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Introduction: Soil microbial community is the key determinant of coastal

agroecosystem soil health. However, the response of soil microbial community

and its anticipated functions to soybean and corn intercropping in coastal saline

agroecosystems is not well understood.

Method: Soybean and corn intercropping was done in Putian city of Fujian

province. After harvest, soil total carbon (TC), total phosphorus (TP), total

nitrogen (TN), total organic carbon (TOC), soil organic matter (SOM), salinity

content and elemental ratios of C: N, C: P and N: P were examined. High-

throughput sequencing was performed to investigate the community

composition and diversity of rhizospheric bacterial and fungal communities as

influenced by monoculture soybean (MS) and corn (MC), first (FP) and second

(SP) intercropping pattern. LEfSe cladogram was generated to identify potential

microbial markers and metagenome was annotated with the metabolic cycles

and pathways in the KEGG database to predict the microbial function. The co-

occurrence and RDA analysis assessed the correlation between microbes and

soil microbes with soil chemical parameters.

Results and discussion: The intercropping patterns FP and SP significantly

influenced soil TC, TP, TN, SOM, EC, pH and salinity content. The C: N, C: P, and

N: P ratios were influenced by C, N, and P concentrations. Our investigation found

that Chao1 was significantly higher in intercropping patterns than in monoculture

patterns. Nevertheless, the Shannon index was substantially higher in monoculture

than in intercropping patterns FP and SP indicating reduced bacterial and fungi

diversity measured by species richness and evenness. The Non-Metric

multidimensional scaling (NDMS) diversity showed that all samples were

significantly clustered into four major groups, according to the bacteria and

fungi communities of origin. Further statistical analysis revealed that cropping

patterns strongly affected microbial communities. Furthermore, Proteobacteria,
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Actinobacteria, Acidobacteria, and Chloroflexi were enriched bacterial phyla in the

rhizosphere of MS, MC, FP, and SP. Ascomycota, Mortierellomycota, and

Basidiomycota were the most enriched fungi phyla in each intercropping

pattern. These phyla were identified as sensitive biomarkers for soil nutrient

circulation, ecosystem bioremediation and chemical degradation.

Conclusion: This study increases our understanding of soybean and corn

intercropping in coastal saline agroecosystems microbiomes
KEYWORDS

coastal saline agroecosystem, soybean-corn intercropping, soil microbial community,
microbial functions, climate change
1 Introduction

Coastal agroecosystem soil is a complex ecosystem hosting

bacteria, fungi, and other soil microorganisms (Jacoby et al.,

2017). Soil microorganisms encompass a significant amount of

soil ecosystem’s genetic diversity (Bashir et al., 2016). There is

substantial evidence suggesting soil microbial community being a

crucial predictor of soil quality and ecosystem functions, such as

climate regulation and bioremediation (Chaer and Goedert, 2013;

Jiang et al., 2022). Soil microbes regulate global climate by

sequestering carbon dioxide (CO2) from the atmosphere through

carbon fixation and storing it in the form of organic matter (Dong

et al., 2022). In nitrogen (N) cycling, the fixation of atmospheric N

into plant-available ammonium (NH4) is performed by N fixers

(Tibbett et al., 2020). While nitrification of ammonia and

denitrification of nitrate into N oxide and N gas is exclusively

performed by diazotrophs such as rhizobia, nitrifiers such as

nitrobacter and denitrifiers such as pseudomonas (Li et al., 2021).

Furthermore, these microbes are significant in soil biological

activities such as decomposition of organic matter, plant diversity,

and productivity (Zhou et al., 2020).

However, over-exploitation and climate change events can

significantly impair the health and function of coastal

agroecosystems (Leonardo et al., 2020). The slight change in

climate in coastal agroecosystems can cause significant and rapid

changes in sea levels, exceeding the capacity of coastal ecosystems to

adapt (Tu Nguyen et al., 2019). The climate change-related abiotic

stresses, such as drought, an increase in salinity, heat waves and

floods, are the primary cause of ecosystem fluctuations in the

structure and functioning of soil microbes (Bardgett et al., 2020).

The change in species diversity and composition can alter the

ecosystem functions and processes associated with productivity

and ecosystem health (Wagg et al., 2021; Sahab et al., 2021).
02
To solve the coastal agroecosystem challenges, intercropping of

soybean and corn was observed to be among the practical

approaches to lessen the negative impacts caused by coastal

agroecosystem changes (Iqbal et al., 2019). Soybean and corn

intercropping can shape the functions of soil microbes in coastal

agroecosystems (Bastida et al., 2021). For example, soybeans

improve soil nutrients by fixing N from N dioxide (N2) and

carbon sequestration (Stagnari et al., 2017). Also, soybeans

facilitate the conversion of unavailable P into mobilized P,

benefiting themselves and the neighboring plant (Duchene et al.,

2020). On the other hand, corn is one of the most important crops

in the world (Li et al., 2019). Corn plays an integral economic and

nutritional role and is also an exhaustive crop that acquires mineral

N from the soil (Acevedo-siaca and Goldsmith, 2020). The

intercropping of soybeans and corn not only influences soil

essential nutrient circulation but also increases soil microbial

biodiversity and composition of coastal agroecosystem soil, which

are important indicators of soil agroecosystem health (Maitra

et al., 2021).

Soil chemical properties affect microbial community diversity,

composition, and function of ecosystems (Dang et al., 2020). For

example, soil TN, TP, TC, soil organic matter (SOM) and pH affect

soil microbial community composition and function (Song et al.,

2020). Study on soil C, N and P suggest that there is a relationship

between soil nutrients and their corresponding soil elemental ratios

(C:N, C:P and N:P) which reflects organic matter decomposition,

nutrient retention, and nutrient circulations (Liu et al., 2016).

Hence, in studying the change of diversity, composition and

predicted function of soil microbial community it is important to

include elemental ratios since their response to coastal

agroecosystems has not been extensively investigated (Wu et al.,

2015). This work focuses on (i) Analyzing the potential effects of

soybean and corn in intercropping on the soil microbial community
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of Putian agroecosystem soil, (ii) Predicting the soil microbial

functions mediated by soybean and corn intercropping in

agroecosystem and (iii) To establish the relationship between the

intercropping patterns, soil chemical factors and significant

composition within microbial communities in Putian coastal

agroecosystem soil microbiome.
2 Methods and experiments

2.1 Site description

Soil samples were collected from Xiuyu District, Putian City,

Fujian Province, China (longitude 118° 72 E latitude 27° 43N) at an

altitude of 150 m above sea level. The mean annual rainfall was

1,650 mm, with a mean temperature of 19°C, of which more than

80% of rainfall is concentrated from April to July each year. The soil

type was sandy loam with pH of 7.6, EC 4.6 dSm-1, TP of 0.716 g/

Kg, TN of 0.78 g/Kg, TC of 3.97 g/Kg, and SOM of 9.02 g/kg. The

salinity content of the rhizospheric soil was above 4 g/kg, which,

according to Xu et al. (2020), was categorized as severe saline soil.
2.2 Field experiment

This experiment consisted of monoculture soybean (MS),

monoculture corn (MC), a first pattern (FP) and a second pattern

(SP). The plots were separated into 12 sub-plots; each treatment had

three replicates. The soybean variety used was Gui-105, and the

corn used was Caignuo 8, purchased from Wannong High-Tech

(Group) Co., Ltd. The Base fertilizer used was urea, and the

compound fertilizer was N-P2O5-K2O, which was applied

separately, consisting of 14.5 and 55 g m–2, respectively. After two

days, monoculture corn and soybean were sown directly into the

soil; the distance between one row to another was 50 and 40 cm

between one plant and another in MC and MS. In the intercropping

FP and SP plots, the distance between corn and soybean was 60 cm,

while the distance between soybean and soybean was 40 cm. The

buffer zone of 60 cm from the edge of the plot in the corn and

soybean intercropping plots was maintained to avoid the influence

of adjacent plots (Figure 1). All experimental plots were managed

using conventional field management practices, such as weeding

and insecticide application.
2.3 Sample collection and processing

After harvest, 3 rhizosphere soil samples were collected and

bulked together to form one sample per plot using the S-sampling

method. The samples were immediately stored in sterile plastic

bags, placed in iceboxes, and taken to the laboratory. Then, all the

samples were sieved through a 2-mm mesh and thoroughly

homogenized to be further divided into two parts: one was air-
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dried for soil chemical analysis, while the rest were stored at −80°C,

waiting for DNA extraction.
2.4 Determination of chemical properties
and elemental ratios analysis

A potassium dichromate bulk density method was used to

determine SOM (Bai et al., 2017). Kjeldahl’s method was used to

measure soil TN (Nutrien and Pengurusan, 2019). Soil TP was

determined by the HClO4–H2SO4 method (Ma et al., 2023). Soil

TOC and TC were determined by elemental analyzer (Djukic et al.,

2013). The soil C: N, C:P, and P: N element ratios were calculated

according to (Wu et al., 2015).
2.5 Coastal salinity content

Soil pH was measured using the micro-electrode method (Yang

et al., 2020). Soil salinity content was analyzed using the conversion

equation of salinity and EC [Equation 1] (Dong et al., 2022).

Salinity = (EC=1000 − (0:0182)=0:39 (1)

Where the unit of EC was µS/cm, and the salinity content unit

was in g/Kg.
2.6 Microbial composition and diversity
assessment

The soil genomic DNA was extracted using the E.Z.N.A. Soil

DNA Kit (Omega Bio-tek Inc., USA). The concentration and quality

of genomic DNA was measured by NanoDrop 2000

spectrophotometer (Thermo Scientific Inc., USA). The V4 region

of the 16S rRNA sequence was amplified by universal primers 338F

( 5 ’A C T C C T A CGGAGG CAG CAG - 3 ’ ) a n d 8 0 6 R

(5’GGACTACNNGGGTATCTAAT-3’) (Dang et al., 2020).

According to Smith and Peay (2014), the fungal ITS region was

amplified by ITS1F (5’CTTGGTCATTTAGAGGAAGTAA-33’), an

ITS1 region target. PCR was conducted on a Mastercycler Gradient

(Eppendorf, Germany) using 25 mL reaction volumes with 12.5 mL 2×
Taq PCRMasterMix (Vazyme Biotech Co., Ltd, China), 3 mL BSA (2

ng/ml), 1 mL forward primer (5 mM), 1 mL reverse primer (5 mM), 2

mL template DNA and 5.5 mL ddH2O. The cycling conditions were

95°C for 5 minutes, followed by 28 cycles of 45s at 95°C, 50s at 55°C,

and 45s at 72°C. We purified the PCR products using AMPure XP

(Beckman Coulter Inc., USA). We employed the NEB Next Ultra II

DNA Library Prep Kit from New England Biolabs, Inc. in the United

States to produce the DNA libraries. We employed three tools: the

Nanodrop 2000, the Agilent 2100 Bioanalyzer, and the ABI

StepOnePlus Real-Time PCR system. The Deep Sequencing was

conducted at Beijing Allwegene Technology Co., Ltd. using the

Illumina Miseq/Novaseq platform (Illumina, Inc., USA). Illumina
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FIGURE 1

Showing the map of the experimental site and intercropping patterns.
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Analysis Pipeline v. 2.6 (Illumina, Inc., USA) was utilized for image

analysis, base calling, and error evaluation (Zhang et al., 2014).

Sequence data from this project are deposited in the NCBI Short

Read Archive (accession no. PRJNA1224044).
2.7 Data processing and bioinformatics
analysis

The raw data for the 16S rRNA and ITS genes were separated

into samples based on the barcode sequence using Pear (v0.9.6)

software (Zhang et al., 2014). The sequences contained ambiguous

bases N were removed and the parts with low-quality scores (≤ 20)

were cut off from the sequences. During splicing, the minimum

overlap setting was 10bp and the p-value was 0.0001. After splicing,

Vsearch (v2.7.1) software was used to remove the 16S sequences

with lengths less than 230 bp and the chimeric sequence by the

Uchime method, according to the Gold Database (Rognes et al.,

2016). In contrast, ITS2 was 230 bp and removed the chimeric

sequence by Uchime method, according to the Unite Database

(Ramıŕez-Guzmán et al., 2004). The qualified sequences were

clustered into taxonomic units (OTUs) using the Vsearch

software’s Uparse algorithm and the similarity threshold was set

at 97% (Gao et al., 2016). The BLAST tool was used to classify all

OTU sequences into different taxonomic groups according to the

Silva138 Database for the 16S rRNA gene and the Unite8.2

Database for the ITS gene (Rognes et al., 2016).

The Chao1 and Shannon indices were used to visualize the

richness and diversity of the microbial communities (Xu et al.,

2020). These indices were computed for each sample using the

amplicon sequence variants (ASVs) database, limited to 20,349

sequences in QIIME2 (v1.8.0). The nonmetric multidimensional

scaling (NMDS) was used to describe variation in fungal and

bacterial community structures (Mang et al., 2021). The Bray-

Curtis was used to visualize the differentiation among samples.

Adonis R function for multivariate analysis was used to compare

microbial communities with a significance level of P < 0.05. The

results were visualized using R (v3.6.0) software.

LEfSe analyzed the potential biomarkers taxa. The linear

discriminant analyses (LDA) log score >3.7 were considered for

interpretation, and Python (v2.7) software was used for LEfSe

(Segata et al., 2011) analysis. Vegan R package and PICRUSt2

were used to compare the similarity of soil bacteria and fungi and

their functional profiles based on the P-values and goodness of fit

(m2). Also, the co-occurrence network construction and analysis

were done by igraph, and Hmisc packages in R.
2.8 Statistical analysis

The influence of cropping patterns on soil chemical properties

was performed by One way ANOVA using graph-pad prism

(version 6.01). The least significant difference (LSD) test was used

to compare the mean between samples at p<0.05 significant level
Frontiers in Plant Science 05
and results were plotted by graph-pad prism. Meanwhile,

Spearman’s correlation analysis of soil microbial composition and

abundances to environmental factors and visualized by R with a

vegan package (version 3.4.2).
3 Results

3.1 Effects of soybean-corn intercropping
on soil chemical properties, element ratios
and coastal salinity content

The study revealed that cropping patterns significantly influenced

the concentration of soil chemical properties. Results showed that soil

TC, TP, TN and SOM concentration was significantly higher in FP

followed by MS > SP> MC at (P< 0.05). Meanwhile, TOC was

marked to be significantly higher in FP, followed by MS>SP>MC (P<

0.05). Also, results indicated that the C: N, C: P, and P: N ratios were

significantly influenced by cropping patterns. The C: N and C: P

ratios showed no significant difference between monoculture MS and

intercropping FP. However, significant differences were observed in

MC, FP, and SP (Figures 2f, g). In MC and SP N: P ratio was

significantly higher followed by MS and FP (Figure 2h). Result

pointed out that the salinity content, EC, and pH were significantly

reduced in intercropping patterns FP, and SP at (P < 0.05). The

salinity content, EC, and pH of rhizospheric soil were reduced

considerably from FP>SP> MC >MS at P<0.05. Compared to all

intercropping patterns, the salinity content, EC, and pH o were

higher, in monoculture MC followed by MS, at P < 0.05 (Figure 3).
3.2 Effects of soybean-corn intercropping
on soil microbial community diversity

The 503,330 raw sequences and an average of 41,944 sequences

per sample were obtained. After quality control, sample

normalization, and filtration, samples were clustered into 6,745

unique sequences, the sample coverage was >93%. The rarefaction

curve of each sample reached a saturation plateau, showing that the

obtained sequencing depth reflected the soil bacteria and fungi

composition (Supplementary Figure 1). Results indicated that the

intercropping patterns affected the Shannon–Wiener index of the

microbial community. The Shannon-Wiener diversity indexes

followed the MC > MS >FP >SP trend. Also, it was noted that the

bacterial Chao1 and Shannon indices were higher in the MS and

MC compared with the FP and SP. However, the diversity indices in

fungi Chao1, are higher in the FP and SP patterns than in

monoculture patterns. Nevertheless, the Shannon index was

higher in the MC and MS than in FP and SP, indicating that the

species richness with evenness reduced the bacterial and fungal

diversity measured by the species richness (Figure 4).

The non-multidimensional scaling (NDMS) of rhizospheric soil

was performed to compare the bacterial and fungal community

diversity of MS, MC, FP, and SP. We also found that samples from
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the same cropping pattern clustered tightly. Results pointed that the

fungal and bacterial community structure was strongly affected by

soybean and corn intercropping patterns. (Supplementary Figure 2).

Adonis R function was used to analyze the soil microbial

compositions under various treatments. The results showed

significant differences between various cropping patterns. The

PERMANOVA results showed that the bacteria and fungi

communities differed significantly (R2 = 0.185, p = 0.001) and (R2

= 183, p=0.001), respectively. Intercropping patterns significantly

influence soil microbial communities (Tables 1, 2).
Frontiers in Plant Science 06
3.3 Effect of soybean-corn intercropping
on the composition of soil bacteria and
fungi community

According to metagenomics sequence analysis of bacteria, 2

kingdoms, 38 phyla, 111 classes, 261 orders, 387 families, 677 genera,

and 540 species were obtained. In fungi, 2 kingdoms, 17 phyla, 43

classes, 98 orders, 184 families, 316 genera, and 477 species were

obtained (Table 3). The bacteria composition at phylum level of the top

21 indicated that Proteobacteria, Actinobacteria, Acidobacteria, and
FIGURE 2

Soil chemical properties showing the effects of intercropping in four cropping patterns (a) TP (b) TN (c) TC (d) SOM (e) TOC (f) C:N (g) C:P and (h)
N:P. MS; monoculture soybean, MC; monoculture corn, FP; First intercropping pattern and SP; second intercropping patterns. The bars represent
the standard errors of mean of intercropping patterns (n = 3). Lowercase letters mean difference between different cropping patterns (P < 0.05).
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Chloroflexi accounted for more than 75% of the relative abundance of

the bacteria phyla in MS and SP treatments while in MC and FP

accounted more than 60%. Results revealed Proteobacteria to be the

most abundant phylum in the entire sample, with a relative abundance

of 30% (MC), 25% (MS), 24.6% (FP), and 24.40% (SP). The second

most abundant phylum observed was Actinobacteria, with relative

abundances of 23%, 17%, 17.4%, and 30% in MC, MS, FP, and SP

samples, respectively. The other dominant phyla were Acidobacteria

(9.05–13.00%) and Chloroflexi (4.19–6.89%). The phyla classified had a

relative abundance of 9.20%, 10.01%, 11.02%, and 6.81% in the (MC),

(MS), (FP), and (SP) plots, respectively (Figure 5a).

In fungi, phyla, including Ascomycota, Mortierellomycota, and

Basidiomycota, accounted for more than 90% of the relative abundance

in 90% in FP, 90% in FP, 85% in MC, 80% in MS and 70% in SP.

Ascomycota accounted for about 60% of the abundant phyla in the MS

plot, followed by SP (49%), MC (42%), and FP (40%). The second

abundant phylum was Mortierellomycota, which accounted for about

(20%) of the MS plot, followed by the MC (35%), FP (45%), and SP

(15%). Meanwhile, Basidiomycota plum was MS (10%), MC (5%), FP

(4%) and SP (20%) consecutively (Figure 5b).
Frontiers in Plant Science 07
3.4 Taxonomical biomarkers as influenced
by soy-corn intercropping

The LEfSe cladogram was generated to identify distinct bacterial

and fungal communities as potential markers of soil

microorganisms in MS, MC, FP, and SP soils. LEfSe analysis

showed significant variations among 102 bacterial species

subjected to the different cropping patterns. We detected 44 taxa

in the MC plot, 16 in the SP, 8 in the FP and 34 in the MS. Overall,

MC had a significantly higher number of enriched taxa than the rest

of the group. Methylomirabilota was enriched in the MS plot, while

Bacteroidota and Patescibacteria exhibited the same pattern in the

MC and SP, respectively. Moreover, Desulfobacterota and

Actinobacteriota were enriched in the FP plot (Figure 6a). The

LEfSe Cladogram demonstrated that fungi detected in the various

cropping systems were divided into13 taxa (Figure 6b). The plot FP

had a higher number of enriched taxa (5), followed by the MC (4).

At the same time, MS and SP were observed to have a low number

of taxa (2). Notably, Mortierellomycota was the key enriched fungi

phylotype in the FP plot.
FIGURE 3

Four cropping patterns (a) pH (b) EC and (c) salinity content. MS; monoculture soybean, MC; monoculture corn, FP; First intercropping pattern and
SP; second intercropping patterns.
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The Linear Discriminant Analysis (LDA) estimated the dominant

bacteria in the MS, MC, FP, and SP soil samples. In the MS sample, the

dominant bacteria were Chloroflexi, Chloroflexales, Roseiflexaceae,

Gaiella, and Gaiellaceae. These bacteria were all significantly

overrepresented (all LDA scores (log10) > 3) in the MS plot. In the
Frontiers in Plant Science 08
MC group, Gammaproteobacteria, Burkholderiales, Bacteroidia,

Bacteroidota, Myxococcota, and Vicinamibacteria were the most

abundant microbiota in the control group (LDA scores (log10) > 3).

In the FP plot, the dominant microbes observed were Desulfobacterota,

Micropepsales, Micropepsaceae, Oxalobacteraceae, and
FIGURE 4

Box plots showing (a) Shannon indices (b) Chao1 based on bacteria and (c) Shannon diversity indices (d) Chao1 richness based fungi communities in
the soil samples. MS; monoculture soybean, MC; monoculture corn, FP; First intercropping pattern and SP; second intercropping patterns.
TABLE 1 Adonis multivariate analysis of estimating the beta-diversity of
bacteria under four cropping patterns.

Cropping
Pattern

Df Sum Of Sqs R2 F Pr(>F)

Group 3 0.556 0.185413 4.21121 <0.001*

Residual 8 0.352 0.0440284

Total 11 0.908
Statistical analysis is expressed by P-value, and P< 0.001 indicates that the statistics are
significant. Df, Degrees of freedom; Sum Of Sqs, sum of Square; R2, R square; F, F-value by
permutation; Pr, >F, P value.
TABLE 2 Adonis multivariate analysis of estimating the beta-diversity of
fungi under four cropping patterns.

Cropping
Pattern

Df Sum Of Sqs R2 F Pr(>F)

Group 3 0.825141 0.275047 4.22622 <0.001*

Residual 8 0.520649 0.0650811

Total 11 1.34579
fron
Statistical analysis is expressed by P-value, and P< 0.001 indicates that the statistics are
significant. Df, Degrees of freedom; Sum Of Sqs, sum of Square; R2, R square; F, F-value by
permutation; Pr, >F, P value.
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Rhodanobacter. We also observed that Acidothermus,

Acidothermaceae, Gaiellales Frankiales, Thermoleophilia, and

Actinobacteria were the dominant communities in the SP group and

monoculture MS and MC (LDA scores (log10) > 3). Among them, the

top 5 distinct genera in each group (P < 0.05, with relative abundance ≥

0.01%) were selected as key discriminants (Supplementary Figure 3A).

The distribution of fungi based on LDA scores is shown in

(Supplementary Figure 3B). In the SP treatment, Aspergillaceae,

Penicillium, Aspergillus_flavus, and Microbotryomycetes were more
Frontiers in Plant Science 09
pronounced (all LDA scores (log10) > 3). Additionally, Mortierellaceae,

Mortierella, Mortierellomycota, and Westerdykella were considerably

overrepresented (all LDA scores (log10) > 3). It was also revealed that

Ascobolus, Ascodesmidaceae, Chlorophyllum, and Agaricaceae

exhibited similar behavior in the MS plot. Moreover,

Mortierella_ambigua and Acrophialophora_levis were significantly

overrepresented (all LDA scores (log10) > 3) in the MS.
3.5 PICRUSt2 function prediction of soil
microbial community function subjected to
the soybean-corn intercropping

To investigate the functional differences in the microbial

communities along the tiankeng slope, the metagenome was

annotated with the metabolic cycles and pathways in the KEGG

database. A total of 19789 KEGG orthologues (KO) were annotated

in the different cropping patterns. We observed that microbial

communities were mainly driven by six functional categories,

including metabolism (47%), human diseases (12%), genetic

information processing (10%), environmental information

processing (9%), cellular processes (9.45%), and organismal
TABLE 3 The number of key taxa of bacteria and fungi community.

Key topology Bacteria Fungi

Kingdom 2 2

Phyla 38 17

Classes 111 43

Orders 261 98

Families 387 184

Genera 677 316

Species 540 477
FIGURE 5

Bar chat (a) bacteria taxa (b); fungi taxa. The color scale indicates the relative abundance of each OTU within the samples.
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systems Biology (3%). The top 5 abundant functional pathways

were carbohydrate metabolism, amino acid metabolism,

metabolism of cofactors and vitamins, metabolism of terpenoids

and polyketides, and xenobiotic biodegradation and metabolism.

Additionally, lipid, nucleotide, energy metabolism, and metabolism

of other amino acids were also observed. Among the top 11

functional pathways, 3 displayed high relative abundance in SP

and 3 exhibited high relative abundance in the FP plot, but no

significant difference was observed between MC and SP (Figure 7).

The KEGG annotations of PICRUSt2 showed that the microbial

communities were also associated with Pentose phosphate pathway,
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Fatty acid biosynthesis, Steroid biosynthesis, Oxidative phosphorylation,

Tetracycline biosynthesis, Cysteine, methionine metabolism, Arginine

and proline metabolism, Clavulanic acid biosynthesis, beta-Alanine

metabolism, Cyanoamino acid metabolism, Starch and sucrose

metabolism, Neomycin, kanamycin and gentamicin biosynthesis,

Lipopolysaccharide biosynthesis, Glycolipid metabolism, Inositol

phosphate metabolism, C5-Branched dibasic acid metabolism, Carbon

fixation pathways in prokaryotes, Carotenoid biosynthesis, and Sulfur

metabolism. In addition, the biomarkers of the sample soils were pentose

pathway, Glycolysis/Gluconeogenesis, Fatty acid biosynthesis, steroid

biosynthesis, and oxidative phosphorylation (Supplementary Figure 4).
FIGURE 6

LEfSe cladograms showing the response of (a) bacteria and (b) fungi genera in rhizosphere soil with different abundance values (LDA score >3; p<0.05).
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3.6 Agroecosystem microbial community
interactions influenced by soybean and
corn

The interaction of key soil microorganisms was established

using co-occurrence network analysis. The network of bacteria

OTUs contained 27 vertices connected by 66 edges, with an

average degree of 4.89, a diameter of 4.06 containing, and 0.57
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clustering coefficient. The co-occurrence network had an average

path length of 2.587. Whereas the network of fungi OTUs contained

27 vertices connected by 63 edges, an average degree of 4.67, a

diameter of 4.82, 0.51 clustering coefficient, and an average path

length of the network of 2.85 (Table 4).

To perform correlation analysis, the top 30 genus levels of

absolute abundance of all samples were selected for analysis. The

corresponding gate was used as a legend, and the calculated results
FIGURE 7

KEGG annotations of PICRUSt2 shows the relative abundance of 34 functional pathways in different cropping patterns.
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were filtered out with P< 0.05 or related value |R|<0.6 (Figures 8a, b).

The interactions between the dominant 11 bacteria were mainly

positive correlations, especially in intercropping systems. We also

observed a strong positive correlation among the dominant groups of

bacteria, namely Chloroflexi, Actinobacteriota, and Acidobacteriota.

Moreover, in fungi communities, the four dominant fungal

communities, Ascomycota, were positively connected with

Basidiomycota, Chytridiomycota, and Mortierellomycota.

3.7 Redundancy analysis revealing
microbial composition and soil chemical
properties relationship

Redundancy analysis was conducted to assess the relationship

between soil microbial composition and chemical properties in the

soil samples. Results showed that cropping patterns MS, MC, and

FP were closely clustered. The intercropping pattern SP was

observed to be distantly clustered. This indicates that soil

bacterial composition was significantly affected by cropping

patterns. The RDA1 and RDA2 explain 76.32%, and 17.32% of

the total variance in the bacterial community, respectively

(Figure 9a). Based on our research, we found out Proteobacteria

positively correlated with salinity concentration, EC and pH in the

MC pattern, which according to observation had a notable

significant concentration of salt, EC and pH. Meanwhile, there

was no correlation between Firmicutes and soil properties in our

study. We also found that Chloroflexi had a high relative abundance

in MS and SP and was positively correlated with soil SOM and TC.

Furthermore, soil chemical properties significantly influenced

Actinobacteria, and it had a higher relative abundance of SP

patterns. Meanwhile, Cyanobacteria was negatively correlated

with most soil chemical properties.

Fungi RDA analysis indicated that RDA1 and RDA2 accounted for

68.97% and 21.03% of the total variance in the fungal community
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(Figure 9B). Moreover, results indicated that Basidiomycota,

Glomeroimycota, Rozel lomycota , Blas iocladiomycota ,

Mucoromycota, and Mortierellomycota in fungi phyla were

significantly correlated with soil chemical properties. Ascomycota

was negatively correlated with most soil chemical factors except EC,

which was more abundant in MS and SP. This explains that soil pH,

Salt content, EC, TOC, TN, TP, TC and SOM were the significant

drivers of the community composition shift in the four

intercropping patterns.

4 Discussion

4.1 Soybean-corn intercropping enhancing
the changes in soil chemical properties,
elemental ratios and salt concentration

The intercropping of soybean and corn is observed to be among

the best practical approach of improving the soil properties (Kamara

et al., 2019). In our study, it was observed that soil TN, TP, TC and

SOM were significantly lower in monoculture patterns MC and MS

compared to intercropping patterns FP and SP at (p<0.05)

(Figures 2a–d). These findings are in agreement with studies

reported that intercropping of soybean and corn can improve soil

SOM, TC, TN, and TP (Tang et al., 2021; Duchene et al., 2020). Soil

chemical properties are essential to soil nutrients crucial to soil

circulation of nutrients in the agroecosystem (Sun et al., 2009). In

addition, our study found that soybean and corn intercropping

influenced the key ecosystems C, N, and P elements, hence

influencing C: N, C: P, and N: P chemical element ratios (Figure 2)

which was also reported by (Liu et al., 2016; Ma et al., 2023). The ratio

of soil C: N is a primary component of soil organic matter and the

higher values of these ratios indicate that soil is higher in microbial

activities and of good quality (Chen and Chen, 2021).

Furthermore, soil pH was significantly lower in the FP and SP

plots compared to monoculture MC and MS. This result suggested

that soil intercropping of soybean and corn effectively regulates soil

pH in agroecosystems (Chen et al., 2019). The change in soil pH

might be caused by organic acids secretions in intercropping groups

(Li et al., 2022). The salinity content was significantly reduced in FP

and SP compared to monoculture patterns, indicating that the

combination of plants in intercropping patterns significantly

lowered salt concentration compared to monoculture patterns

(Ahmad, 2011).
4.2 Changes in soil community
composition and diversity in
agroecosystem

Our results indicated that the diversity indices Chao 1 and

Shannon of bacteria were observed to be low in the intercropping

pattern. However, the diversity indices of the fungi community were

higher in the FP and SP plots but lower in the MS and MC

(Figures 4a, b). Corresponding to our results, the intercropping of
TABLE 4 The table showing microbial co-occurrence networks
topological properties.

Network properties Bacteria Fungi

Number. edges 66 63

Number. nodes 27 27

Average. degree 4.89 4.67

Number. vertices 27 27

Number. clusters 1 1

Average. Path length 2.59 2.85

Clustering. coefficient 0.57 0.51

Diameter 4.06 4.82

Centralization. betweenness 0.21 0.17

Centralization. degree 0.2 0.17

Edge. connectivity 1 1

Connectance 0.19 0.18
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soybean-corn influences the diversity structure of soil fungi

(Sugiyama, 2019). In intercropping, soybeans host rhizospheric

microbes in their root nodules, which are essential in soil

biological processes such as nitrogen fixation, and phosphorus

solubilization hence affecting the diversity of soil microbes in the

soil (Jacoby et al., 2017). Consistent with previous studies microbial

community diversity is affected by the plant type and planting

patterns that influence the below-ground plant interactions (Zhou

et al., 2011). Plant type and cropping systems alter the microbial

community structure and diversity by releasing root secretions,
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which are important carbon sources in rebuilding soil microbes

(Wu and Yu, 2019).

The bacterial and fungi community composition structure

differed significantly between cropping patterns. Proteobacteria

was reported to be the most abundant phylum in the entire

sample because of their nature and habitats high abundance was

reported in MC, followed by MS, corresponding to the findings

reported by (Yang et al., 2020). Actinobacteria was the second most

abundant bacteria found to be high in the MS and SP but low in the

MC and FP treatments (Figure 5a). According to the previous
FIGURE 8

Network interplay diagrams of dominant bacterial (a) and fungal (b) community; Co-occurrence network, the size of the node represents the size of
the abundance, and the thickness of the line represents the size of the correlation. The color of the dots represents the door to which they belong,
and the red line shows a positive correlation and green shows a negative correlation.
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results, it has been reported to be an ecosystem remediation agent,

indicating the possibility of high remediation processes in the MS

and SP patterns (Mawang et al., 2021). In fungi, Ascomycota had a

significantly high relative abundance in MS (60%) (Figure 5b). The

abundance of Ascomycota increased in the MS treatment is due to

nitrogen concentration present due to nitrogen-fixing ability and

rhizodeposition, which is important for fungi growth in rhizosphere

soil (Kalu et al., 2021). In this study, soybean-corn intercropping

was observed to have a significant effect on the abundance and

distribution of many soil microbes primarily due to the ability of

soybean to regulate microbial communities by modifying soil

chemistry, which is an important determinant of soil microbial

properties (Tang et al., 2021).
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4.3 Changes of soil community biomarkers
and predicted functions due to soybean-
corn intercropping

Studying soil microbial communities helps us to predict the

functions of soil important biomarkers and their influence on

agroecosystem’s function (Hu et al., 2018). This study revealed

substantial variations among 102 bacterial and 13 fungi taxa in the

LEfSe of the four cropping patterns. The soil microbes were more

sensitive to soybean-corn intercropping, and the quantity of enriched

microbial taxa became less pronounced after the MC>MS>SP>FP in

bacteria and FP>MC> MS>SP in fungi. This indicates that cropping

patterns significantly influenced soil microbial variations (Duchene
FIGURE 9

Redundancy analysis (RDA) illustrates the correlation between soil chemical parameters and (c) bacterial and (d) community distributions. Dots show
each sample, while arrows reflect soil chemical characteristics. The length of an arrow represents the degree of correlation between Chemical
properties and bacteria community composition.
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et al., 2020). In bacteria, Methylomirabilota, Bacteroidota, and

Patescibacteria enriched considerably in the MS, MC and SP plots,

respectively. Moreover, Desulfobacterota and Actinobacteriota

exhibited a similar phenomenon in the FP plot (Figure 6a). In

fungi, Mortierellomycota was the most enriched fungi in the FP

treatment. This shows that soil microbes are highly sensitive to

intercropping patterns (Sun et al., 2009). The soil microbial

biomarkers are affected by chemical compounds such as flavonoids

and energy released by plant roots of soybean and corn (Bais et al.,

2006; Hu et al., 2018). Microbial analysis in this study indicated that

the microorganisms are involved in pollutant degradation, nitrogen

fixation, and carbon fixation. Studies have documented that the

soybean and corn intercropping patterns significantly influence the

predicted functions of soil microbes (Li et al., 2022; Zhang

et al., 2023).
4.4 Correlation of microbial community
and soil chemical properties under
different intercropping patterns

In studying the influence of soil properties on microbial

community composition, it is important to understand the

interactions of microbial communities in a particular environment.

The co-occurrence networks provide insight into understanding the

interaction, variations and functions of soil microbes in

agroecosystem (Wu et al., 2023). In this study, the bacteria network

had more edges and diversity than the fungal network (Table 3).

Study indicated that the interaction of soil microbial communities

contributes to the formation of a complex network of

microorganisms in the soil which is important for soil biological

processes (Dong et al., 2022). This study discloses that the formation

of bacteria and fungi complexes is associated with the nature of the

environment in which microbes are found (Schmidt and Waldron,

2015) and suggests that most bacteria and fungi had similar functions

and were mutually beneficial to each other (Figure 9).

Studies indicated that the interaction of soil chemical properties

and soil microbes is important in nutrients, energy transfer at

different trophic levels and health of coastal agroecosystem

(Ambrosini et al., 2016). RDA analysis indicated that the dominant

bacterial and fungal communities were significantly correlated with

salinity content, EC, pH, TP, TN, TC, SOM, TOC and soil chemical

element ratios factors which influenced unique bacterial and fungal

communities in coastal agroecosystems (Ladau and Eloe-fadrosh,

2019). Supporting our study, the salinity content influenced the

composition of soil microbial communities (Xu et al., 2020).

Based on our RDA results of bacteria and soil chemical analysis

presented in (Figure 9A) we found out Proteobacteria was correlated

with salt content, EC and pH. Also, no significant correlation between

Firmicutes and soil properties was observed, meanwhile Firmicutes

are known to be responsible for nitrogen fixation and growth

promotion (Lin et al., 2019) and are widely found in saline soil (Xu

et al., 2020). We also found that Chloroflexi had high relative

abundance in MS and SP and was positively correlated with soil

SOM, and TC. Corresponding to our results Chloroflexi is vital in the
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conversion of C to soil organic carbon, nitrate, nitrite, and ferric iron

(Speirs et al., 2019; Spieck et al., 2020).

Furthermore, Actinobacteria was significantly influenced by soil

chemical properties and had higher relative abundance in SP

patterns. According to the previous study, Actinobacteria is one

of the common phyla in ecosystems and is found in soil with high

pH (Polti et al., 2014). They are ecologically important due to their

ability to produce secondary metabolites important for the

circulation of nutrients and degradation of soil contaminants

such as hydrocarbons, pesticides, and heavy metals (Mawang

et al., 2021).

RDA results suggested that Basidiomycota, Ascomycota and

Mortierellomycota among fungal phyla which were substantially

linked with soil nutrients (Figure 9b). Basidiomycota was positively

correlated with all chemical properties except EC and had high

relative abundance in SP. Ascomycota correlated with EC and

observed to have a high relative abundance in SP and MS.

Basidiomycota and Ascomycota are important fungi in ecosystem

decomposition activities (Praeg et al., 2019; Delgado et al., 2021). In

this study, Mortierellomycota was positively correlated with all

chemical properties except EC and the relative abundances were

high in MC and FP. Previous research suggested Mortierellomycota

can transform soil phosphorus into usable form which can be taken

by plants hence productivity of the soil (Wu et al., 2019).
5 Conclusion

Our results revealed the soybean and corn intercropping

patterns have significant effects on the diversity, composition and

functional characteristics of the soil microbial communities. The

soybean and corn intercropping not only affected microbial

community interactions in the coastal saline agroecosystem but

also affected the soil’s chemical properties and their proportions.

Our study provides a new insight into the significance of soybean

and corn intercropping in improving microbial interactions and

their functions in coastal agroecosystems. Further research using

different soybean and corn varieties and patterns is required to

validate these findings.
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