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GrotUNet: a novel leaf
segmentation method
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2School of Information Technology Industry, Yunnan Vocational institute of Energy Technology,
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In the field of biology, the current leaf segmentation method still has problems

such as missed inspections and duplication in the number of large, dense, mutual

obstruction and vague division tasks. The reason for the above is that image

semantic extraction is not satisfactory and semantic parsing is still insufficient. To

address the above problems, this paper proposes GrotUNet, a novel leaf

segmentation method that can be trained end-to-end. The algorithm is

reconstructed in three aspects: semantic feature coding, hopping connectivity,

and multiscale upsampling fusion. The semantic coding structure consists of

GRblock, WGRblock, and OTblock modules. The former two make full use of the

design ideas of GoogLeNet parallel branching and Resnet residual connectivity,

while the latter further mines the fine-grained semantic information distributed in

the feature space on the feature map after extraction by the WGRblock module

to make the feature expression richer. Unlike UNet++ dense connectivity, jump

connection reconstruction only uses 1� 1   convolution for feature fusion of

feature maps from different network hierarchies to enrich the semantic

information at each location in the space. The multi-scale upsampling fusion

design mechanism incorporates higher-order feature maps into each shallow

decoding sub-network, effectively mitigating the loss of semantic parsing

information of feature maps. In this paper, the method is fully demonstrated on

CVPPP, KOMATSUNA and MSU-PID datasets. The experimental results show that

GrotUNet segmentation outperforms existential UNet, ResUNet, UNet++,

Perspective + UNet and other methods. Compared with UNet++, GrotUNet

improves the key evaluation metrics (SBD) by 0.57%, 0.30%, and

0.27%, respectively.
KEYWORDS

instance segmentation, feature coding, jump connection, multi-scale fusion, GoogLeNet
1 Introduction

Instance segmentation has been the most challenging task in the field of computer

vision, and its techniques are widely used in the fields of intelligent driving, intelligent

medical imaging, remote sensing images, and biological phenotyping. In the field of

biology, the extraction and analysis of plant phenotypic features is a meaningful research
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work for describing organisms, which is very useful for agricultural

decision-making and plant breeding industry, and helps to improve

varieties and genes for plant industry, increase yield and reduce

resource consumption. Currently, most plant phenotyping work is

still done under field conditions by manual marking, these methods

are time consuming, tedious and error prone, exploring new

methods is the best way out of the dilemma. Leaf segmentation is

a powerful tool for plant phenotyping. Plant leaves are characterised

by various features, mainly including leaf area, leaf shape, leaf

number, leaf texture, petiole and so on. Plant modal leaves have

dense, mutually occluding and overlapping, large number and

complex petiole joints, which makes it difficult for traditional

segmentation methods to perform optimally.

The challenges of leaf segmentation and counting include two

main aspects: on the one hand, challenges such as texture variations

inherent to plant leaves, variations in leaf shape and size, overlap

between leaves, and difficulty in distinguishing petioles. On the

other hand, challenges such as variations in ambient brightness,

shadows and blurring caused by wind shaking. Compared to the leaf

blade, the petiole has different shapes, is very small, and exists in a

very small localised area, making it difficult for some existing

segmentation methods to achieve accurate segmentation. The

reason is that traditional segmentation methods have insufficient

extraction of fine-grained semantic features and insufficient

semantic parsing reduction in the local region, which has a

significant impact on segmentation performance.

In terms of feature encoding, thanks to ResNet the residual

linking mechanism allows both the network layers to be deep and

prevents the gradient from vanishing, evolving multiple series of

architectures (He et al., 2016). Most existing segmentation

architectures use it as the feature encoding extraction backbone

network. GoogLeNet (Yuan et al., 2022) adopts the parallel

branching idea, which allows parallel multi-branch extraction and

fusion of the same input feature map, with a view to mining richer

semantic information (Szegedy et al., 2015). The Outlooker

neighborhood attention mechanism of the VOLO model aims at

further refining the extraction of fine-grained semantics, while the

Transformer can aggregate local region feature encoding to generate

global contextual semantic information (Khan et al., 2022; Yuan

et al., 2022). In terms of semantic parsing, UNet++ realizes the

reconstruction and retention of local and global information by

reconfiguring the sliding connections so that each layer carries as

much local and global information as possible, and each layer is

interconnected with each other, and finally shared to the last layer

(Zhou et al., 2019). UNet3+ fuses the encoding module’s output

feature maps with multi-scale downsampling splicing into different

sub-networks of the decoding backbone (Huang et al., 2020). At the

same time, the decoding high-level semantics are fused into shallow

sub-networks by multi-scale up-sampling, which preserves most of

the semantic information to a certain extent. Bert et al (Bert De

et al., 2017). proposed discriminative loss function, which uses

clustering mainly in the embedding space to recover the test

instances to perform segmentation. Based on the inspirations

generated by the above methods, we reconstruct the design in the
Frontiers in Plant Science 02
feature encoding backbone network, hopping connection, and

decoding backbone network, and propose a new method

GrotUNet for plant leaf segmentation. The main contributions

are as follows:
1. Combining GoogLeNet parallel branching with the ResNet

residual join idea, the feature encoding modules GRblock

and WGRblock are designed. The former is used for

shallow network feature extraction and the latter for

high-level feature extraction.

2. The Outlooker attention and Transformer self-attention

mechanisms are introduced to further mine the fine-

grained semantic information of the feature maps output

from the WGRblock module, the Outlooker being used to

further refine the extraction of local regions of the feature

maps, while the Transformer is used to gather the attention

of the nearest neighbours to generate the global contextual

semantic information.

3. Reconfiguring the sliding links so that the shallow coding

module outputs feature maps and the higher layer feature

maps are spliced by channel after upsampling and then

fused across channel features using   1� 1 convolution,

helping to enrich the semantic information at each location

in space.

4. The decoding backbone network adopts a multi-scale up-

sampling fusion design mechanism, which fuses the multi-

scale up-sampling of the feature maps output from the

high-level network into the shallow subnetwork to mitigate

the information loss in the semantic parsing process.

5. This paper conducts comprehensive empirical studies on the

CVPPP, KOMATSUNA, and MSU-PID datasets. The

experimental results demonstrate that GrotUNet

outperforms state-of-the-art segmentation algorithms.
The paper is organized as follows: section 2 introduces the work

related to instance segmentation. Section 3 gives a detailed

description of the improved GrotUNet algorithm. Section 4

provides an experimental validation of the proposed algorithm,

describing the dataset, the evaluation metrics and analyzing and

discussing the experimental results in detail. Section 5 gives the

concluding remarks and proposes the future direction

of development.
2 Related work

Instance segmentation is mainly categorized into candidate box

extraction based and pixel classification based instance

segmentation methods. He He et al (He et al., 2017). proposed

the Mask R-CNN algorithm by adding a mask sub-network to the

Faster R-CNN. The method connects the mask with candidate

frame extraction learning and uses RoIAlign to replace RoIPooling

to reduce the loss of semantic information. PANet improves the
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structure of the feature pyramid in the backbone network on top of

the Mask R-CNN, introduces a new bottom-up pathway on the

FPN, and performs aggregation between the pathways (Liu et al.,

2018). DetNet introduces null convolution into the backbone

framework of the network and proposes to re-train the backbone

network for detection and segmentation tasks to achieve feature

expressiveness and resolution (Li et al., 2018). PointRend optimizes

the object edges for the up-sampling operation that get better

boundary masks (Kirillov et al., 2020). RefineMask fuses more

fine-grained information step-by-step in a multi-stage approach,

and finally optimizes Mask R-CNN to generate rough mask edges

using semantic segmentation information and edge profile

information to output accurate boundary information (Zhang

et al., 2021). Xue et al. (Sheng et al., 2023) improved YOLOv7 by

optimizing the model structure and parameters, and then combined

migration learning and optimized data enhancement methods to

achieve good performance in detecting fine cigarette impurities in

the stems.These methods are benchmarks for instance

segmentation tasks combining target detection with target mask

estimation. However, these methods become quite complex in

method tuning and segmentation performance is limited when

irregularly shaped targets are learned for detection. SSAP learns

the pixel pair affinity pyramid. The probability of two pixels

belonging to the same instance, and generates instances

sequentially through cascaded graph segmentation (Gao et al.,

2019). These methods generate instance masks by categorising

pixels into any number of object instances in the image.

Leaf instance segmentation methods based on plant

phenotypes. Romera et al. (Romera-Paredes and Torr, 2016) used

LSTM network (Van Houdt et al., 2020) to train an end-to-end

instance segmentation and counting network. Ren et al. (Mengye

and Richard, 2017) proposed recurrent neural network combined

with candidate box extraction, which showed good segmentation

performance on plant leaf CVPPP dataset. Li et al. (Xingyou et al.,

2024) generated pseudo defective candy images based on

StyleGAN2 to enhance the negative sample data, and then

background separated the color domain features of defective

candies to solve the interference of the imbalance between intact

and defective candy data on the detection performance. Deep

Coloring simplified instance segmentation into a semantic

segmentation while class labels are used for non-adjacent objects

and then analyze the connected components to retrieve the

instances (Kulikov et al., 2018). Victor K et al. (Kulikov and

Lempitsky, 2020) proposed Harmonic algorithm which describes

each object instance by using the expectation of a finite number of

sinusoids and adjusts it to a specific object size and density using

phase and frequency tuning. Tran et al. (Tuan et al., 2021)

proposed an end-to-end reinforcement learning-based end

reinforcement learning instance segmentation algorithm

ColorRL. Sandesh B et al. (Bhagat et al., 2022) proposed a

plant leaf segmentation algorithm Eff-UNet++. The algorithm not

only adopts the lightweight Efficient-net network as the feature

extraction backbone network, but also reconstructs the
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sliding connection part of UNet++, so that the number of

parameters and the computation amount are greatly reduced. In

the decoding backbone network, the high-dimensional and low-

dimensional features are spliced and fused to obtain the boundary

information of the object effectively. Eff-UNet++ method

shows excellent performance in the dataset of plant phenotype

feature segmentation.

In studies related to plant leaf segmentation, De Brabandere

et al. (Bert De et al., 2017). used a discriminative loss function

consisting of two parts: one part pushes the embedding means of

different objects farther away from each other, and the other part

pulls the embedded pixels of the same object closer to their means.

The main idea is to embed the image pixels into the hidden high

dimensional space, the pixels belonging to the same instance are

close to each other in the space, while the pixels of different

instances of the object will be embedded into different spaces, and

then subsequently use clustering algorithms to generate separate

instances, which is the basis of the study in this paper. In recent

years, UNet architecture is widely used for segmentation tasks

(Ronneberger et al., 2015). Diakogiannis et al. (Diakogiannis

et al., 2020) proposed a ResUNet architecture by replacing the

UNet feature extraction backbone network using a Resnet network

to achieve better segmentation performance on remote sensing

images. In the existing research instance segmentation end-to-end

model still has more room for development. DeepLab v3+ added an

effective decoder module to DeepLab v3 to recover object

boundaries and achieved good performance (Chen et al., 2018).

Zhou et al. (Zhou et al., 2019) proposed UNet++,interconnecting

intermediate outputs between each layer with each other by means

of thick connections, each module interacts with each other, and

design a supervision mechanism to achieve better performance in

medical image analysis. The disadvantage is that the introduction of

dense connections leads to a drastic increase in the number of

parameters in the model architecture, which consumes a lot of

computational resources. Eff-UNet++ reduces the number of dense

connections on the basis of UNet++, and fuses the high-level output

feature maps into the decoding sub-networks of each layer by

gradually up-sampling them, which greatly reduces the number

of parameters.

Plant leaf contours, colors, and other features are very similar,

coupled with the presence of occlusion and overlap between leaves,

leading to tricky detection of leaf overlap and petiole regions by

traditional methods. The analysis found that the network

architecture of these methods causes semantic loss for feature

map downsampling and upsampling. Simultaneously, there are

limitations in the sensory field and insufficient ability to capture

information around the spatial location of the feature map. Plant

petiole features exist in a small localized area, which makes it

difficult to extract such fine-grained semantic information. In order

to overcome the above difficulties, this paper reconstructs the

feature extraction backbone network, sliding connection, decodes

the backbone network, and proposes a new plant leaf

segmentation method.
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3 Method

The method proposed in this paper is shown in Figure 1, with

the reconstructed hybrid feature coding modules GRblock,

WGRblock, and OTblock on the left part, the redesigned sliding

connection in the middle part, and the multiscale upsampling

fusion design mechanism represented in the right part. Next, the

role of each part will be elaborated in detail.
3.1 GROT hybrid feature encoding module

The GrotUNet feature extraction backbone network consists of

GRblock, WGRblock, and OTblock, as shown in Figure 2.

Currently, the encoding backbone network of most mainstream

segmentation methods is mainly based on the ResNet family of

architectures. ResNet increases the depth of the network by stacking

the residuals quickly, but its effective receptive field may not be as

large as theoretically (He et al., 2016). Multiple Inception modules

in GoogLeNet are able to capture richer feature information by

applying convolution kernels of different sizes and pooling

operations in parallel, but this can make the network structure

relatively complex and seriously consume resources (Szegedy et al.,

2015). The GRblock and WGRblock modules incorporate the

parallel branching design ideas of residual block and Inception

block, which can not only encode and extract different ranges of

spatial feature information to enrich the feature expression, but also
Frontiers in Plant Science 04
prevent the problem of gradient disappearance, so that the network

will be more stable in the training process. The GRblock network

structure is relatively simple and is mainly used to extract shallow

feature maps, while theWGRblock structure is more complex and is

mainly used to extract higher-order feature maps. The OTblock

module is used to further extract higher-order feature maps, aiming

to make fine-grained semantics further characterized. Next, the

design of each coding module is described in detail.

3.1.1 GRblock encoding module
GRblock is mainly used for feature extraction in low-

dimensional space, and its first half uses the idea of parallel

branching and the second half uses residual join, as shown in

Figure 2a. To reduce the loss of semantic information, the module

reduces the feature map size using maximum pooling and

convolutional parallel two-branch downsampling with a

convolutional kernel of 2. In addition, a large number of

asymmetric convolutions are used in the hidden space for

reducing the network computation and the number of

parameters, and asymmetric convolutions are also used in the

subsequent coding module. With the fast encoding and the

increase of network layers, the gradient backpropagation may be

decayed at each layer, which is very likely to cause the gradient

vanishing problem. Residual connection is a method that can

effectively solve the gradient vanishing problem, different from

ResNet’s residual connection, this paper adopts the cross-residual

connection to prevent the gradient vanishing problem, as shown in
FIGURE 1

Overview of the framework.
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Figure 2a. Suppose the input of the module is X. The GRblock

module definition Equations 1–3 is shown:

H = ½C33(Maxpool(X)),C13(C111(X)),C31(C
1
11(X))� (1)

M = Relu(C33(H) + C1
11(H)) (2)

F i = Relu(C33(M) + C11(H)) (3)

Where Maxpool and C111 represent max pooling and

convolutional downsampling, respectively.  CXY represents a

convolution operation with a kernel of X � Y . Relu denotes the

activation function.

3.1.2 WGRblock encoding module
The WGRblock module structure is designed as shown in

Figure 2b. The module uses the GoogLeNet parallel branching

approach for feature extraction in different scale ranges of the input

feature map, which consists of one maximum pooling branch, three

stride = 2 convolut ional downsampl ing branches , and

convolutional operations in tandem with each score. Maximum

pooling preserves the leaf instance edge semantic information, while

convolutional downsampling carries more local semantic

information. Each branch, after the corresponding operation,

splices and fuses the feature maps in channel direction to pass

into the residual block for further feature extraction. Assuming that

one of the intermediate inputs is F i, The definition of WGRblock is
Frontiers in Plant Science 05
shown as Equations 4–7:

s1 = C1
11(F i) (4)

s2 = C33 C1
11(F i)

� �
(5)

g = ½C1
11(F i),C11(M(F i)),C13(s1),C31(s1),C13(s2),C31(s2)� (6)

F i−1 = Relu(C33(C33(g)) + C11(g)) (7)

Where C1
11, M represent convolution kernel 1� 1, sliding to 2

convolution and max pooling downsampling operations,

respectively.  CXY represents a convolution operation with a

kernel of X � Y . ½·� represents the splicing fusion operation by

channel direction. Relu represents the activation function.
3.1.3 OTblock encoding module
OTblock module consists of multiple Outlooker and

Transformer attention layers, as shown in Figure 2c. The

Outlooker neighborhood attention mechanism originates from

VOLO, which was initially created to make each spatial location

on the image sufficiently representative, and is designed to aggregate

the attention weights of each neighboring location in the generative

space, to further refine the local features. Transformer has a

powerful ability to encode contextual information, and can

aggregate local spatial semantic information to generate global
FIGURE 2

Feature extraction coding module.
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contextual information. OTblock uses 4 Outlooker neighborhood

attention layers in combination with 12 Transformer self-attention

layers to further mine each location semantic information in the

higher-order feature space, which is then aggregated to generate

globally richer semantic information. Assume hk−1 is the input of a

layer in the middle of Outlooker, and sip is the intermediate data

token obtained by downsampling after Outlooker extracts the

neighborhood weights. The OTblock encoding definition is as

shown in Equations 8–12:

h
0
k = MHOA(LN(hk−1)) + hk−1 (8)

hk = MLP(LN(h
0
k)) + h

0
k (9)

G0 = ½s1pw; s2pw;…; snpw; � +Wpos (10)

G
0
l = MHSA(LN(Gl−1)) + Gl−1 (11)

Gl = MLP(LN(G
0
l)) + G

0
l (12)

Where W ∈ R(p)2+D is the projection of the patch embedding.

Wpos ∈ RN�D is the positional embedding vector, hk denotes the

output of the k-th layer Outlooker, and Gl denotes the output of the

l-th layer Transformer.MHOA、MHSA、MLP, and LN stand for

Multi-Headed Outlooker Attention, Multi-Headed Self-Attention,

Multi-Layer Perceptual Machine, and Layer Normalization

Operation, respectively.
3.2 Reconstructing Skip Connections
(R-Skip)

Compared with the UNet++ sliding connection, the sliding

connection reconstructed by the method in this paper reduces a

large number of intermediate nodes and retains at most one node

per layer, as shown in the middle part of Figure 1. The role of this

node is mainly to aggregate the output feature maps from the

current layer coding block with the feature maps output from all

coding blocks and nodes of the higher layer. The purpose of using

1� 1 convolution in the node is to realize cross-channel

information aggregation retaining the semantic independence of

each spatial location, providing rich spatial semantic features for the

decoding backbone network. The definition of reconstructing the

sliding connection is as shown in Equations 13–15:

S3 = F 3,0 (13)

S2 = C11(½F 2,0,U2(S3)�) (14)

S1 = C11(½F 1,0,U2(F 2,0),U2(S2)�) (15)

Where C11 denotes the convolution kernel for 1� 1

convolution operation, U2 represents a bilinear interpolation
Frontiers in Plant Science 06
operation with an upsampling factor of 2. Si  denotes the output

of reconstructed sliding connection.
3.3 Multi-scale upsampling fusion decoder

In the decoding stage, the traditional method of recovering

semantic information by layer-by-layer up-sampling will cause part

of the semantic information to be lost, resulting in limited

segmentation performance enhancement. UNet3+ designs a

multi-scale up-sampling feature map fusion mechanism in the

decoding backbone network, which fuses feature maps at different

scales together through bilinear interpolation up-sampling splicing

and aims to alleviate the loss of semantic information in the process

of semantic parsing. In this paper, we reduce the number of

multiscale upsampling connections on the basis of the UNet3+

decoding design, as shown in the decoding section on the right side

of Figure 1. Assume that the output of the encoding is F 4, Y4 = F 4.

The decoding process is defined as shown in Equations 16–19:

Y3 = C33(U2(Y4)) (16)

Y2 = C33(½U2(Y3),U4(C11(Y4))�) (17)

Y1 = C33(½U2(Y2),U4(C11(Y3)),U8(C11(Y4))�) (18)

Y0 = C33(U2(Y1)) (19)

Where CXY denotes the operation on the corresponding

convolution. Ud represents a bilinear interpolation operation with

an upsampling factor of d. ½·�  stands for splicing operation by

channel direction.
3.4 Loss functions

The discriminative loss function performs well in the field of

leaf segmentation and is frequently used in many segmentation

models (Bert De et al., 2017). This loss function is defined as shown

in Equations 20–23:

Lvar =
1
Co

1
c=1

1
Nc
oNc

i=1½∥mc − xi∥ − d v�2+ (20)

Ldist =
1

C(C − 1)o
C
cA=1oC

cB=1½2d d − ∥mcA − mcB∥�2+,   (cA≠cB) (21)

Lreg =
1
Co

C
c=1∥mc∥ (22)

L = a ·Lvar + b ·Ldist + g · Lreg (23)

Where C denotes the number of instances of the real labeled

image,N c denotes the number of pixels in a particular instance C, xi
denotes the i-th pixel in the instance that generates the embedding
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vector, and mc is the mean vector of the real labeled instances   C,
which represents the clustering center. ∥ · ∥ is the L1 or L2 distance,

which represents the canonical term. dv and dv represent the

variance and distance of the margins, respectively. The

discriminative loss function aims to bring the embedding vectors

of the pixels inside the same instance as close as possible to the

center of the mean value of that instance in the mapping space. The

mean vectors of different instances are to be as far away from that

mean center as possible.
4 Experiments and analysis

This section will detail the experimental design and analysis.

Firstly, the different characteristics of the three datasets are briefly

introduced. Secondly, the evaluation metrics for instance

segmentation leaf segmentation are presented. Then, some details

of the algorithm training configuration are presented. Finally, the

performance of the proposed method is evaluated and compared

with state-of-the-art methods.
4.1 Dataset and evaluation metrics

4.1.1 Dataset
In the process of experimental demonstration, three datasets,

CVPPP, KOMATSUNA, and MSU-PID, are selected to verify the

effectiveness and segmentation performance of GrotUNet. Next, the

reasons and circumstances of data set selection are described

in detail.

Due to the small data volume of the CVPPP A1 dataset, the

blade contour is clear and the labeled file contour is delicate, which

can effectively test the performance of the algorithm (Minervini

et al., 2016). Therefore, it is often used as a benchmark evaluation

dataset for mainstream instance segmentation methods.A1 contains

a total of 161 leaf images, 128 in the training set and 33 in the test

set. In order to better evaluate the performance of the algorithm, in

the experiments, the training set A1 is divided into 85% for training

and 15% for validation, i.e., 108 sheets are used for model training

and 20 sheets are used for evaluating the qualitative test.

The KOMATSUNA leaf dataset acquisition was done at 4-

hourly intervals under an ambient condition of illumination of 2400

lua, temperature of 30°C, and humidity of 30%, with a total of 900

images (Uchiyama et al., 2017). The moderate data volume of

KOMATSUNA, along with the low number of leaves per image,

facilitates the observation of segmentation of details such as petiole

and helps in the validation of the model.The KOMATSUNA dataset

is divided into 80% training dataset and 20% testing dataset, i.e., 720

images for training the model and 180 images for evaluation testing.

MSU-PID is the first multimodal plant image database, which

contains two kinds of plants, Arabidopsis and Bean (Cruz et al.,

2016). The Arabidopsis data contains four modalities, 2160 RGB

modal images and 576 labeled images. The leaf overlap of the

Arabidopsis data is blurred, which is difficult to distinguish, and it is
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more testing for the performance of the model. In the experiment,

the Arabidopsis data was preprocessed to collect 576 source data

that corresponded one-to-one with the labeled images, which were

divided into 80% for the training set and 20% for the testing set, i.e.,

460 for training and 116 for evaluation testing.

The method proposed in this paper uses data augmentation

techniques to expand the training set prior to training, including

random cropping, random up and down flipping, and random left

and right flipping.

4.1.2 Evaluation metrics
For the evaluation metrics to evaluate the model segmentation

performance,  FBD, SBD are used. the evaluation metrics for the

number of instances, DiC, DiCj j are used, and the details of each

metric are introduced as follows:

Foreground Background Dice (FBD) is the foreground mask

dice coefficient (Scharr et al., 2016). It mainly measures the degree

of overlap between the real labeling Pgt and the background binary

segmentation mask of the algorithm’s prediction result Ppre. It is

used to evaluate the ability of the algorithm to recognize the target

from the background and perform binary segmentation. FBD is

defined as shown in (Diakogiannis et al., 2020):

FBD( % ) =
2 Pgt ∩ Pprej j
Pgtj j + Pprej j (24)

Symmetric Best Dice (SBD) denotes the average Dice between

all the instances (Scharr et al., 2016). Each predicted label produces

dice with the real label and then averages them to estimate the

average instance segmentation accuracy. BD is defined as follows:

BD(La,  Lb) =
1
MoM

i=1 max
1≤j≤N

2 Lai ∩ Lbj
���

���

Lai
�� �� + Lbj

���
���
  (25)

·j j denotes the number of pixels. Lai  (1 ≤ i ≤ M)和Lbj (1 ≤ j ≤

N) belong to the segmentation sets La,  Lb respectively.

The SBD of the true labeled set Lgt and the predicted labeled set

Lpre is defined as follows:

SBD(Lgt , Lpre) = min BD(Lgt , Lpre),  BD(Lpre, Lgt)
� �

(26)

Difference in Count (DiC) represents a measure of the

difference between the predicted number of instances and the true

number of instances (Scharr et al., 2016). DiCj j is the absolute value
of DiC. DiC is defined as follows:

DiC = #Lpre − #Lgt   (27)
4.2 Experimental details

The experimental demonstration is mainly based on the deep

learning framework PyTorch, and the specific environment

configuration and parameter settings are shown in Table 1. The

parameter a , b , g  value settings in the loss function are consistent
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with the study of Bert et al. (Bert De et al., 2017). The optimizer

selects AdamW, and the weight decay is 0.05. The initial value of the

learning rate is set to 0.001, and the decay factor is 0.1. In order to

verify the validity and generality of the model the proposed method

in this paper, the hyperparameters are configured identically during

the training of the three datasets, CVPPP, KOMATSUNA and

MSU-PID. The image sizes of the model inputs are 256� 256� 3,

256� 256� 3, and 128� 128� 3, respectively.
4.3 Experimental analysis and discussion

The method in this paper evaluates the segmentation

performance through two dimensions: the intuitive visual

perception of the visualization effect and the instance
Frontiers in Plant Science 08
segmentation evaluation metrics. The training and test sets were

kept constant during the experimental implementation and were

trained and tested independently at CVPPP, KOMATSUNA and

MSU-PID using the same parameter settings.

4.3.1 Comparison of state-of-the-art methods
To verify the segmentation performance of the GrotUNet

model on plant leaves, this paper carries out experimental

comparisons using six state-of-the-art segmentation methods,

namely UNet (Ronneberger et al., 2015), ResUNet (Diakogiannis

et al., 2020), UNet++ (Zhou et al., 2019), DeepLab V3 (Chen et al.,

2018), DSNet (Guo et al., 2024), and Perspective + UNet (Hu et al.,

2024). All methods keep the same parameter settings and loss

functions during the experiment. The results of the evaluation of

this paper’s methods on CVPPP, KOMATSUN and MSU-PID
TABLE 2 Comparison results with state-of-the-art methods on the CVPPP dataset.

Method Flops(G) Parms(M) FPS FBD(%) SBD(%) DiC |DiC|

UNet (Ronneberger et al., 2015) 43.45 14.02 177.72 96.80 82.67 -0.1 0.8

ResUNet (Diakogiannis et al., 2020) 23.87 69.31 104.84 96.68 86.51 -0.1 0.6

UNet++ (Zhou et al., 2019) 200.96 47.20 84.75 98.36 88.93 0.05 0.55

DeepLabv3+ (Chen et al., 2018) 7.79 5.86 117.38 96.63 84.97 0.1 0.7

DSNet (Guo et al., 2024) 33.03 29.33 51.19 93.21 73.90 0.1 0.7

Perspective + UNet (Hu et al., 2024) 90.49 103.85 39.83 97.98 87.86 0.25 0.75

GrotUNet 47.99 104.45 36.82 98.07 89.50 0.05 0.55
TABLE 1 Environment configuration and parameter configuration during experiment implementation.

Experimental setting Configurations Parameter setting Configurations

Operating system Ubuntu20.04 Batch size 16

CPU 12 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz epochs 200

GPU vGPU-32GB(32GB) * 1 Ir 1-e3

CUDA Versions CUDA 11.3 Weight decay 5-e2

Python Edition Python 3.8 a 1

Deep Learning framework PyTorch b 1

Torch versions 1.10.0 g 0.001
TABLE 3 Comparison results with state-of-the-art methods on the KOMATSUNA dataset.

Method FBD(%) SBD(%) DiC |DiC|

UNet (Ronneberger et al., 2015) 96.58 83.71 0.23 0.47

ResUNet (Diakogiannis et al., 2020) 96.39 88.54 -0.04 0.28

UNet++ (Zhou et al., 2019) 97.90 92.14 -0.05 0.20

DeepLabv3+ (Chen et al., 2018) 96.85 86.78 -0.1 0.39

DSNet (Guo et al., 2024) 93.88 80.78 0.05 0.38

Perspective + UNet (Hu et al., 2024) 97.58 92.15 -0.04 0.16

GrotUNet 97.80 92.44 -0.07 0.16
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FIGURE 3

Visualizing sample results on the CVPPP dataset.
TABLE 4 Comparison results with state-of-the-art methods on MSU-PID dataset.

Method FBD(%) SBD(%) DiC |DiC|

UNet (Ronneberger et al., 2015) 88.84 80.81 -0.13 0.53

ResUNet (Diakogiannis et al., 2020) 91.11 84.76 -0.12 0.35

UNet++ (Zhou et al., 2019) 91.00 85.21 -0.17 0.35

DeepLabv3+ (Chen et al., 2018) 90.23 82.38 -0.01 0.31

DSNet (Guo et al., 2024) 87.16 75.36 -0.29 0.58

Perspective + UNet (Hu et al., 2024) 90.83 84.67 0.01 0.26

GrotUNet 91.20 85.48 -0.06 0.28
F
rontiers in Plant Science
 09
 frontiersin.org

https://doi.org/10.3389/fpls.2025.1378958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Deng et al. 10.3389/fpls.2025.1378958
FIGURE 4

Visualizing sample results on the KOMATSUNA dataset.
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FIGURE 5

Visualizing sample results on the MSU-PID dataset.
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datasets are given in Tables 2, 3 and 4, respectively. It is observed

that GrotUNet achieves FgBgDice: 98.07, 97.80, 91.20; SBD: 89.50,

92.44, 85.48 for the leaf segmentation evaluation metrics on the

three datasets, respectively.Meanwhile, the counting evaluation

metrics on the three datasets achieves DiC: 0.05, -0.07, -0.06; |

DiC|. 0.55, 0.16, 0.28. In terms of the key segmentation evaluation

metrics FBD and SBD evaluation, GrotUNet performs the best on

all three datasets, exhibiting strong segmentation performance.

Table 2 demonstrates the results of Flops, Parms, and FPS

comparisons, where GrotUNet has a large number of parameters

and is too slow for inference, but the computational complexity is

better than UNet++. Figures 3, 4, and 5 show the visualized

qualitative results of GrotUNet compared with several other state-

of-the-art methods on CVPPP, KOMATSUN, and MSU-PID

datasets, respectively. Observing the three visualizations, it is easy

to find that the segmentation of petiole aggregation region by UNet,
Frontiers in Plant Science 12
ResUNet, and DeepV3+ methods on the three plant datasets is

unsatisfactory, and some petiole features are not captured. In

addition, at the overlap of petiole and leaf blade, and at the

boundary between petioles, the ability of GrotUNet to capture

fine-grained semantics in the local area is significantly better than

that of UNet, ResUNet, and DeepV3+, and the fine features such as

petiole are almost completely recognized. Traditional segmentation

methods in feature map scale transformation downsampling and

upsampling will cause some key semantic information to be lost.

Furthermore, the range of sensing field is more limited, and richer

features cannot be acquired. The method proposed in this

paper prevents the loss of semantic information during the flow

of image semantics through the reconstruction of the feature

extraction backbone network, sliding connection and multiscale

up-sampling fusion mechanism in order to prevent the loss of

semantic information during the flow of image semantics in the

feature layer.

4.3.2 Comparison with existing studies
To validate the performance of GrotUNet for further

verification, this paper compares the evaluation results on

CVPPP, KOMATSUNA, and MSU-PID datasets with the extant

research methods. Table 5 demonstrates the SBD, |DiC| comparison

results on the CVPPP dataset. Table 6 gives the results of

comparison between KOMATSUNA and MSU-PID datasets on

SBD. Comparing the 2 tables, the performance of GrotUNet leaf

segmentation is better than the existing research methods. IPK

performs poorly in leaf segmentation and counting due to

overlapping leaf blades and crossing leaf margins (Pape and

Klukas, 2015). The presence of small leaves and petioles resulted

in reduced segmentation and detection ability of Nottingham and

Wageningen (Yin et al., 2014a; Scharr et al., 2016). The poor

segmentation ability of MSU may be due to dense leaves (Scharr

et al., 2016). Deep coloring may have too many post-processing

hyper-parameters, which resulted in limited segmentation ability

(Kulikov et al., 2018). The method proposed in this paper combines

the discriminative loss function to reconstruct the feature extraction

backbone network, the sliding connection, and the decoding

backbone network, and the performance in leaf segmentation and

leaf number calculation reaches the advanced level.

As far as the network architecture is concerned, traditional

encoding-decoding architectures lose some of the semantic

information in both image downsampling and upsampling. UNet

++ improves segmentation performance by constructing sliding

connections in the form of dense connections, which, however,

imposes a large amount of computation. Compared with UNet++,

GrotUNet’s sliding connection design drastically reduces the

number of nodes, computational effort, and number of

parameters, and retains sufficient semantic information. The

multi-scale upsampling fusion design mechanism fuses the

higher-order feature maps into the lower-order sub-networks

while using 1� 1 convolution for feature aggregation. This not

only balances the excessive number of parameters well, but also

mitigates the semantic loss in the decoding process.
TABLE 5 Comparison of SBD and |DiC| results between GrotUNet and
state-of-the-art methods on CVPPP. Dataset.

Method |DiC| SBD (%)

IPK (Pape and Klukas, 2015) 2.6 74.4

Nottingham (Hu et al., 2024) 3.8 68.3

MSU (Hu et al., 2024) 2.3 66.7

Wageningen (Yin et al., 2014a) 2.2 71.1

Recurrent IS+CRF (Romera-Paredes and Torr, 2016) 1.1 66.6

E2E (Mengye and Richard, 2017) 0.8 84.9

DLoss (Bert De et al., 2017) 1.0 84.2

Deep coloring (Kulikov et al., 2018) 2.0 80.4

ColorRL (Tuan et al., 2021) 1.34 87.3

Eff-UNet++ (Bhagat et al., 2022) 1.15 85.0

GrotUNet 0.55 89.5
TABLE 6 Comparison of SBD results between GrotUNet and advanced
methods on KOMATSUNA and MSU-PID Dataset.

KOMATSUNA MSU-PID

Method
SBD
(%)

Method
SBD
(%)

CVPPP-All (Ward and
Moghadam, 2020)

51.34 (Yin et al., 2014a). 63.0

Ward et al (Ward et al., 2018). 62.43 (Yin et al., 2014b). 64.4

UPGen (Ward and
Moghadam, 2020)

71.69 (Yin et al., 2017). 65.2

Upen-Incontext (Ward and
Moghadam, 2020)

77.76 (Yin et al., 2017). 61.0

Eff-UNet++ (Bhagat et al., 2022) 83.44
Eff-UNet++ (Bhagat

et al., 2022)
71.17

GrotUNet 92.44 GrotUNet 85.48
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Some cases of segmentation failure of GrotUNet on CVPPP,

KOMATSUNA and MSU-PID datasets are shown in Figure 6. It is

observed that GrotUNet is unable to accurately detect the number

of plant leaves, leaf edge contour, petiole region, etc., and is not

sensitive enough to the local area features, which leads to some

incorrect segmentation. Meanwhile, this also restricts the further

improvement of the model performance, and further research will

be done subsequently.
4.4 Ablation study

The existing backbone network for feature extraction in

segmentation methods mainly uses the ResNet family of
Frontiers in Plant Science 13
architectures, but in the experiments, it is found that these

mainstream architectures perform poorly for detail semantic

extraction such as petiole, which restricts the performance of the

model. Analyzing the reasons, it may be found that the ResNet

architecture itself is deficient in the presence of insufficient feature

extraction and serious loss of detail semantics when the feature map

scale is reduced. Based on this, this paper redesigns the hybrid

feature extraction backbone network, and the ablation study is

mainly carried out on this basis. The ablation study is carried out on

CVPPP, KOMATSUNA and MSU-PID datasets, and the

experimental ablation study mainly verifies the performance of R-

Skip, Muti-UP, and OTblock modular design on the key evaluation

index SBD, so as to verify whether each module contributes to the

segmentation performance.
FIGURE 6

Failed cases of GrotUNet segmentation on CVPPP, KOMATSUNA and MSU-PID datasets.
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Table 7 and Figure 7 give the results and visualizations

evaluated on the CVPPP, KOMATSUNA and MSU-PID datasets.

Observation of the graphs reveals that Configuration II, which uses

the same sliding method and decoding structure as UNet and does

not employ the R-Skip and Muti-UP modules, performs poorly in

segmenting the petiole detail region. Configurations I, III, and IV

have different leaf segmentation performances on the CVPPP,

KOMATSUNA, and MSU-PID datasets, and the segmentation

effect is unsatisfactory in detail regions such as petiole. However,

when R-Skip, Muti-UP, and Otblock modules are all applied, the

best leaf segmentation performance is realized and SBD is improved

significantly. In addition, Table 7 shows that the large number of

parameters in the GrotUNet model is mainly due to the application

of the OTblock module, which consists of the Outlooker

neighborhood attention layer and the Transformer attention

layer. Although the performance of GrotUNet is excellent, it

increases the computational complexity and reduces the inference

speed, which will be further investigated in the future.

The method in this paper is really experimentally set up for 1�
1 convolutional feature aggregation operation in sliding joins. In the

experiments, it is found that the performance of segmentation using

1×1 convolution is better than 3×3 convolution, which is beneficial

for reducing the number of parameters. In addition, in this paper,

the higher-order feature maps are up-sampled by multiscale bilinear

interpolation and fused into the shallow decoding sub-networks,

and feature aggregation is achieved using the 1×1 convolution

operation. Through experiments, it is proved that the multi-scale

up-sampling fusion mechanism aggregates the higher-order

features with the lower-order features, which effectively improves

the quality of the feature maps and preserves more semantic

information. Overall, GrotUNet achieves 89.50%, 92.44%, and

85.48% SBD for the evaluation metrics on the CVPPP,

KOMATSUNA, and MSU-PID datasets, respectively, which are

superior to most of the existing research methods.
5 Conclusions

Since plant leaves have overlapping, occluded, and tiny petioles,

it is difficult to capture key features using traditional segmentation

methods, resulting in inaccurate leaf and petiole detection and poor

segmentation performance phenotype. In order to solve the above

problems, this paper proposes a novel, end-to-end training leaf

segmentation algorithm, GrotUNet. the main contributions of this

algorithm are an improved feature extraction encoder, a

reconstructed jump connection, and a multiscale upsampling

fusion decoder. The encoder consists of three parts: the GRblock,

the WGRblock, and the OTblock. The former two utilize the ideas

of Resnet and GoogLeNet residual connectivity and parallel

branching to fully exploit the semantic features of the image. The

latter OTblock, on the other hand, performs one-step mining and

encoding offine-grained image semantic information to obtain finer

features. Combining the three effectively extracts the features of

local key regions of the instance object. The reconfigured sliding

connection module employs a convolutional block at the

intermediate node to aggregate semantic information from
T
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different scales, which can make the feature representation of each

spatial location richer. The decoding backbone network adopts a

multi-scale upsampling fusion design to incorporate the outputs of

high-level sub-networks into each low-level sub-network, effectively

mitigating the loss of semantic information. Experimental

evaluations on CVPPP, KOMATSUNA and MSU-PID datasets

show that the proposed method GrotUNet outperforms state-of-

the-art methods such as UNet, ResUNet, DeepV3+, UNet++,

Perspective + UNet. In the future, GrotUNet will be migrated to

the fields of crop disease detection and agricultural product quality

inspection to further verify its outstanding performance, aiming to

provide a strong contribution to the green development of

agriculture (Zhenye et al., 2024).
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FIGURE 7

Ablation study visualization results on CVPPP, KOMATSUNA and MSU-PID datasets.
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