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Introduction:Cropmaturity status recognition is a key component of automated

harvesting. Traditional manual detection methods are inefficient and costly,

presenting a significant challenge for the agricultural industry.

Methods: To improve cropmaturity detection, we propose enhancements to the

Real-Time DEtection TRansformer (RT-DETR) method. The original model's

Backbone structure is refined by: HG Block Enhancement: Replacing

conventional convolution with the Rep Block during feature extraction,

incorporating multiple branches to improve model accuracy. Partial

Convolution (PConv): Replacing traditional convolution in the Rep Block with

PConv, which applies convolution to only a portion of the input channels,

reducing computational redundancy. Efficient Multi-Scale Attention (EMA):

Introducing EMA to ensure a uniform distribution of spatial semantic features

within feature groups, improving model performance and efficiency.

Results: The refined model significantly enhances detection accuracy.

Compared to the original model, the average accuracy (mAP@0.5) improves by

2.9%, while model size is reduced by 5.5% and computational complexity

decreases by 9.6%. Further experiments comparing the RT-DETR model,

YOLOv8, and our improved model on plant pest detection datasets show that

our model outperforms others in general scenarios.

Discussion: The experimental results validate the efficacy of the enhanced RT-

DETR model in crop maturity detection. The improvements not only enhance

detection accuracy but also reduce model size and computational complexity,

making it a promising solution for automated crop maturity detection.
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1 Introduction

As a nation renowned for its vast agricultural output, crops assume

a paramount significance in human production and livelihood.

Historically, harvesting has predominantly relied on manual labor, a

practice notorious for its resource intensive nature and sluggish

efficiency. Consequently, automatic harvesting has emerged as a

progressive alternative. Presently, both domestic and international

research endeavors pertaining to automatic crop harvesting

predominantly center around image recognition, positioning, and

picking (Bai et al., 2023). However, the accurate detection of crop

maturity levels stands out as a pivotal facet for enhancing both

harvesting efficiency and subsequent storage practices.

Most traditional computer vision methods employed to address

the crop maturity level challenge are based on machine learning

approaches such as K Neareat Neighbors (KNN) (Guo et al., 2003),

Supported Vector Machine (SVM) (Wang and Hu, 2005), and

Artificial Neural Network (ANN) (Agatonovic-Kustrin and

Beresford, 2000). Semary et al. (2014) utilized support vector

machines and Principal Component Analysis (PCA) to identify

texture and color features from both HSV and RGB color spaces,

achieving an accuracy of 92% in detecting surface defects in

samples. Moallem et al. (2017) employed SVM, ANN and KNN

as machine learning techniques to respectively discern plant decay

levels, with the SVM classifier yielding the highest accuracy score of

92.5%. Although the aforementioned traditional machine learning

methods have proven effective in crop maturity detection, they are

inherently reliant on the characteristics of the studied objects and

are subject to certain limitations.

Deep learning-based methodologies have gained significant

traction in agricultural applications. These models possess the ability

to automatically extract pertinent features devoid of human

intervention. Suharjito et al. (2021) employed a MobileNetV1-based

framework to classify oil palm into six distinct grades according to

predefined criteria, achieving an accuracy rate of 81.1%. Gai et al.

(2023) introduced the DenseNet architecture to pinpoint the locations

of cherry fruits across varying ripeness levels utilizing the YOLOv4

network. Chen et al. (2022) leveraged YOLOv5 for initial target

identification, followed by the integration of the saliency map into

the ResNet34 network to ascertain fruit ripeness, ultimately attaining a

detection accuracy of 95.07%. Single Shot MultiBox Detector (SSD)

(Tan et al., 2020) is renowned for its real-time multi-scale object

detection capabilities, and Ananthanarayana et al. (2020) proposed a

methodology employing the SSD network in conjunction with

MobileNetV2 (Sandler et al., 2018) for fruit ripeness detection,

achieving a detection accuracy of 62%. A pivotal stage in target

detection algorithm involves screening anchor frames based on the

Non-Maximum Suppression(NMS) algorithm, however, the hyper-

parameters of NMS, such as the Intersection over Union (IOU)

threshold, and the scoring thresholds have a great impact on the

accuracy and speed of the detector, which can lead to performance

bottlenecks and need to be manually adjusted. While the advent of

Real-Time DEtection TRansformer (RT-DETR) (Lv et al., 2023) has

bolstered accuracy, its end-to-end structure markedly amplifies model

memory and inference time.
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Drawing upon the aforementioned challenges, we curated a

collection of plant images sourced from the Internet. Employing

image augmentation techniques such as flipping and panning, we

augmented the dataset to forestall overfitting. With a focus on

expediting neural network inference, we built upon the RT-DETR

model by integrating Rep Block, inspired by RepVGG, into the

Backbone component of the original model to enhance average

accuracy. Furthermore, we incorporated the Partial Convolution

(PConv) concept introduced by FasterNet (Chen et al., 2023), which

strikes a favorable balance between speed and accuracy. Specifically, we

replaced the regular convolution within the Rep Block with PConv to

streamline computational efforts. Additionally, we introduced Efficient

Multi-Scale Attention (EMA) mechanism subsequent to the Stem

module of the Backbone. A novel cross-space learning method was

employed to reshape a portion of the channel dimensions into batch

dimensions, facilitating the grouping of channel dimensions into

multiple sub-features. This strategy ensures uniform distribution of

spatial semantic features across each feature group, yielding a

discernible improvement in model parameters. The refined RT-

DETR model significantly diminishes both model size and

computational complexity while concurrently enhancing the

accuracy of plant image maturity detection.
2 Overview of RT-DETR

In the domain of fruit detection, the YOLO series models have

been extensively utilized due to their high detection efficiency and

strong generalization capabilities. Numerous subsequent studies

have proposed various improvement strategies to further enhance

the performance of these models. For instance, Edy and Suharjito

(2023) integrated the YOLOv4-Tiny model with a genetic algorithm

to optimize the detection of oil palm ripeness, resulting in an

improvement in the model’s mean Average Precision (mAP) by

0.1% and 0.5%, respectively. Similarly, Xu et al. (2024) introduced

the RFAConv module to enhance the feature extraction capabilities

of the core network, achieving a detection accuracy of 93.16%.

While YOLO models offer significant advantages in terms of

inference speed and lightweight design, the RT-DETR model

demonstrates superior robustness and detection performance in

complex scenarios. Specifically, the global feature modeling

capability of RT-DETR allows it to effectively capture

relationships between objects, providing a notable accuracy

advantage in detecting fruit clusters where multiple targets are

closely packed. This highlights the potential of RT-DETR to address

challenges associated with complex detection tasks more effectively

than traditional YOLO-based approaches.

RT-DETR represents a robust real-time end-to-end processor,

seamlessly integrating intra- and cross-scale fusion through the

utilization of Vision Transformers to effectively process multiscale

features. RT-DETR leverages CNN architecture for its backbone

network and employs a hybrid encoder for its encoder module.

Notably, the decoder segment of RT-DETR incorporates a multi-

layer Transformer decoder, affording the flexibility to adjust

inference speed by employing different decoder layers without
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https://doi.org/10.3389/fpls.2025.1423682
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1423682
necessitating re-training. An overview of the model architecture is

depicted in Figure 1.

As illustrated in Figure 1, the features extracted from the last

three levels {S3, S4, S5} of the backbone network serve as inputs to

the encoder. The hybrid encoder facilitates the transformation of

multiscale features into a sequential representation of image

features, achieved through Attention-based Intra-scale Feature

Interaction (AIFI) (Chen et al., 2022) and CNN-based Cross-scale

Feature Fusion (CCFF). An IoU-aware query mechanism is

employed to pick a constant range of photograph features, which

are in consequence utilized as the preliminary object query for the

decoder. Subsequently, the decoder iteratively refines the object

query, culminating in the era of prediction frames and related self

assurance scores.

3 Improved RT-DETR model

Building upon the RT-DETR-R18 model, this study enhances

the backbone network, PP-HGNet, by introducing several

modifications. Firstly, the Efficient Multi-Scale Attention (EMA)

mechanism is integrated after the Stem block to reconfigure select

channel dimensions into batch dimensions, thereby circumventing

dimensionality reduction through conventional convolution and

mitigating subsequent computational burdens. Furthermore,

enhancements are made to the HG Block of the original

backbone network by substituting the conventional 3� 3

convolution with the Rep Block. This adjustment enables the

incorporation of multiple parallel branches, augmenting the

model’s characterization capabilities and bolstering accuracy.

Additionally, the Rep Block’s ordinary convolution is replaced

with Part ia l Convolut ion, which effect ive ly manages

computational overhead without significantly compromising

accuracy. The refined Backbone network is visually depicted

in Figure 2.
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3.1 Rep Block

RepVGG exhibits an inference time profile akin to VGG

(Sengupta et al., 2019), featuring a composition comprising solely

of a sequence of 3� 3 Rep Blocks and Rectified Linear (ReLU)

units, thereby surpassing other convolutional neural networks in

performance. During training, the model adopts a multi-branching

structure for the Rep Blocks, which subsequently transitions into a

unidirectional model structure for inference. As delineated in

Figure 3, Figure a depicts the network structure utilized during

RepVGG training, whereas Figure b illustrates the network

structure employed for inference. While the multi-branch

structure yields higher accuracy, during inference, hardware

resources are obligated to compute the outcomes of each branch

individually, with the rapid branch necessitating a wait period for

the completion of other branches’ calculations before proceeding

with further fusion. Consequently, the hardware’s computational

power remains underutilized. Hence, the conversion of the multi-

branch structure into a single-branch configuration prior to

inference becomes imperative.

The initial phase involves the construction of the training block.

ResNet introduces a shortcut branch to capture the information

flow as y = x + f (x), employing a residual block to learn f . When the

dimensions of x and f (x) are mismatched, the modeling formula

adapts to y = g(x) + f (x), where g(x) adjusts the number of

channels via a 1� 1 convolution. Drawing inspiration from

ResNet, multiple branches are stacked to compose the training

block: the information flow during training is modeled as y =

x + f (x) + g(x). The pinnacle department elements a 3� 3

convolution for function extraction, the center department

employs a 1� 1 convolution for characteristic smoothing, and

the remaining department conducts a panning operation.

Subsequently, We need to transform the training block into a

3� 3 convolutional layer for the inference:
FIGURE 1

RT-DETR architecture (Lv et al., 2023).
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In the initial step, the convolutional operators and Batch

Normalization (BN) operators across all three branches are

merged to serve as convolutional operators. W(3) ∈ RC2*C1*3*3

denotes the convolutional kernel of the 3� 3 branch, W(1) ∈
RC2*C1 signifies the kernel of the 1� 1 branch, C1 represents the

input channel, and C2 signifies the output channel. m(3), s (3), g (3),

and b (3) are employed to denote the cumulative mean, standard

deviation, learning scaling factor, and bias of the BN layer.

Furthermore, m(1), s (1), g (1), b (1) denotes the parameters of the

BN layer after the 1� 1 convolution, and m(0), s (0), g (0), b (0)

denotes the parameters of the constant branch. Let M(1) ∈
RN*C1*H1*W1 and M(2) ∈ RN*C2*H2*W2 represent the input and

output. If C1 = C2,W1 = W2,H1 = H2, then:

M(2) = bn(M(1)
*W

(3),m(3),s (3), g (3), b (3))

   + bn(M(1)
*W

(1),m(1),s (1), g (1), b (1))

   +  bn(M(1)
*W

(0),m(0),s (0), g (0), b (0))

(1)
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bn represents the BN function during inference, ∀ 1 ≤ i ≤ C2

bn(M, m,s , g , b):,i,:,: = (M:,i,:,: − mi)
gi
si

+ bi (2)

Transforming each BN layer along with its preceding

convolutional layers into a convolution with bias vectors, W 0, b0f g
represent the kernel and bias transformed from W ,m,s , bf g.

W 0
i,:,:,: =

gi
si

∼Wi,:,,:,: , b
0
i = −

migi
si

+ bi (3)

Easily verified:

bn(M* −W;m,s , g , b):,i,;,: = (M* −W0):,,i,:; + b0i (4)

In the second step, the convolutional operators across all three

branches are consolidated into the form of 3� 3 convolution

kernels and biases, which are aggregated to yield the final

outcome on the main branch. We need to add the three bias

vectors to get the final bias and get the final 3� 3 convolution by

adding the 1� 1 convolution to the center of the 3� 3

convolution kernel.
3.2 Partial convolution

The PConv-based FasterNet represents a novel neural network

designed to achieve enhanced processing speed on devices while

maintaining accuracy in target detection. It comprises four layered

stages, interspersed with FasterNet Blocks. Each FasterNet Block

consists of a PConv layer followed by two Convolutional layers,

collectively constituting the FasterNet Block, as illustrated

in Figure 4.

PConv leverages the redundancy inherent in the feature map by

using selectively making use of ordinary convolution completely to

a subset of the enter channels, whilst leaving the rest untouched.

This strategy correctly mitigates computational redundancy. PConv

calculates the first or closing consecutive cp channels as
FIGURE 3

Rep Block structure.
FIGURE 2

Improved backbone structure.
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representatives of the complete feature map, with Floating Point

Operations (FLOPs) computed as follows:

h*w*k
2
*c

2
p (5)

The FLOPs for regular convolution are computed as follows:

h*w*k
2
*c

2 (6)

When the ratio is r = cp=c = 1=4, the FLOPs of PConv quantity

to solely 1/16th of these incurred with the aid of ordinary

Convolution, main to a tremendous discount in the model’s

complexity. In order to absolutely leverage the facts from all

channels, ordinary convolution is appended to PConv.
3.3 Efficient multi-scale attention

The EMA mechanism represents an enhancement over

Channel Attention (CA). CA utilizes one-dimensional global

average pooling along the x and y dimensional directions to

capture long-range interactions in space across different

dimensions. However, it overlooks the significance of interactions

between locations across space. This study ensures that the spatial

semantic features are distributed uniformly by transforming some

channels into batch dimensions and grouping the channel

dimensions into several sub-features. Figure 5 illustrates the

EMA’s configuration.
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For any given input feature mapping X ∈ RC*H*W , in order to

support the learning of various semantics, the EMA splits X into G

sub-features along the channel dimension directions. The following

formula can be used to determine the grouping style.

X = ½X0,Xi,…,XG−1�,Xi ∈ RC==G*H*W

Three parallel paths are used by EMA in the first phase to

extract grouped feature maps; two of these routes are in the 1� 1

branch, while the third is in the 3� 3 branch. Stacking a single 3�
3 convolution in the 3� 3 branch for capturing multi-scale features,

while two 1D global average pooling procedures are used in the 1�
1 branch to encode channels across several spatial directions. In

parallel, the input tensor is redefined as C//G*H*W and the group G

results are reintegrated into the batch dimension. A Sigmoid

function is used to account for the 2D distribution of the linear

convolution after the output of the 1� 1 convolution is broken

down into two vectors.

Two tensors are added in the cross-space learning phase: one

from the 1� 1 branch’s output and another from the 3� 3

branch’s output. 2D pooling is used to encode information into

the 1� 1 branch’s output. Furthermore, before the channel

features’ joint activation process, the output of the last branch is

reshaped to the matching shape. The following is the expression

used to formulate the 2D pooling function:

zc =
1

H �Wo
H

j
o
W

i
xc(i, j) (7)
FIGURE 4

FasterNet Block structure.
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Softmax is utilized to adopt a linear transformation to the 2D

global average pooling’s output in order to guarantee computational

efficiency. The output is then subjected to matrix dot product

operation, which produces the first spatial attention map. On the

third branch, 2D global average pooling is utilized to encode the

global spatial information in that branch and matrix multiplication

is performed with the third branch before the 1 � 1 branch

activation mechanism. Consequently, the second spatial interest

map is generated, retaining particular spatial region information.

The output feature maps inside every crew are then computed

as an aggregation of the two generated spatial interest weight values,

culminating in a Sigmoid characteristic software taking pictures the

world context of every pixel.
Frontiers in Plant Science 06
4 Results and analyses

4.1 Experimental environment

To check the efficacy of the more advantageous model, we set up

an experimental platform using Windows 10 as the working

machine and PyTorch as the deep studying framework. The RT-

DETR served as the foundational community model. The unique

configuration of the experimental surroundings is outlined

in Table 1.

Consistent configuration parameters were maintained

throughout the experiment’s training phase, with details provided

in Table 2.
FIGURE 5

EMA structure.
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4.2 Datasets and assessment indicators

The dataset utilized in this investigation comprised plant images

sourced from online repositories. To annotate the diverse plant images,

rectangular bounding boxes were manually labeled using the Labeling

library, with annotations stored in XML format and subsequently

converted into TXT format. Specifically, the dataset comprises 9720

images encompassing five categories: ripe banana, ripe tomato,

overripe banana, unripe banana, and unripe tomato. These images

were partitioned into training, validation, and test sets in an 8:1:1 ratio.

To facilitate an objective evaluation of the plant detection

model’s performance, several evaluation metrics were employed,

including FPS, GFLOPs, and mAP. FPS denotes the number of

images detected per second by the target detection network; a

higher FPS indicates better real-time performance. GFLOPs are

used to measure the complexity of the model, which is proportional

to the number of parameters. The mAP, utilized to gauge the

accuracy of the model, was calculated using Equation 8.
Frontiers in Plant Science 07
mAP =
o
N

i=1
APi

N
(8)

N denotes the number of categories, and APi denotes the

average precision of the ith category. average precision can be

obtained by plotting the Precision-Recall (PR) curve and calculating

the integral area of the curve. mAP@0.5 is calculated as the mean

value of the model’s AP in each category at an IoU threshold of 0.5.
4.3 Ablation experiment

To ascertain the accuracy of the model, five sets of ablation

experiments were conducted in THIS study, with the results

presented in Table 3. The addition of the EMA mechanism

following the Stem block, facilitating the extraction of image

feature information across spatial and locational dimensions, led to

a 1.81% enhancement in model accuracy. However, this

augmentation was accompanied by an increase in model complexity.

Reconstructing the backbone portion of RT-DETR using Rep

Block resulted in an improved average accuracy, with a mean

Average Precision mAP of 95.62%, without significant alterations

in model size, detection speed, or computational complexity.

Substituting partial convolution for Rep Block’s conventional

convolution significantly reduced the computational complexity

and model size. Nevertheless, this modification corresponded to a

decrease in model accuracy by 0.51 percentage points. When the

enhanced Rep Block module and EMA were jointly incorporated

into the backbone network, the model accuracy increased from

93.10% to 96.00% compared to the RT-DETR model. Moreover,

there was a substantial reduction in model size and parameter

counts, facilitating the efficient deployment of subsequent models.

Overall, the improved version of RT-DETR, integrating Partial

Convolution (PConv), Rep Block, and the EMA Attention Module,

surpassed the original model in the fact of detection accuracy,

computational complexity, and model saved size. Employing the

same dataset and training parameters, our model achieved a 2.9%

enhancement in mAP@0.5, a 14.2% reduction in model size, and a

9.6% reduction in computational complexity. Figure 6 illustrates the

visual comparative effect of the heat maps generated by the

improved RT-DETR model and the original model.
TABLE 2 Configuration parameters for process.

Parameters Value

Learning Rate 0.01

Image Size 640*640

Batch Size 4

Epoch 100

Momentum 0.9

Weight Decay 0.0001

Optimizer AdamW
TABLE 1 Configuration of the experimental platform.

Classification Configuration

System Environment Windows 10

GPU GeForce RTX 3050 Ti

Framework Pytorch1.13.1

Programming Language Python 3.8
TABLE 3 Results of ablation experiments.

Rep Block PConv EMA mAP@0.5(%) FPS GFLOPs Model Size(M)

93.10 33.4 57.0 38.6

√ 94.91 27.6 59.1 38.9

√ 95.62 33.3 57.1 38.8

√ √ 95.11 32.4 49.5 32.9

√ √ √ 96.00 26.7 51.5 33.1
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Figure 6 illustrates a visual comparison of the thermographic

results obtained from the improved RT-DETR model and the

original model. The left column presents the original images,

while the middle and right columns display the detection results

produced by the RT-DETR model and the proposed method,

respectively. The heat maps superimposed on the images

represent the areas of focus during the detection process.

Specifically, warmer colors (red and yellow) correspond to regions

with higher attention or confidence levels, whereas cooler colors

(blue and green) denote areas with lower attention. The bounding

boxes outline the detected ripe tomatoes, with the text inside each

box indicating the corresponding confidence levels for

the detections.
Frontiers in Plant Science 08
4.4 Model performance experiments

The interpretability of deep learning models’ performance holds

paramount importance, particularly in domains such as target

detection and instance segmentation. In this segment of the

experiment, we selected the improved RT-DETR model alongside

the RT-DETR model as the validation models, analyzing the curve

comparisons of the two models, as depicted in Figure 7, and

assessing the picture ground detection performance, as shown

in Figure 8.

The mAP@0.5, mAP@0.5:0.95, and recall curves presented in

Figure 7 offer intuitive evidence of the superior performance of the

improved RT-DETR model: Our model’s accuracy starts to level off
FIGURE 6

Heat map visualization of the improved model versus the original model.
FIGURE 7

mAP curve, recall curve.
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around 50 rounds of training. It is also significantly more accurate

than the original RT-DETR model during the training process.

The highlighted area within the square region of Figure 8

delineates the types of plants recognized by the model, with

accompanying numerical values denoting the confidence levels

of detection. As per the experimental outcomes, in comparison to

the original model, the improved model exhibits enhancements in

the confidence level during ripe banana detection. Moreover, in

the detection of occluded tomatoes and unripe bananas, the

improved model demonstrates a notably higher detection

proficiency for these objects. This observation is attributed to

the integration of the RepBlock, which enhances the network’s

sensitivity and adaptability to target detection, and the inclusion

of EMA and PConv in the model’s optimization, enhancing its

feature recognition capabilities. When testing Unripe Banana, the

improved model appeared to have fewer anchor frames. Overall,
Frontiers in Plant Science 09
the improved model significantly enhanced the model ’s

detection ability.

The F1 score (Chicco and Jurman, 2020) serves as a widely

adopted metric for assessing object detection models, representing

the weighted average of precision and recall. Figure 9 illustrates the

F1-confidence curves for the improved RT-DETR.
1. A high peak F1 score and a maximum F1 score close to 1

signify the optimal performance of the model.

2. The curves exhibit broad curves and flat peaks, indicating

that the F1 scores remain stable across different thresholds.

Thus, the improved model demonstrates robustness.

3. The area under the curve, which summarizes the

performance for all thresholds, is larger. A larger area

signifies a superior model. In this scenario, the model

excels in the detection of rotten bananas and ripe tomatoes.
FIGURE 8

Comparison of test results before and after modification.
FIGURE 9

F1 confidence curve for the improved model.
TABLE 4 Results of model comparison experiments.

Model
Name

Input
shape

mAP_0.5
(%)

GFLOPs Parameters

RT-
DETR-R18

640*640 93.10 57.0 19974480

RT-
DETR-R34

640*640 93.88 89.1 31227972

RT-
DETR-R50

640*640 94.26 129.9 42118508

RT-DETR-L 640*640 94.35 103.8 32148396

RT-DETR-X 640*640 95.74 222.8 65632092

YOLOv8 640*64 88.31 8.1 3006623

Ours 640*640 96.00 51.5 16996720
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4.5 Comparison of different models

In order to evaluate the performance of the enhanced model,

this study conducted comparison experiments between the

improved model and various widely used RT-DETR series models

(RT-DETR-R18, RT-DETR-R34, RT-DETR-R50, RT-DETR-X,

RT-DETR-L), YOLOv8n, which were conducted on the same

dataset and the same experimental conditions.
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As shown in the experimental results in Table 4, the improved

model obtained 96.00% mAP, which is significantly higher than the

first five tested models. The accuracy of this model is not much

different from that of RT-DETR-X, but the number of parameters of

the improved model is only 1/6 of the original model, which shows

commendable computational volume and computational

complexity. Compared with the YOLOv8n model, its mAP

increased by 7.67 percentage points. These results demonstrate
FIGURE 10

Detection results of different models in pest detection.
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that the improved model is able to maintain the computational

volume while still exhibiting high accuracy.
5 Discussion

The model proposed in this paper can be applied not only to

plant maturity detection but also to other fields. To verify the

generality of the model, we obtained a dataset of plant pests from

the public website roboflow, which contains a total of five categories

of pests: Aphids, Leafminers, Moths, Red-Melon-Beetle, and

Whiteflies. we trained the improved model, RT-DETR model, and

YOLOv8 model on this dataset, and its detection results are shown

in Figure 10.

The results show that: our model is better than the other models

in the detection of Moths, Red-Melon-Beetle pests, and its detection

accuracy has been improved a little; when detecting Whitflies pests,

there is not much difference in the effectiveness of the models; and

in the detection of Aphids and Leafminers, the standard RT-DETR

model and the YOLOv8 model not only have low detection

accuracy, but also have obvious leakage detection, the improved

RT-DETR model obviously reduces the leakage detection rate and

also improves the detection accuracy. Through this experiment we

verified the generality of the model.
6 Conclusion

Plant maturity detection holds pivotal importance in advancing

automated harvesting technologies. In this study, an improved

version of a plant detection model based on RT-DETR-R18 was

developed. The methodology initially integrates EMA mechanism

into the backbone network to enhance information extraction

pertaining to space and location. Subsequently, the Rep Block

reconstructs the backbone structure of the original model, thereby

augmenting model accuracy. Furthermore, the PConv module

replaces ordinary convolution, leading to reduced complexity and

model size.

Experimental consequences point out the model’s suitability for

various detection scenarios. The expanded RT-DETR mannequin

substantially outperforms different mainstream RT-DETR

household detection fashions (RT-DETR-R18, RT-DETR-R34,

RT-DETR-R50, RT-DETR-L, and RT-DETR-X) by means of

accomplishing detection accuracies of 2.9%, 2.12%, 1.74%, 1.65%,

respectively, and 0.26%. Moreover, the more desirable mannequin

enhances detection accuracy whilst lowering mannequin

parameters and computational complexity. Compared to the

original model, the model size is reduced by 5.5% and the

computational complexity is reduced by 9.6%. This makes the

improved model suitable for scenarios with memory and

computational constraints, such as embedded devices.
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In future lookup endeavors, we intend to diversify information

series by way of incorporating extra scenes of tomato and banana

images, consisting of tomato pics obscured via leaves and banana

snap shots in complicated environments. Additionally, we intention

to accumulate extra data, encompassing parameters like wavelength

and vibration, to similarly combine photograph facts and decorate

the model’s reliability.
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