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PRGminer: harnessing deep
learning for the prediction of
resistance genes involved in
plant defense mechanisms
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1Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT, United States,
2Department of Plants, Soils, and Climate, College of Agriculture and Applied Science, Utah State University,
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Plant resistance genes are crucial in plant defense systems against a variety of

diseases and pests. These plant-specific genes encode proteins that identify

particular molecular patterns associated with pathogens invading the plants.

When these resistance genes are active, they initiate a sequence of molecular

processes that culminate in the activation of defensive responses such as the

synthesis of antimicrobial chemicals, cell wall strengthening, and triggering of

programmed cell death in infected cells. Plant resistance genes are exceedingly

varied, with several classes and subclasses found across a wide range of plant

species. The identification of new resistance genes (Rgenes) is a critical

component of disease resistance breeding. Nonetheless, identifying Rgenes in

wild species and near relatives of plants is not only challenging but also time-

consuming. In this study, we present PRGminer, a deep learning-based high-

throughput Rgenes prediction tool. PRGminer is implemented in two phases:

Phase I predicts the input protein sequences as Rgenes or non-Rgenes; and

Phase II classify the Rgenes predicted in Phase I into eight different classes.

Among all the sequence representations tested, the dipeptide composition gave

the best prediction performance (accuracy of 98.75% in a k-fold training/testing

procedure, and 95.72% on an independent testing) with a high Matthews

correlation coefficient (0.98 training and 0.91 in independent testing) in Phase

I; phase II (overall accuracy of 97.55% in a k-fold training/testing and 97.21% in an

independent testing) with the MCC values of 0.93 for k-fold training procedure

and 0.92 in an independent testing. PRGminer is available as a webserver which

can be freely accessed at https://kaabil.net/prgminer/, as well as a standalone

tool available for download at https://github.com/usubioinfo/PRGminer.

PRGminer will help researchers to accelerate the discovery of new R genes,

understand the genetic basis of plant resistance, and develop new strategies for

breeding plants that are resistant to disease and pests.
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Introduction

Scientists have long been fascinated by plants’ intricate defense

mechanisms in the face of ever-evolving plant pathogens and pests.

These mechanisms are controlled by a complex network of genes

that play an important role in conferring resistance to various

pathogens and pests. Novel pathogens and their global spread

endangers food security and causes agricultural and economic

losses (Ristaino et al., 2021; Skendžić et al., 2021; FAO

publications catalogue 2023, 2023). Plant innate immunity is a

complex system that protects plants from diseases and pests.

Immunity is built on two layers of pathogen recognition: effector-

triggered immunity (ETI) and pathogen-associated molecular

pattern (PAMP)-triggered immunity (PTI) (Jones and Dangl,

2006; Peng et al., 2018; Ray et al., 2019; Nguyen et al., 2021).

PAMPs are recognized by receptors on the cell’s surface in PTI,

however infecting organisms may be able to halt PTI signaling by

producing effector proteins that limit the activation of defensive

responses. The effectors may be identified by the second defense

level, which includes resistance (R)-genes that trigger ETI (Andolfo

and Ercolano, 2015). R-genes, or plant resistant genes encode

proteins that detect particular pathogen effectors and elicit a

quick and powerful immune response. Understanding the

processes and roles of these genes is not only critical for

unraveling the complex biology of plants, but it also holds

enormous potential for devising long-term strategies to safeguard

crops and assure food security in the face of rising agricultural

challenges. Therefore, the correct identification and classification of

R-genes in plant genomes is critical (Capistrano-Gossmann et al.,

2017; Andolfo et al., 2021b, a).

Plant R-genes are classified into two types: membrane-bound

pattern recognition receptors (PRRs) and intracellular resistance

receptors. PRRs are made up of two types of receptors: receptor-like

proteins (RLPs) and receptor-like kinases (RLKs), and they are

found on the plant plasma membrane as the first layer of the

surveillance system to detect microbe-derived molecular patterns.

PRRs are known to have extremely varied extracellular domains

such as the lysin motif (LYK), the leucine-rich repeat (LRR), and the

lectin receptor like kinase (LECRK) (Zhou and Yang, 2016). The

vast majority of intracellular resistance receptors (NBS-LRRs or

NLRs) are nucleotide-binding sites (NBSs) and LRR proteins that

can identify pathogen-delivered effectors. These proteins are

divided into two subclasses based on the N-terminal domain: CC-

NBS-LRR (CNL) contains a coiled-coil domain at N-terminal

region with a NBS domain which is part of the NB-ARC domain

and LRR domain, and the TIR-NBS-LRR (TNL) which contains an

interleukin-1 Receptor (IL-1R) at the N-terminal region in place of

coiled-coil domain. Plants R-gene defensive arsenal is made up of

both incomplete (single or fragmented domains) and full-length

(NB-LRR) genes. Although incomplete genes may be called

pseudogenes, they are frequently expressed and may play a role in

the regulation of full-length R-genes (Van Ooijen et al., 2008;

Andolfo et al., 2019, 2020; Han, 2019; Sun et al., 2020b).
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Plant resistance genes are often organized in clusters of closely

duplicated genes, though they may also exist as individual units

scattered across the genome (Di Donato et al., 2017; Barchi et al.,

2019). The current automatic gene annotation methods face

challenges in accurately predicting and identifying R-genes loci

due to their unique genomic structure within the gene clusters. This

often leads to incomplete and fragmented annotations (Jupe et al.,

2013; Andolfo et al., 2014). The presence of numerous similar

sequences can hinder local genome assembly process and can cause

issues with gene annotation (Tørresen et al., 2019). The situation is

further complicated by the fact that R-genes are typically expressed

at low levels, making it difficult to predict genes using only the RNA

sequencing (RNA-Seq) data. Furthermore, because R-genes can be

mistaken for repetitive sequences, using public databases for

transposable elements (TEs) in the genome annotation processes

may obscure the detection of R-genes loci. As a result, finding R-

genes in the previously uncharacterized organisms is challenging

(Marone et al., 2013).

Several tools have been reported for the prediction of plant R-

genes. Most of the tools are alignment-based (Steuernagel et al.,

2015; Li et al., 2016; Restrepo-Montoya et al., 2020; Andolfo et al.,

2022). Some of them are based on motif search and alignment,

others uses program such as BLAST (Altschul et al., 1990; Camacho

et al., 2009), InterProScan (Zdobnov and Apweiler, 2001),

HMMER3 (Eddy, 2011), nCoil (Lupas et al., 1991), Phobius (Käll

et al., 2004), SignalP 4.0 (Petersen et al., 2011), TMHMM2 (Krogh

et al., 2001), and PfamScan (Finn et al., 2014) to predict domains in

the protein sequences and assign them to R-genes classes. However,

similarity-based methods fail in case of low homology. This might

be particularly true when annotating the newly sequenced plant

genomes. Some other methods use the traditional machine learning

approaches for domain prediction. These methods extract various

numerical features from the protein sequences and are fed into the

machine learning framework such as the support vector machines

(SVM) for R-genes prediction (Kushwaha et al., 2016, 2021; Pal

et al., 2016; Wang et al., 2021).

In this study, we present PRGminer, a cutting-edge deep

learning-based tool designed specifically for the accurate

prediction of resistance proteins. Deep Learning is a class of

machine learning algorithms that uses multiple layers to extract

higher-level features from the raw input data. The derived protein

sequence is used as an input, extracting sequential and

convolutional features from raw encoded protein sequences based

on classification rather than traditional alignment-based methods

for R-genes prediction. PRGminer provides a comprehensive

approach to identifying and classifying R-genes that outperforms

previous methods in terms of efficacy and precision. PRGminer has

been rigorously tested and validated, and it performs exceptionally

well in predicting experimentally validated R-genes. By harnessing

the power of deep learning, this innovative tool opens new

possibilities for exploring and understanding the genomic

landscape of resistance mechanisms in various organisms. Its

successful identification of known R-genes is an important step
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toward realizing the full potential of this cutting-edge technology in

furthering our understanding of immunity and defense systems.
Materials and methods

PRGminer is implemented in two phases: Phase I identifies a

query protein as resistance gene or non- resistance gene; Phase II

further classifies the predicted resistance gene into one of the eight

R-gene classes. The overall workflow for the development of

PRGminer is depicted in Figure 1.
PRGminer training datasets

The R-genes and non-Rgenes protein sequence datasets were

downloaded from various public databases such as Phytozome

(Goodstein et al., 2012), Ensemble plants (Yates et al., 2022) and

NCBI (https://www.ncbi.nlm.nih.gov/). CD-HIT (Li and Godzik,

2006; Fu et al., 2012) was used on these datasets to eradicate the

redundant sequences. Sequences were then filtered based on the

domain (NB-ARC, TIR, CC, kinase, LRR, Serine/threonine-LRR,

and Kinase-LRR) information available from Ensemble BioMart
Frontiers in Plant Science 03
(Kinsella et al., 2011) and Phytozome Biomart (Goodstein et al.,

2012) and the dataset generated from this is designated as R-genes

(positive dataset)and all other sequence which does not contain any

domain were designated as non-Rgenes (negative dataset). For

phase I, the dataset (18,952 R-genes and 19,212 Non-Rgenes) was

divided into training and independent testing in the ratio of 9:1;

means 90% of the data from both the R-genes and non-Rgenes was

used for the k-fold training/testing procedure, and the remaining

10% was kept separate to be used as an independent dataset for

benchmarking of the models. In phase II, the R-genes dataset was

divided into eight classes: Coiled-coil-NBS-LRR (CNL) (1883

sequences), Kinase (KIN) (8591 sequences), Lysin motif receptor

kinase (LYK) (902 sequences), Lectin-receptor like kinase (LECRK)

117 sequences, Receptor like protein (RLP) (1802 sequences),

Receptor-like kinase (RLK) (4362 sequences), Toil-interleukin

receptor domain (TIR) (511 sequences), and interleukin-1

Receptor (IL-1R)- NBS-LRR (TNL) (784 sequences). These

categories were selected based on their biological relevance and

sufficient sequence representation, ensuring the development of a

robust predictive model. The dataset was then split following the 9:1

ratio training and independent datasets. The overall architecture of

8 R-gene classes is presented in Figure 2. Although PRGdb classifies

R-genes into more categories based on fragmented domain
FIGURE 1

The overall workflow of PRGminer for identifying and classifying R-genes in plants. The tool performs in two phases: In Phase I, an input protein
sequence is classified as Plant R-gene vs non-R-genes. If a protein is identified as non-R-gene it is excluded from further analysis. However, if the
protein is classified as an R-gene, it proceeds to Phase II where it undergoes further classification. In Phase II, R-genes are categorized based on
specific domain structures, helping to distinguish various subtypes. These subtypes include: CNL (Coiled-coil, Nucleotide-binding site, Leucine-rich
repeat domains), KIN (Kinase domain), RLP (Leucine-rich repeat and Transmembrane domains with a cytoplasmic region), LECRK (Lectin, Kinase, and
Transmembrane domains), RLK (Extracellular Leucine-rich repeat and Kinase domains), LYK (LysM domain, Kinase, and Transmembrane domains),
TIR (Toll/interleukin-1 receptor domain), and TNL (Toll/interleukin-1 receptor, Nucleotide-binding site, and Leucine-rich repeat domains).
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sequences, which lack sufficient sequence representation for

training data require for training a robust model. So we included

only the classes having a good number for training data to maintain

the model accuracy and stability. For additional validation, a second

independent dataset was prepared by downloading more

experimentally validated plant resistance proteins from the

PRGdb database (Calle Garcıá et al., 2022). In this way, we

created two independent datasets for efficient benchmarking of

the deep learning-based prediction models. The total number of

sequences downloaded and used for training are presented

in Table 1.
PRGminer sequence representation

Machine learning algorithms often demand fixed-size input

data. Deep learning algorithms, on the other hand, provide a

solution by eliminating the requirement for consistent manual

dimensioning and handmade characteristics. This is especially

useful when data volumes and complexity grow. The deep

learning system does feature reconstruction and classifier training

effectively at the same time. We explored several sequence

representations for the model training in all phases of our work.

The top two best sequence representations are discussed below,

while the training statistics for all other alternate representations are

presented in Supplementary File 1.
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For both phase I and phase II, the two best sequence

representations were dipeptide composition (DPC) and a hybrid

of DPC and Normalized Moreau-Broto (NMBroto). The DPC

(Dipeptide Composition) approach has been identified as a way

for thoroughly representing global information for each protein

sequence while making use of the sequence order effects. This fixed-

pattern value, which generally consists of 400 (20 x 20), efficiently

reflects the protein structural properties and local amino acid order.

The fraction of each dipeptide was calculated using the equation

below.

f (r, s) =
Nrs

N − 1
r, s = 1, 2,…, 20

where Nrs is the number of dipeptides represented by the amino

acid type r and type s, and N is the length of the sequence. The other

sequence representation, Normalized Moreau–Broto is a feature

derived from autocorrelation, which quantifies the association

between two objects (protein or peptide sequences) by

considering their specific structural or physicochemical properties

distributed along the amino acid sequence. It measures how these

properties are correlated at varying intervals within the sequence.

The NMBroto autocorrelation precisely characterizes these

associations and provides valuable insights into the relationships

between amino acid properties and the overall structure of the

sequences under study. The NMBroto generates a vector of length

240 calculated using the equation below:
FIGURE 2

The architecture of R-genes classified in PRGminer. Where R-genes are classified into different families based on domains present in them: CNL
(Coiled-coil, Nucleotide-binding site, Leucine-rich repeat domains), KIN (Kinase domain), RLP (Leucine-rich repeat and Transmembrane domains
with a cytoplasmic region), LECRK (Lectin, Kinase, and Transmembrane domains), RLK (Extracellular Leucine-rich repeat and Kinase domains), LYK
(LysM domain, Kinase, and Transmembrane domains), TIR (Toll/interleukin-1 receptor domain), and TNL (Toll/interleukin-1 receptor, Nucleotide-
binding site, and Leucine-rich repeat domains).
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I(d)  =  oN−d
i=1 (Pi*Pi+d)

N − d
 d = 1, 2,…, 30

where d is the lag of the autocorrelation, Pi is the value of ith
amino acid in a property entry of AAindex.
Model training architecture

PRGminer contains two separate convolution neural networks

(CNNs) that conduct two distinct classification tasks with protein

sequences as input data. The CNN for phase I consists of two 2D

convolution layers, two max-pooling layers, three dropout layers,

two batch normalization, one flattening layer and three fully

connected layers that are finally fed to an output, see Figure 3 for

details. The initial layer in a CNN is always a convolutional layer.

For our PRGminer-specific CNN, the first layer involves a sequence

representation length vector upon which 2D convolutional

operations are applied, using default parameters like n × n kernel

size, f filters, 1 × 1 steps, and 1 × 1 zero-padding. This convolutional

operation filters the essential features of the motif. To optimize the

network, we experimented with various hyperparameters and

identified suitable choices. Additionally, to enhance the efficiency

and prevent overfitting, we introduced a 2D max-pooling layer with

a 1 × 1 stride to reduce the matrix calculation size and remove non-

maximal values. Before proceeding to the three fully connected

layers, we incorporated a flattening layer to transform the input into

a suitable format. The first fully connected layer comprises of 512

hidden nodes, followed by a second layer with 256 hidden nodes,

and finally, a third fully connected layer was introduced with 2

hidden nodes, facilitating the binary classification for the PRGminer
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phase I model. This well-structured CNN architecture ensures

accurate and efficient classification of the PRGminer phase I

models (Figure 3). To achieve a successful classification in phase-

II, the CNN design for phase II contains many layers, Figure 3. It

consists of three 2D convolution layers, two max-pooling layers,

two dropout layers, one batch normalization, one flattening layer,

and three dense layers, with an output layer at the end. Our CNN

first layer is composed of 640-size vector on which we perform

diverse 2D convolutional operations with default settings such as

the n x n kernel size, f filters, 1 x 1 steps, and 1 x 1 zero-padding. In

addition, for better efficiency, we used a 2D max-pooling layer with

a 1 x 1 stride. We also included a flattening layer before the three

fully linked layers to flatten the input. The PRGminer phase II

models are binary classified using a first fully connected layer with

512 hidden nodes, followed by a second fully connected layer with 8

hidden nodes using the softmax activation (Figure 3).

In the development of PRGminer, we used a uniform

distribution to randomly initialize the neural network weights.

PRGminer used ReLU (Rectified Linear Unit) as the activation

function for both the convolutional layers and the hidden layers of

the fully connected layers in each CNN. The SoftMax function was

employed as the activation function for the output layer of the

completely linked layers.

f (x)  =  max(0, x)

s(Z)i =
eZi

oK
j=1e

Zi

Batch normalization was used to address any internal-covariate

shift and to stabilize the learning process. This normalization

strategy ensures that each layer’s input distribution approximates

a typical Gaussian distribution, resulting in improved convergence

and reducing overfitting in the deep learning process. Each neuron

learns the feature representation of the input signal across the

period depending on their learning abilities, resulting in varying

learning rates for each neuron of the network to maximize the

objective function. Therefore, the SGD optimizer was used as the

optimizer feature in this work. The categorical entropy of loss

function was used to train the neural network. The CNN

architecture in the phase-I and phase-II were trained up to

100 epochs.
Performance evaluation

To evaluate the predictive performance of the phase I and phase

II classification models using the sequence representations, we

employed a 10-fold cross-validation procedure to develop our

models and evaluated the training performance with certain

statistical parameters. Further, two independent datasets were

used to assess the capability of our models. In a typical supervised

binary classification problem, the evaluation process involves

mapping each query point from the test set to its correct class

label. The classifier then assigns these points to one of the following

categories: true positive (TP), true negative (TN), false positive (FP),
TABLE 1 Number of sequences used for training and testing in phase I
and phase II.

Phase I Data

Class Sequences

CD-hit 100% CD-hit 40%

Rgenes 79715 18952

Non-Rgenes 81230 19212

Phase II Data

R-gene Class Sequences

CD-hit 100% CD-hit 40%

CNL 5898 1883

KIN 37198 8591

LYK 5424 902

LECRK 702 117

RLP 12820 1802

RLK 15957 4362

TIR 1345 511

TNL 371 784
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or false negative (FN). For multiclass classification, a one-on-one

approach is utilized to determine these categories for each class.

Here, each query point is considered as a positive or negative point

for a specific class. Using this approach, TP, TN, FP, and FN are

calculated for each class. Several performance metrics were used,

including Specificity, Sensitivity, Precision, Accuracy, F1-score, and

Matthews correlation coefficient (MCC) (Fang et al., 2018; Duhan

et al., 2022; Kaundal et al., 2022). The motivation for calculating

MCC (Matthews correlation coefficient) is to address situations

where accuracy and specificity may overstate the classifier’s

performance. MCC provides a more robust measure by taking

into account both the true positive and true negative rates. A

MCC value of +1 indicates an optimal prediction, 0 denotes

random prediction, and -1 signifies a complete disagreement

between the correct and predicted classes. Thus, MCC serves as a

reliable indicator of classifier performance, offering a balanced

assessment of its predictive capabilities. These evaluation metrics

are defined as below:

Sensitivity  =  
(TP)

(TP + FN)

Specificity  =  
(TN)

(TN + FP)

Precision  =  
(TP)

(TP + FP)
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Accuracy  =  
(TP + TN)

(TP + TN + FP + FN)

F1 − score  =  2*
(Precision*Sensitivity)
(Precision + Sensitivity)

MCC  =  
(TP*TN) − (FP*FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP + FN)*(TP + FP)*(TN + FP)*(TN + FN)

p

Development environment and webserver
development

For training the deep learning models, we employed the CNN

architecture using Keras (version 2.4.0) Python package with

TensorFlow (version 2.2.0) as backend (Abadi et al., 2016).

Python module scikit- learn was used to create a confusion matrix

(Pedregosa et al., 2011).

The PRGminer webserver was developed using PHP 7.4,

Javascript, JQuery and html and is hosted on a high-performance

computing cluster. These technologies offer an intuitive and

responsive platform for users, ensuring seamless communication

between the frontend and backend. This technology stack provides

us a robust foundation, enabling the web server to efficiently handle

multiple user requests in parallel, process the data, and deliver

accurate results.
FIGURE 3

CNN architecture of PRGminer. (A) CNN architecture used for Phase I Rgene vs Non-Rgene. (B) CNN architecture used of Phase II Rgene
classification. The different terminology used in the figure are explained here: Input: This represents the input sequence vector for training; Conv 2D
is a 2-dimensional convolution kernel that, when convolved with the layer input, yields a tensor of outputs; Batch Norm: Batch normalization is a
training strategy for very deep neural networks that standardizes the inputs to each mini-batch; ReLU: Rectified linear unit; Maxpool2D: Max pooling
operation for 2D spatial data; Dropout: Dropout refers to the practice of randomly ‘dropping out,’ or omitting, units during the neural network
training process; Flatten: a flattened layer to process data into one-dimensional array. Dense: a deep neural network layer which each neuron
receives input from all the neurons; Softmax: Softmax is a mathematical function that transforms a number vector into a probability vector; Output:
output prediction probabilities.
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Results and discussion

Among several deep learning approaches considered during the

development of PRGminer, CNN was chosen for its demonstrated

effectiveness in identifying the functional regions such as motifs and

domains, as well as classifying enzymes/non-enzymes in biological

sequences, particularly protein sequences (Duhan et al., 2022;

Kaundal et al., 2022). CNN was chosen because of its proven

track record in processing biological data and extracting

significant features, making it a dependable and strong tool for

sequence analysis and classification tasks.

The phase I of PRGminer first identifies the input protein

sequences into R-genes or non-R-genes. The performance

evaluation metrics of phase I are depicted in Table 2. The phase I

classifier performance was demonstrated by the average 10-fold

training/testing: specificity (98.86%), sensitivity (98.65%), precision

(99.02%), Accuracy (98.75%), F1- score (0.99) and MCC (0.98). On

an independent dataset-I (testing of the models on data not used in

training; 10% data as kept separate initially), we again got a high

specificity (96.35%), sensitivity (95.17%), precision (96.82%),

accuracy (95.72%), F1- score (0.96) and a high MCC value (0.91).

The phase II model’s classification performance for the correct

classification of the identified R-genes into one of the eight classes

was demonstrated by the overall average 10-fold training with a

high specificity (98.79%), sensitivity (94.70%), precision (95.16%),

accuracy (97.55%), F1-score (0.95) and MCC (0.93) values; and on

the 8,309 independent sequences, the performance is; specificity

(98.55%), sensitivity (94.03%), precision (94.52%), accuracy

(97.21%), F1- score (0.94) and a very good MCC value (0.92).

The phase II training/testing results are presented in Table 3, and

results for the independent datasets are presented in Table 4. In our

evaluation of the PRGminer phases, we recognized that accuracy

alone is not sufficient to measure the classification performance of

the models, as the accuracy paradox can distort its reliability.

Therefore, we also calculated the F1-score for each corresponding

phase (Abma, 2009; Valverde-Albacete et al., 2013). The F1-score

considers both precision and recall, providing a harmonic

description of the classifier’s ability to detect true positive

samples, making it a more appropriate measure than accuracy

alone. However, it is essential to note that the F1-score might

overestimate performance when dealing with unbalanced test data

(Boughorbel et al., 2017). Looking at the F1-scores for each
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PRGminer phase (I and II), as presented in Tables 2 to 4, we

observed consistently high performance across all classes.

Additionally, we assessed the models using a balanced success

metric, the MCC score, which was found to be consistently above

≥ 0.90 for all the classes in each phase. This MCC score

demonstrates the higher predictive efficiency of our PRGminer

models, ensuring their reliability and accuracy in classifying and

predicting the plant resistance genes.

Further, we plotted the Confusion Matrix for phase II to

examine the performance and efficacy of each R-genes class

(Stehman, 1997). A confusion metrics of phase II independent

test data is depicted in Figure 4. Confusion matrices provide

valuable information about the performance of a classification

model, beyond just the overall accuracy. They can reveal the

hierarchy of prediction classes, showing not only the primary

prediction but also the next best prediction and subsequent

rankings. This hierarchical view is particularly useful for multi-

class classification problems, where a given instance may belong to

one of several possible categories. From the Figure 4, it can be

deduced that almost all of the 8 sub-classes of R-genes are correctly

predicted. For example, out of the 3720 sequences for the KIN R-

genes in the independent dataset, 3456 are correctly predicted, an

accuracy of 92.90%. The remaining 264 sequences (3720 – 3456 =

264) are predicted as 181 (4.87%) into LECRK subclass of R-genes,

followed by 33 sequences (0.89%) into the RLP subclass, and 18

sequence (0.04%) in TIR subclass. It has been reported that both

KIN R-genes and LECRKs are involved in plant defense against

pathogens, and they both encode proteins that contain a kinase

domain. Kinase domains are responsible for phosphorylating other

proteins, which can activate or deactivate them (Wang and

Bouwmeester, 2017; Sun et al., 2020a).

Similarly, out of total 1282 sequences for RLK R-genes class in

the independent dataset, 1219 are correctly predicted, an accuracy

of 95.09%. The remaining 63 sequences out of 1282 sequences are

predicted 43 (3.35%) into RLP class of R-genes, followed by 19

sequence (1.48%) into KIN class. For a total of 1596 RLP sequences

in independent dataset, 1503 are correctly predicted with an

accuracy of 94.17%. The other 96 sequences were classified into

RLK 34 (2.13%), KIN 29 (1.81%), CNL 23 (1.44%), TNL 5 (0.31%),

and TIR 2 (0.12%) respectively. Plant receptor proteins play crucial

roles in plant immunity, growth, and development. These proteins,

which include receptor-like kinases (RLKs) and receptor-like

proteins (RLPs), act as pattern recognition receptors (PRRs) to

detect microbe- and host-derived molecular patterns, which triggers

the first layer of plant defense (Tang et al., 2017).
Receiver operating characteristics curves
analysis

The micro-average ROC of the model was also plotted along

with eight classes in phase II to demonstrate PRGminer models’

average ROC efficiency. The ROC curves of the k-fold training/

testing and independent data for phase I and phase II are depicted

in Figure 5. The PRGminer models’micro average ROC metric was
TABLE 2 Phase I 10-Fold training and independent testing metrics.

Metrics Training average
10-FOLD

Independent
testing

Sensitivity (%) 98.65 95.17

Specificity (%) 98.86 96.35

Precision (%) 99.02 96.82

Accuracy (%) 98.75 95.72

F1-score (%) 0.99 0.96

MCC 0.97 0.91
frontiersin.org

https://doi.org/10.3389/fpls.2025.1411525
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Duhan and Kaundal 10.3389/fpls.2025.1411525
plotted against the micro average FPR (FPRµ) and micro average

TPR (TPRµ), where FPRµ and TPRµ reflected the contribution of

all eight classes.

TPRm  =   ok
i=1TPi

ok
i=1TPi + FNi

FPRm  =   ok
i=1FNi

ok
i=1TPi + FNi

The ROC curve is a graphical statistic used to assess a

classification model’s performance. It depicts the relationship

between the true positive rate (TPR) and the false positive rate

(FPR or 1-specificity) at different decision thresholds. The FPR is

often plotted against the x-axis, whereas the TPR is shown against

the y-axis. The classification model’s FPR is a measure of false-

positive predictions based on all negative examples. The TPR, on

the other hand, indicates the true positive predictions among all

positive cases. The best classification condition of the model is

shown by the top-left corner of the ROC curve, when sensitivity and

accuracy both approach 100%. The diagonal line from (0, 0) to (0,
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1), on the other hand, depicts the classification model’s random

output. To have a successful classification pattern, the model’s ROC

curve should be above the diagonal line. In other words, the area

beneath the curve indicates the performance of the model, and the

greater this area, the better the classifier performance. In our results

the AUC was 1.0 for 10-fold training in phase I and 0.99 for the

independent dataset, indicating that the model performed very well

in both cases. Similarly, in phase II, the AUC was 1.0 for 5 classes

(CNL, LYK, RLP, RLK, and TNL) and 0.99 for 3 classes (KIN,

LECRK, TIR), indicating that the model also performed very well

on these datasets. In the independent dataset, the AUC was 1.0 for 4

classes (CNL, RLP, RLK, TNL) and 0.99 for 4 classes (KIN, LYK,

LECRK, TIR). Based on these AUC results our models perform

excellently in classifying R-genes (Swets, 1988; Zweig and Campbell,

1993; Semwal et al., 2017; Duhan et al., 2022).
Precision-recall analysis

We also plotted the precision-recall curves which is also useful

graphical indicator for assessing a classifier’s effectiveness. It is
TABLE 4 Phase II independent testing metrics.

Metrics Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1-score (%) MCC

CNL 96.95 99.62 95.17 99.43 0.96 0.96

KIN 92.69 98.04 97.46 95.64 0.95 0.91

LYK 90.14 99.93 91.43 99.84 0.91 0.91

LECRK 95.95 97.57 73.38 97.46 0.83 0.83

RLP 95.16 99.26 95.91 98.63 0.96 0.95

RLK 94.67 98.66 94.38 97.89 0.95 0.93

TIR 82.22 99.67 80.43 99.39 0.81 0.81

TNL 98.39 99.84 96.57 99.77 0.97 0.97

Overall 94.03 98.55 94.52 97.21 0.94 0.92
Bold values display the overall metrics across different classes.
TABLE 3 Phase II 10-Fold training/testing metrics.

Metrics Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1-score (%) MCC

CNL 96.44 99.70 96.07 99.46 0.96 0.96

KIN 93.47 98.46 97.97 96.25 0.96 0.93

LYK 100.00 99.92 90.48 99.92 0.95 0.95

LECRK 96.67 97.69 75.38 97.62 0.85 0.84

RLP 95.13 99.35 96.45 98.69 0.96 0.95

RLK 95.15 98.80 95.09 98.09 0.95 0.94

TIR 91.67 99.74 85.27 99.61 0.88 0.88

TNL 98.10 99.83 96.26 99.76 0.97 0.97

Overall 94.70 98.79 95.16 97.55 0.95 0.93
Bold values display the overall metrics across different classes.
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shown on the graph by adjusting the decision criteria and plotting

precision on the y-axis and recall on the x-axis. Precision is the

fraction of true positive predictions produced by the classifier out of

all positive predictions made by the classifier. The fraction of true

positive forecasts among all the real positive cases is measured by

recall, also known as sensitivity or true positive rate (TPR). The

precision-recall curve provides information about the classifier’s

optimistic predictive efficiency since it focuses on the model’s ability

to properly predict positive instances while ignoring real negative

cases. In our results the precision-recall curve of phase I shows an

AUC of 1 square unit in 10-FOLD training and 0.99 on independent

dataset. In phase II the average AUC of 8 classes in 10-FOLD

training is 0.97 and on independent dataset the average AUC was

0.96. In the precision-recall curve, the optimal classification

condition is located at the upper right corner, where the region

under the curve covers 1 square unit. In this region, the classifier

achieves both precision and recall of 100%. This means the classifier

can predict true positives (TP) without any false positives (FP) in its

predictions, making it highly reliable. To provide a good

classification model, there must be a fair trade-off between

accuracy and recall. This trade-off is reflected in the region below

the precision-recall curve, which should be as close to 1 square unit

as possible. A larger area under the curve indicates better overall

performance of the classifier. The precision-recall curve

complements the ROC curve, as it provides a different perspective

on the classifier’s performance, particularly when dealing with

imbalanced datasets where the number of negative cases

significantly outweighs the positive cases (Fang et al., 2018;

Duhan et al., 2022). The precision-recall curves of the k-fold
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training/testing and on independent data for phase I and phase II

are depicted in Figure 6.
Benchmarking with another set of
experimental data

To validate our models further, we obtained 149 experimentally

validated resistance genes from the PRGdb database (Calle Garcıá

et al., 2022) and their corresponding protein sequences from NCBI

(https://ncbi.nlm.nih.gov), and also took 149 negative sequences

and made a dataset of 298 proteins sequences referred to as

Independent Dataset-II. These sequences were then used as input

for the PRGminer prediction tool. In the first phase of our

validation, out of the 298 sequences predicted 147 as R-genes and

151 as non-R-gene. PRGminer predicted 147 of them correctly as R-

genes (resistance genes), while 2 were predicted as non-R-genes and

the overall prediction accuracy was high, with over 99.32%

accuracy. In the second phase, for the eight different classes, the

overall prediction accuracy was still impressively high, with over

96% correct predictions (Supplementary File 2). Looking at the

class-wise statistics, we found that out of the total 61 sequences in

the CNL class, 59 were correctly predicted as CNL. Similarly, all the

sequences (1 out of 1) in the KIN class were correctly predicted. For

the LECRK class, all 21 sequences were predicted accurately. In the

LYK class, 14 out of 14 sequences were correctly predicted, and for

the RLK class, 15 out of 17 sequences were accurately predicted.

Moreover, all the 15 sequences in the RLP class were correctly

identified. However, for the TIR class, none of the 2 sequences were
FIGURE 4

The confusion matrix represents the performance of Phase II Independent Test in classifying various subfamilies of R-genes. The matrix shows how
the predicted labels for the different subfamilies (on the x-axis) compare with the true labels (on the y-axis). The blue color represents the correctly
predicted true labels while the tomato color gradient represents the number of sequences incorrectly classified into other subfamilies.
frontiersin.org

https://ncbi.nlm.nih.gov
https://doi.org/10.3389/fpls.2025.1411525
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Duhan and Kaundal 10.3389/fpls.2025.1411525
successfully predicted, while for the TNL class, all 18 sequences

were accurately predicted. To better visualize the performance of

our phase II model, we created a confusion matrix as depicted in

Figure 7. The comprehensive results for the predictions on this

independent dataset-II are presented in Supplementary File 2.

PRGminer’s strong performance on Independent Dataset-II

provides valuable insights into its predictive capabilities. This

demonstrates PRGminer’s ability to accurately identify and

classify plant resistance genes (R-genes), highlighting its potential

as a valuable tool for plant R-genes research. PRGminer accurately

predicted experimentally validated R-genes with over 96% accuracy,

demonstrating its reliability and effectiveness. It adapts to diverse

datasets, highlighting its robustness in classification or R-genes. Its

impressive performance across various R-gene classes reflects its

ability to discern subtle molecular patterns, underpinning its

predictive capacity. Additionally, PRGminer’s capacity to
Frontiers in Plant Science 10
correctly classify R-genes within different classes underscores its

versatility and suitability for complex multi-class classification

challenges. Although there are areas for improvement, such as the

TIR class, the overall performance on Independent Dataset-II

accentuates PRGminer’s potential for enhancing R-gene

identification and classification.
Application and use case of PRGminer

To demonstrate the application and usability of PRGminer we

annotated the Arabidopsis thalina and Oryza sativa Japonica Group

proteomes. We downloaded the recent TAIR 10 and Rice Japonica

Group proteomes from Ensembl Plants and analyzed using

PRGminer for R-genes prediction and classification. In

Arabidopsis: Out of the 48,321 protein sequences, 11,117
FIGURE 5

Receiver Operating Characteristic (ROC) curves to evaluate the true positive rate (sensitivity) against the false positive rate, for both Phase 1 (R-gene
identification) and Phase 2 (R-gene classification), using 10-fold cross-validation and independent testing. Top Row: ROC curves for Phase 1, which
aims to distinguish R-genes from non-R-genes. The left panel shows the average 10-fold cross-validation performance, while the right panel depicts
the results on independent testing data. The Area Under the Curve (AUC) values for both datasets are close to 1.0, indicating excellent performance
in identifying R-genes (black line) and non-R-genes (green line). Bottom Row: ROC curves for Phase 2, where the goal is to classify R-genes into
specific subtypes. The left panel represents the average 10-fold cross-validation performance across different R-gene classes, and the right panel
shows the results on independent testing data. Each curve corresponds to a different R-gene subtype: CNL (black), KIN (blue), LYK (green), LECRK
(yellow), RLP (teal), RLK (purple), TIR (red), and TNL (orange). The AUC values for all classes are very high, indicating strong performance for each
subtype classification.
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duplicate protein sequences were removed using CD-HIT. Finally,

37,204 non-redundant proteins sequences 2,512 sequences were

predicted as R-genes while 34,692 as non-R-genes in phase I.

Further, in phase -II these R-genes were classified into 8 classes.

1375 R-genes were classified in KIN class followed by 324 in RLK,

301 RLP, 170 TNL, 150 LECRK, 104 TIR, 81 CNL and 7 in LYK

respectively. The distribution of R-genes classes in Arabidopsis is

depicted in Figure 8A and prediction results presented in

Supplementary File 3. Similarly, in Rice out of 42,582 protein

sequences, 4372 duplicate sequences were removed using CD-

HIT. Finally, 38,210 non-redundant protein sequences 2,619

sequences were predicted as R-genes while 35,591 sequences were

predicted as non-Rgenes in phase-I. Further in phase-II these R-

genes were classified into 7 classes, 1394 R-genes were classified in

KIN class followed by 474 in RLP, 275 in CNL, 261 in RLK, 166 in
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LECRK, 41 in TIR and 8 in LYK respectively. The distribution of R-

gene classes is depicted in Figure 8B and prediction results are

presented in Supplementary File 3. These results highlighted

PRGminer’s ability to correctly predict and classify R-genes in

both dicotyledonous and monocotyledonous plants. The tool can

be readily applied to other plant species for genome-wide R-gene

annotation, facilitating further experimental validation and aiding

research in plant disease resistance and functional genomics.
Comparison of PRGminer with other tools

Several machine learning-based tools, such as NBSPred

(Kushwaha et al., 2016) and DRPPP (Pal et al., 2016), were

previously used for plant resistance (R) gene prediction. However,
FIGURE 6

Precision-recall curves for Phase 1 (R-gene identification) and Phase 2 (R-gene classification) of PRGminer, evaluated using 10-fold cross-validation
and independent testing datasets. Top Row: Precision-recall curves for Phase 1, which distinguishes between R-genes and non-R-genes. The left
plot shows the average 10-fold cross-validation results, while the right plot shows performance on independent testing data. In both cases, high
precision and recall values demonstrate that the model is effective in identifying R-genes (black line) and non-R-genes (green line). Bottom Row:
Precision-recall curves for Phase 2, where identified R-genes are further classified into subfamilies. The left plot displays the average 10-fold cross-
validation results, while the right plot shows the performance on independent testing data. The various colors represent the different R-gene
subtypes: CNL (black), KIN (blue), LYK (green), LECRK (yellow), RLP (teal), RLK (purple), TIR (red), and TNL (orange). The curves indicate high precision
and recall for most subtypes, although performance varies slightly depending on the R-gene class.
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these tools are no longer available, so we excluded them from our

comparison. Instead, we evaluated PRGminer against PRGdb 4.0’s

DRAGO3, an R-gene annotator tool (Calle Garcıá et al., 2022).

Since DRAGO3 does not provide source code and is only accessible

through a web API, we encountered initial difficulties in using it but

eventually succeeded.

For benchmarking, we used the Rice proteome containing

38,210 proteins. PRGminer completed the analysis in just 5

minutes, whereas PRGdb required approximately 10–12 minutes.

Additionally, PRGminer identified 2,619 R-genes, significantly

outperforming PRGdb, which predicted only 1,875 R-genes. A
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key reason for this difference is PRGdb’s uses domain based

precition methods and PRGminer uses a more robust deep

learning model.

A detailed class-wise comparison further highlights

PRGminer’s advantages. For instance, PRGminer predicted 275

genes in the CNL class, while PRGdb identified only 91. The

additional genes predicted by PRGdb were scattered into

fragmented categories such as 50 in “N,” 83 in “NL,” 44 in “CN,”

2 in “L,” and a few in CL and NLK, rather than being classified

under a broader. Similarly, PRGminer predicted 1,394 KIN genes,

whereas PRGdb assigned only 804 to KIN while classifying the
FIGURE 7

The confusion matrix represents the performance of PRGminer on benchmark dataset containing 149 experimentally validated R-genes and 149
non-R-genes sequences. (A) The matrix shows the matrix of Phase I. (B) The matrix shows how the predicted labels for the different subfamilies (on
the x-axis) compare with the true labels (on the y-axis). The blue color represents the correctly predicted true labels while the tomato color gradient
represents the number of sequences incorrectly classified into other subfamilies.
FIGURE 8

The number of sequences belonging to different classes of R-genes annotated in the (A) Arabidopsis thaliana and (B) Oryza sativa Japonica Group
proteomes using PRGminer. These R-genes classes include: CNL (Coiled-coil, Nucleotide-binding site, Leucine-rich repeat domains), KIN (Kinase
domain), RLP (Leucine-rich repeat and Transmembrane domains with a cytoplasmic region), LECRK (Lectin, Kinase, and Transmembrane domains),
RLK (Extracellular Leucine-rich repeat and Kinase domains), LYK (LysM domain, Kinase, and Transmembrane domains), TIR (Toll/interleukin-1
receptor domain), and TNL (Toll/interleukin-1 receptor, Nucleotide-binding site, and Leucine-rich repeat domains).
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remaining genes across various minor subclasses. Other R-gene

classes such as RLK, RLP, and LECRK followed a similar trend, with

PRGminer consistently demonstrating a more comprehensive and

streamlined classification. These results indicate that PRGminer is

not only faster but also provides a more precise annotation of R-

genes. The complete distribution of predicted genes across different

classes is depicted in Figure 9.
Conclusion

In this study, we developed PRGminer for the prediction of

plant resistance proteins using convolution neural networks.

PRGminer was tested on a dataset of experimentally validated

plant resistance genes, and it accurately predicted over 96% of the

genes. This shows that PRGminer is a reliable and precise tool for

predicting R-genes. PRGminer has the potential to be a valuable

tool for the research community, particularly in the domain of crop

protection. By accurately predicting plant resistance proteins,

PRGminer can help scientists to identify and develop new crop

varieties that are resistant to pests and diseases. In addition to its

potential for crop protection, PRGminer could also be used to

advance our understanding of the intricate mechanisms governing

plant defense systems. By identifying the key features of resistance

proteins, PRGminer could help scientists to develop new strategies

for engineering crops with enhanced disease resistance.

In the future, as more diverse and comprehensive datasets

become available, we plan to augment the tool’s Phase II by

incorporating additional R-gene classes. This evolutionary step
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will further refine PRGminer’s predictive capacity, enabling it to

tackle a broader spectrum of resistance genes with enhanced

precision. Which will allow PRGminer to predict a wider range of

plant resistance proteins with even greater accuracy. PRGminer’s

development has the potential to advance crop protection and our

understanding of plant defense systems.
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climate change on agricultural insect pests. Insects 12, 440. doi: 10.3390/
INSECTS12050440

Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification
accuracy. Remote Sens Environ. 62, 77–89. doi: 10.1016/S0034-4257(97)00083-7

Steuernagel, B., Jupe, F., Witek, K., Jones, J. D. G., and Wulff, B. B. H. (2015). NLR-
parser: rapid annotation of plant NLR complements. Bioinformatics 31, 1665–1667.
doi: 10.1093/BIOINFORMATICS/BTV005

Sun, Y., Qiao, Z., Muchero, W., and Chen, J. G. (2020a). Lectin receptor-like kinases:
the sensor and mediator at the plant cell surface. Front. Plant Sci. 11. doi: 10.3389/
FPLS.2020.596301/BIBTEX

Sun, Y., Zhu, Y. X., Balint-Kurti, P. J., and Wang, G. F. (2020b). Fine-tuning
immunity: players and regulators for plant NLRs. Trends Plant Sci. 25, 695–713.
doi: 10.1016/J.TPLANTS.2020.02.008

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240, 1285–
1293. doi: 10.1126/science.3287615

Tang, D., Wang, G., and Zhou, J. M. (2017). Receptor kinases in plant-pathogen
interactions: more than pattern recognition. Plant Cell 29, 618. doi: 10.1105/
TPC.16.00891

Tørresen, O. K., Star, B., Mier, P., Andrade-Navarro, M. A., Bateman, A., Jarnot, P.,
et al. (2019). Tandem repeats lead to sequence assembly errors and impose multi-level
challenges for genome and protein databases. Nucleic Acids Res. 47, 10994–11006.
doi: 10.1093/NAR/GKZ841

Valverde-Albacete, F. J., Carrillo-de-Albornoz, J., and Peláez-Moreno, C. (2013). “A
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