥ · ∥ is the L1 or L2 distance, 
which represents the canonical term. dv and dv represent the 
variance and distance of the margins, respectively. The 
discriminative loss function aims to bring the embedding vectors 
of the pixels inside the same instance as close as possible to the 
center of the mean value of that instance in the mapping space. The 
mean vectors of different instances are to be as far away from that 
mean center as possible. 
 

4 Experiments and analysis 

This section will detail the experimental design and analysis. 
Firstly, the different characteristics of the three datasets are briefly 
introduced. Secondly, the evaluation metrics for instance 
segmentation leaf segmentation are presented. Then, some details 
of the algorithm training configuration are presented. Finally, the 
performance of the proposed method is evaluated and compared 
with state-of-the-art methods. 
 

4.1 Dataset and evaluation metrics 

4.1.1 Dataset 
In the process of experimental demonstration, three datasets, 

CVPPP, KOMATSUNA, and MSU-PID, are selected to verify the 
effectiveness and segmentation performance of GrotUNet. Next, the 
reasons and circumstances of data set selection are described 
in detail. 

Due to the small data volume of the CVPPP A1 dataset, the 
blade contour is clear and the labeled file contour is delicate, which 
can effectively test the performance of the algorithm (Minervini 
et al., 2016). Therefore, it is often used as a benchmark evaluation 
dataset for mainstream instance segmentation methods.A1 contains 
a total of 161 leaf images, 128 in the training set and 33 in the test 
set. In order to better evaluate the performance of the algorithm, in 
the experiments, the training set A1 is divided into 85% for training 
and 15% for validation, i.e., 108 sheets are used for model training 
and 20 sheets are used for evaluating the qualitative test. 

The KOMATSUNA leaf dataset acquisition was done at 4­
hourly intervals under an ambient condition of illumination of 2400 
lua, temperature of 30°C, and humidity of 30%, with a total of 900 
images (Uchiyama et al., 2017). The moderate data volume of 
KOMATSUNA, along with the low number of leaves per image, 
facilitates the observation of segmentation of details such as petiole 
and helps in the validation of the model.The KOMATSUNA dataset 
is divided into 80% training dataset and 20% testing dataset, i.e., 720 
images for training the model and 180 images for evaluation testing. 

MSU-PID is the first multimodal plant image database, which 
contains two kinds of plants, Arabidopsis and Bean (Cruz et al., 
2016). The Arabidopsis data contains four modalities, 2160 RGB 
modal images and 576 labeled images. The leaf overlap of the 
Arabidopsis data is blurred, which is difficult to distinguish, and it is 
Frontiers in Plant Science 07 
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more testing for the performance of the model. In the experiment, 
the Arabidopsis data was preprocessed to collect 576 source data 
that corresponded one-to-one with the labeled images, which were 
divided into 80% for the training set and 20% for the testing set, i.e., 
460 for training and 116 for evaluation testing. 

The method proposed in this paper uses data augmentation 
techniques to expand the training set prior to training, including 
random cropping, random up and down flipping, and random left 
and right flipping. 

4.1.2 Evaluation metrics 
For the evaluation metrics to evaluate the model segmentation 

performance, FBD, SBD are used. the evaluation metrics for the 
number of instances, DiC, jDiCj are used, and the details of each 
metric are introduced as follows: 

Foreground Background Dice (FBD) is the foreground mask 
dice coefficient (Scharr et al., 2016). It mainly measures the degree 
of overlap between the real labeling Pgt and the background binary 
segmentation mask of the algorithm’s prediction result Ppre. It  is
used to evaluate the ability of the algorithm to recognize the target 
from the background and perform binary segmentation. FBD is 
defined as shown in (Diakogiannis et al., 2020): 

2 Pgt ∩ Pprej j
FBD( % )  =  j j + jPpre (24)

Pgt j 
Symmetric Best Dice (SBD) denotes the average Dice between 

all the instances (Scharr et al., 2016). Each predicted label produces 
dice with the real label and then averages them to estimate the 
average instance segmentation accuracy. BD is defined as follows: 

    
1 2 Li

a ∩ Lj
b  

BD(La ,  Lb) =  
M o Mi=1 max     (25)  

1≤j≤N   La +  Lb  i j

j j· denotes the number of pixels. Li
a (1 ≤ i ≤ M)和Lbj (1 ≤ j ≤ 

N) belong to the segmentation sets La ,  Lb respectively. 
The SBD of the true labeled set Lgt and the predicted labeled set 

Lpre is defined as follows: 

  
, Lpre), BD(Lpre , Lgt )SBD(Lgt , Lpre) = min BD(Lgt (26) 

Difference in Count (DiC) represents a measure of the 
difference between the predicted number of instances and the true 
number of instances (Scharr et al., 2016). jDiCj is the absolute value 
of DiC. DiC is defined as follows: 

DiC = #Lpre − #Lgt (27) 
4.2 Experimental details 

The experimental demonstration is mainly based on the deep 
learning framework PyTorch, and the specific environment

configuration and parameter settings are shown in Table 1. The 
parameter a , b , g  value settings in the loss function are consistent 
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with the study of Bert et al. (Bert De et al., 2017). The optimizer 
selects AdamW, and the weight decay is 0.05. The initial value of the 
learning rate is set to 0.001, and the decay factor is 0.1. In order to 
verify the validity and generality of the model the proposed method 
in this paper, the hyperparameters are configured identically during 
the training of the three datasets, CVPPP, KOMATSUNA and 
MSU-PID. The image sizes of the model inputs are 256 x 256 x 3, 
256 x 256 x 3, and 128 x 128 x 3, respectively. 
4.3 Experimental analysis and discussion 

The method in this paper evaluates the segmentation 
performance through two dimensions: the intuitive visual 
perception of the visualization effect and the instance 
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segmentation evaluation metrics. The training and test sets were 
kept constant during the experimental implementation and were 
trained and tested independently at CVPPP, KOMATSUNA and 
MSU-PID using the same parameter settings. 

4.3.1 Comparison of state-of-the-art methods 
To verify the segmentation performance of the GrotUNet 

model on plant leaves, this paper carries out experimental 
comparisons using six state-of-the-art segmentation methods, 
namely UNet (Ronneberger et al., 2015), ResUNet (Diakogiannis 
et al., 2020), UNet++ (Zhou et al., 2019), DeepLab V3 (Chen et al., 
2018), DSNet (Guo et al., 2024), and Perspective + UNet (Hu et al., 
2024). All methods keep the same parameter settings and loss 
functions during the experiment. The results of the evaluation of 
this paper’s methods on CVPPP, KOMATSUN and MSU-PID 
TABLE 2 Comparison results with state-of-the-art methods on the CVPPP dataset. 

Method Flops(G) Parms(M) FPS FBD(%) SBD(%) DiC |DiC| 

UNet (Ronneberger et al., 2015) 43.45 14.02 177.72 96.80 82.67 -0.1 0.8 

ResUNet (Diakogiannis et al., 2020) 23.87 69.31 104.84 96.68 86.51 -0.1 0.6 

UNet++ (Zhou et al., 2019) 200.96 47.20 84.75 98.36 88.93 0.05 0.55 

DeepLabv3+ (Chen et al., 2018) 7.79 5.86 117.38 96.63 84.97 0.1 0.7 

DSNet (Guo et al., 2024) 33.03 29.33 51.19 93.21 73.90 0.1 0.7 

Perspective + UNet (Hu et al., 2024) 90.49 103.85 39.83 97.98 87.86 0.25 0.75 

GrotUNet 47.99 104.45 36.82 98.07 89.50 0.05 0.55 
 

TABLE 1 Environment configuration and parameter configuration during experiment implementation. 

Experimental setting Configurations Parameter setting Configurations 

Operating system Ubuntu20.04 Batch size 16 

CPU 12 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz epochs 200 

GPU vGPU-32GB(32GB) * 1 Ir 1-e3 

CUDA Versions CUDA 11.3 Weight decay 5-e2 

Python Edition Python 3.8 a 1 

Deep Learning framework PyTorch b 1 

Torch versions 1.10.0 g 0.001 
TABLE 3 Comparison results with state-of-the-art methods on the KOMATSUNA dataset. 

Method FBD(%) SBD(%) DiC |DiC| 

UNet (Ronneberger et al., 2015) 96.58 83.71 0.23 0.47 

ResUNet (Diakogiannis et al., 2020) 96.39 88.54 -0.04 0.28 

UNet++ (Zhou et al., 2019) 97.90 92.14 -0.05 0.20 

DeepLabv3+ (Chen et al., 2018) 96.85 86.78 -0.1 0.39 

DSNet (Guo et al., 2024) 93.88 80.78 0.05 0.38 

Perspective + UNet (Hu et al., 2024) 97.58 92.15 -0.04 0.16 

GrotUNet 97.80 92.44 -0.07 0.16 
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FIGURE 3 

Visualizing sample results on the CVPPP dataset. 
TABLE 4 Comparison results with state-of-the-art methods on MSU-PID dataset. 

Method FBD(%) SBD(%) DiC |DiC| 

UNet (Ronneberger et al., 2015) 88.84 80.81 -0.13 0.53 

ResUNet (Diakogiannis et al., 2020) 91.11 84.76 -0.12 0.35 

UNet++ (Zhou et al., 2019) 91.00 85.21 -0.17 0.35 

DeepLabv3+ (Chen et al., 2018) 90.23 82.38 -0.01 0.31 

DSNet (Guo et al., 2024) 87.16 75.36 -0.29 0.58 

Perspective + UNet (Hu et al., 2024) 90.83 84.67 0.01 0.26 

GrotUNet 91.20 85.48 -0.06 0.28 
F
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FIGURE 4 

Visualizing sample results on the KOMATSUNA dataset. 
Frontiers in Plant Science 10 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1378958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Deng et al. 10.3389/fpls.2025.1378958 
FIGURE 5 

Visualizing sample results on the MSU-PID dataset. 
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datasets are given in Tables 2, 3 and 4, respectively. It is observed 
that GrotUNet achieves FgBgDice: 98.07, 97.80, 91.20; SBD: 89.50, 
92.44, 85.48 for the leaf segmentation evaluation metrics on the 
three datasets, respectively.Meanwhile, the counting evaluation 
metrics on the three datasets achieves DiC: 0.05, -0.07, -0.06; | 
DiC|. 0.55, 0.16, 0.28. In terms of the key segmentation evaluation 
metrics FBD and SBD evaluation, GrotUNet performs the best on 
all three datasets, exhibiting strong segmentation performance. 

Table 2 demonstrates the results of Flops, Parms, and FPS 
comparisons, where GrotUNet has a large number of parameters 
and is too slow for inference, but the computational complexity is 
better than UNet++. Figures 3, 4, and  5 show the visualized 
qualitative results of GrotUNet compared with several other state-
of-the-art methods on CVPPP, KOMATSUN, and MSU-PID 
datasets, respectively. Observing the three visualizations, it is easy 
to find that the segmentation of petiole aggregation region by UNet, 
Frontiers in Plant Science 12 
ResUNet, and DeepV3+ methods on the three plant datasets is 
unsatisfactory, and some petiole features are not captured. In 
addition, at the overlap of petiole and leaf blade, and at the 
boundary between petioles, the ability of GrotUNet to capture 
fine-grained semantics in the local area is significantly better than 
that of UNet, ResUNet, and DeepV3+, and the fine features such as 
petiole are almost completely recognized. Traditional segmentation 
methods in feature map scale transformation downsampling and 
upsampling will cause some key semantic information to be lost. 
Furthermore, the range of sensing field is more limited, and richer 
features cannot be acquired. The method proposed in this 
paper prevents the loss of semantic information during the flow 
of image semantics through the reconstruction of the feature 
extraction backbone network, sliding connection and multiscale 
up-sampling fusion mechanism in order to prevent the loss of 
semantic information during the flow of image semantics in the 
feature layer. 

4.3.2 Comparison with existing studies 
To validate the performance of GrotUNet for further 

verification, this paper compares the evaluation results on 
CVPPP, KOMATSUNA, and MSU-PID datasets with the extant 
research methods. Table 5 demonstrates the SBD, |DiC| comparison 
results on the CVPPP dataset. Table 6 gives the results of 
comparison between KOMATSUNA and MSU-PID datasets on 
SBD. Comparing the 2 tables, the performance of GrotUNet leaf 
segmentation is better than the existing research methods. IPK 
performs poorly in leaf segmentation and counting due to 
overlapping leaf blades and crossing leaf margins (Pape and 
Klukas, 2015). The presence of small leaves and petioles resulted 
in reduced segmentation and detection ability of Nottingham and 
Wageningen (Yin et al., 2014a; Scharr et al., 2016). The poor 
segmentation ability of MSU may be due to dense leaves (Scharr 
et al., 2016). Deep coloring may have too many post-processing 
hyper-parameters, which resulted in limited segmentation ability 
(Kulikov et al., 2018). The method proposed in this paper combines 
the discriminative loss function to reconstruct the feature extraction 
backbone network, the sliding connection, and the decoding 
backbone network, and the performance in leaf segmentation and 
leaf number calculation reaches the advanced level. 

As far as the network architecture is concerned, traditional 
encoding-decoding architectures lose some of the semantic 
information in both image downsampling and upsampling. UNet 
++ improves segmentation performance by constructing sliding 
connections in the form of dense connections, which, however, 
imposes a large amount of computation. Compared with UNet++, 
GrotUNet’s sliding connection design drastically reduces the 
number of nodes, computational effort, and number of 
parameters, and retains sufficient semantic information. The 
multi-scale upsampling fusion design mechanism fuses the 
higher-order feature maps into the lower-order sub-networks 
while using 1 x 1 convolution for feature aggregation. This not 
only balances the excessive number of parameters well, but also 
mitigates the semantic loss in the decoding process. 
TABLE 5 Comparison of SBD and |DiC| results between GrotUNet and 
state-of-the-art methods on CVPPP. Dataset. 

Method |DiC| SBD (%) 

IPK (Pape and Klukas, 2015) 2.6 74.4 

Nottingham (Hu et al., 2024) 3.8 68.3 

MSU (Hu et al., 2024) 2.3 66.7 

Wageningen (Yin et al., 2014a) 2.2 71.1 

Recurrent IS+CRF (Romera-Paredes and Torr, 2016) 1.1 66.6 

E2E (Mengye and Richard, 2017) 0.8 84.9 

DLoss (Bert De et al., 2017) 1.0 84.2 

Deep coloring (Kulikov et al., 2018) 2.0 80.4 

ColorRL (Tuan et al., 2021) 1.34 87.3 

Eff-UNet++ (Bhagat et al., 2022) 1.15 85.0 

GrotUNet 0.55 89.5 
TABLE 6 Comparison of SBD results between GrotUNet and advanced 
methods on KOMATSUNA and MSU-PID Dataset. 

KOMATSUNA MSU-PID 

Method 
SBD 
(%) Method 

SBD 
(%) 

CVPPP-All (Ward and 
Moghadam, 2020) 

51.34 (Yin et al., 2014a). 63.0 

Ward et al (Ward et al., 2018). 62.43 (Yin et al., 2014b). 64.4 

UPGen (Ward and 
Moghadam, 2020) 

71.69 (Yin et al., 2017). 65.2 

Upen-Incontext (Ward and 
Moghadam, 2020) 

77.76 (Yin et al., 2017). 61.0 

Eff-UNet++ (Bhagat et al., 2022) 83.44 
Eff-UNet++ (Bhagat 

et al., 2022) 
71.17 

GrotUNet 92.44 GrotUNet 85.48 
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Some cases of segmentation failure of GrotUNet on CVPPP, 
KOMATSUNA and MSU-PID datasets are shown in Figure 6. It is  
observed that GrotUNet is unable to accurately detect the number 
of plant leaves, leaf edge contour, petiole region, etc., and is not 
sensitive enough to the local area features, which leads to some 
incorrect segmentation. Meanwhile, this also restricts the further 
improvement of the model performance, and further research will 
be done subsequently. 
4.4 Ablation study 

The existing backbone network for feature extraction in 
segmentation methods mainly uses the ResNet family of 
Frontiers in Plant Science 13 
architectures, but in the experiments, it is found that these 
mainstream architectures perform poorly for detail semantic 
extraction such as petiole, which restricts the performance of the 
model. Analyzing the reasons, it may be found that the ResNet 
architecture itself is deficient in the presence of insufficient feature 
extraction and serious loss of detail semantics when the feature map 
scale is reduced. Based on this, this paper redesigns the hybrid 
feature extraction backbone network, and the ablation study is 
mainly carried out on this basis. The ablation study is carried out on 
CVPPP, KOMATSUNA and MSU-PID datasets, and the 
experimental ablation study mainly verifies the performance of R-
Skip, Muti-UP, and OTblock modular design on the key evaluation 
index SBD, so as to verify whether each module contributes to the 
segmentation performance. 
FIGURE 6 

Failed cases of GrotUNet segmentation on CVPPP, KOMATSUNA and MSU-PID datasets. 
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Table 7 and Figure 7 give the results and visualizations 
evaluated on the CVPPP, KOMATSUNA and MSU-PID datasets. 
Observation of the graphs reveals that Configuration II, which uses 
the same sliding method and decoding structure as UNet and does 
not employ the R-Skip and Muti-UP modules, performs poorly in 
segmenting the petiole detail region. Configurations I, III, and IV 
have different leaf segmentation performances on the CVPPP, 
KOMATSUNA, and MSU-PID datasets, and the segmentation 
effect is unsatisfactory in detail regions such as petiole. However, 
when R-Skip, Muti-UP, and Otblock modules are all applied, the 
best leaf segmentation performance is realized and SBD is improved 
significantly. In addition, Table 7 shows that the large number of 
parameters in the GrotUNet model is mainly due to the application 
of the OTblock module, which consists of the Outlooker 
neighborhood attention layer and the Transformer attention 
layer. Although the performance of GrotUNet is excellent, it 
increases the computational complexity and reduces the inference 
speed, which will be further investigated in the future. 

The method in this paper is really experimentally set up for 1 x 
1 convolutional feature aggregation operation in sliding joins. In the 
experiments, it is found that the performance of segmentation using 
1×1 convolution is better than 3×3 convolution, which is beneficial 
for reducing the number of parameters. In addition, in this paper, 
the higher-order feature maps are up-sampled by multiscale bilinear 
interpolation and fused into the shallow decoding sub-networks, 
and feature aggregation is achieved using the 1×1 convolution 
operation. Through experiments, it is proved that the multi-scale 
up-sampling fusion mechanism aggregates the higher-order 
features with the lower-order features, which effectively improves 
the quality of the feature maps and preserves more semantic 
information. Overall, GrotUNet achieves 89.50%, 92.44%, and 
85.48% SBD for the evaluation metrics on the CVPPP, 
KOMATSUNA, and MSU-PID datasets, respectively, which are 
superior to most of the existing research methods. 
 

5 Conclusions 

Since plant leaves have overlapping, occluded, and tiny petioles, 
it is difficult to capture key features using traditional segmentation 
methods, resulting in inaccurate leaf and petiole detection and poor 
segmentation performance phenotype. In order to solve the above 
problems, this paper proposes a novel, end-to-end training leaf 
segmentation algorithm, GrotUNet. the main contributions of this 
algorithm are an improved feature extraction encoder, a 
reconstructed jump connection,  and a multiscale  upsampling

fusion decoder. The encoder consists of three parts: the GRblock, 
the WGRblock, and the OTblock. The former two utilize the ideas 
of Resnet and GoogLeNet residual connectivity and parallel 
branching to fully exploit the semantic features of the image. The 
latter OTblock, on the other hand, performs one-step mining and 
encoding of fine-grained image semantic information to obtain finer 
features. Combining the three effectively extracts the features of 
local key regions of the instance object. The reconfigured sliding 
connection module employs a convolutional block at the 
intermediate node to aggregate semantic information from 
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different scales, which can make the feature representation of each 
spatial location richer. The decoding backbone network adopts a 
multi-scale upsampling fusion design to incorporate the outputs of 
high-level sub-networks into each low-level sub-network, effectively 
mitigating the loss of semantic information. Experimental 
evaluations on CVPPP, KOMATSUNA and MSU-PID datasets 
show that the proposed method GrotUNet outperforms state-of­
the-art methods such as UNet, ResUNet, DeepV3+, UNet++, 
Perspective + UNet. In the future, GrotUNet will be migrated to 
the fields of crop disease detection and agricultural product quality 
inspection to further verify its outstanding performance, aiming to 
provide a strong contribution to the green development of 
agriculture (Zhenye et al., 2024). 
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FIGURE 7 

Ablation study visualization results on CVPPP, KOMATSUNA and MSU-PID datasets. 
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