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There is a growing consumer interest in sources of dietary protein that are plant-

based. Pulse crops, such as lentils, beans, chickpeas, and peas, are gaining

popularity due to their environmental sustainability, nutrient density, and

functional attributes. The protein content and quality of pulses vary across

different pulse classes and processing methods. The biological properties of the

protein and the physiologically active peptides make pulse crops attractive as

potentially functional or health-promoting foods. This review highlights the

nutritional quality of pulse proteins as determined by the Protein Efficiency Ratio

and Protein Digestibility Corrected Amino Acid Score as well as bioactive properties

of specific bioactive peptides related to amelioration of hypertension and diabetes.

Additionally, the use of proteomics platforms, such as mass spectrometry, in

combination with bioinformatics tools, enables the identification and

characterization of bioactive peptides in pulse crops. These technologies facilitate

the development of pulse-derived products with enhanced nutritional values.

Overall, the high nutritional quality of pulse-based proteins supports the benefits

of pulse inclusion in the diet, which can also exert beneficial bioactivities resulting in

improving outcomes in non-communicable diseases.
KEYWORDS

pulse, protein quality, bioactive peptide, protein efficiency ratio, protein digestibility
corrected amino acid score, proteomics
Introduction

The dietary consumption patterns of humans are recognized as an important issue in

overall health status, and also as a strategy to prevent and/or attenuate the development of

several diseases (Muzquiz et al., 2012). The global management of agricultural production,

as well as the adoption of alternative and sustainable food sources for the increasing world

population, will require high-yielding crops with improved nutritional quality that can be

productive under increasingly variable climate conditions. Recently, the nutritional content

of foods has re-emerged as a key element of improving the quality of food production and

diets due to increased consumer knowledge and nutrient desire. Worldwide, there is a

growing shift in diet to nutritionally dense and functional foods to address health concerns
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(Singh and Basu, 2012). In 2018, the global market size of functional

foods was about 150 billion US dollars, with this number expected

to rapidly climb up to about 250 billion US dollars by 2024

(Rattanachaikunsopon and Phumkhachorn, 2018). The

anticipated expansion of the market will be driven by growing

effectiveness of functional foods and their bioactive components

that guarantee the dietary nutritional needs.

In addition to the nutritional value of a food, or a crop, it is

important to consider the bioactive components that are inherently

present. Dietary proteins are known to carry a wide range of

nutritional, functional, and biological properties. Nutritionally,

proteins are a source of energy and amino acids essential for

maintenance of growth, homeostasis, and combatting disease,

among other metabolic interactions. Functionally, proteins

contribute to the physicochemical and sensory properties of

foods. Many dietary proteins also possess specific biological

properties which make these components potential ingredients

for the development of functional foods. These properties are

attributed to physiologically active peptides encrypted in dietary

protein sequences. These peptides are inactive, or have reduced

activity, while within the native protein sequence and can be

released during gastrointestinal digestion or via enzymatic

exposure during food processing and germination (Korhonen and

Pihlanto, 2006; Daliri et al., 2017). The size of these biologically

functional peptides generally ranges between 2 and 20 amino acid

residues and numerous important regulatory functions have been

associated with these peptide fragments, including antihypertensive,

antimicrobial, immunomodulatory, opioid, antioxidant, and

mineral binding activities (Rutherfurd-Markwick, 2012; Soory,

2012; Sánchez and Vázquez, 2017). Currently, bioactive peptides

(BPs) or protein hydrolysates can be commercialized as

nutraceutical products or functional ingredients (López-Barrios

et al., 2014).

Although many foods exhibit therapeutic potential, pulse-based

foods are currently being valued worldwide due to their

environmental sustainability, nutrient density, and functional

attributes. Pulses such as lentils, common beans, chickpeas, and

dry peas, are widely recognized for their potential to simultaneously

promote human and environmental health (Foyer et al., 2016;

Bessada et al., 2019). Recently there has been a growing interest

in pulses and new pulse ingredients due to health promoting

benefits (Aguilera et al., 2011), particularly the prevention and

management of highly prevalent chronic inflammation and

oxidative stress-related noncommunicable diseases (Guardado

Félix and Gutierrez Uribe, 2019). In addition to the high protein

content, a significant part of the potential health benefits and

disease-preventing properties attributed to pulses are derived

from the presence of ‘non-nutrient’ compounds that include

dietary fiber, phytochemicals and antioxidants (Xu and Chang,

2007; Campos-Vega et al., 2010; Awika and Duodu, 2017; Giusti

et al., 2017). Challenges therefore exist throughout the food

development process, from the selection of best pulse type/

cultivar (Carbas et al., 2020) to the best derived ingredients

(Foschia et al., 2017). Several unique peptides generated from

pulse protein isolates have been identified and associated with

various functional attributes (Cosson et al., 2022; Asledottir et al.,
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2023). Given these points it is important to consider not only the

nutritional value of a protein source such as pulses, but also the

bioactivities of specific amino acids and peptides commonly found

in pulses as well as their hydrolysates.
Pulse protein content and quality

Pulse crops have long been known to be an excellent source of

dietary protein compared to most vegetable-based foods (Martıń-

Cabrejas, 2019). As protein is a vital nutrient in foods and

ingredients, it is important to consider two aspects of its nature,

total protein content and its nutritional quality. Plant-based protein

sources typically have lower protein content when compared to

animal sources; however there exists a considerable variation across

different crops. The protein content of cereals falls in the range of 8-

15% depending on the species, with wheat being reported as

containing 13% protein (Mathai et al., 2017), while oilseeds such

as soy can be as high as 46% (Nosworthy et al., 2023). Pulse protein

content falls between cereals and soy, with a range of 20-30%

depending on pulse class and processing method (Hall et al., 2017;

Nosworthy et al., 2018a, 2020). Much like most plant-based foods,

processing pulses is necessary due to the presence of antinutritional

factors such as protease inhibitors and tannins which impact the

digestibility/bioavailability of nutrients present in these foods.

Processing also enhances the palatability of these foods leading to

a more pleasant experience during consumption.

While pulses have a relatively high protein content compared to

other plant sources, the nutritional quality must also be considered.

There are multiple methods assessing protein quality, with many of

them involved in regulating content claims in different global

jurisdictions. These methods can be divided into two groups,

those that require only chemical assessment of the food/

ingredient and those that necessitate animal experimentation. For

foods in Europe the guidelines stipulate that a “source” of protein

must provide 12% of its energy from protein and 20% for a “high

source” (available online: https://eur-lex.europa.eu/legal-content/

en/ALL/?uri=CELEX%3A32006R1924, European Commission,

2006). Similarly, Oceania bases their guidelines on the protein

content per serving with 5 g allowing a content claim and 10 g

providing a “good source” of protein available online: (https://

www.legislation.gov.au/F2015L00394/2017-09-07/text, Food

Standards Australia New Zealand 2015). Conversely, the Protein

Efficiency Ratio (PER) and Protein Digestibility Corrected Amino

Acid Score (PDCAAS), required in Canada and the United States

respectively, necessitate animal experimentation.

The methods for determining PER and PDCAAS are well

described elsewhere (Marinangeli and House, 2017). Briefly, PER

is a growth measurement where the efficiency by which a rat can

convert dietary protein into growth indicating the quality of dietary

protein (Health Canda, 1981; available online: http://www.hc-

sc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/res-rech/fo-1-eng.pdf;

accessed on 20 January 2024). This PER is subsequently compared

to a casein control group to generate an adjusted PER score, which

is then used to generate a Protein Rating where a value of ≥20 is a

“good source” of protein and ≥40 is an “excellent source”. PDCAAS
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relies on the comparison between the amino acid composition of a

food and human requirements which is then corrected by a

measurement of protein digestibility determined in a rat (FAO/

WHO, 1991). The PDCAAS score is then used to correct the protein

content in a food serving where if the resulting corrected protein

score is ≥ 5 g per serving the food is a “good source”, ≥ 10 g is an

“excellent source”. Notably a recent change in Health Canada policy

has allowed for the use of a PDCAAS score and a conversion factor

of 2.5 to generate a PER value (Health Canada, 2023; available

online: https://www.canada.ca/en/health-canada/services/food-

nutrition/legislation-guidelines/policies/measuring-protein-

quality-foods.html; accessed on 24 January 2024). There is a more

recent method for determination of protein quality, the Digestible

Indispensable Amino Acid Score (DIAAS), which is a modification

of PDCAAS with updated amino acid reference patterns and

consideration of individual amino acids as the nutrient rather

than protein, it has yet to be adopted for regulatory purposes by

any jurisdiction (FAO/WHO, 2013). Relative essential and non-

essential amino acids presented in Figures 1A, B and the examples

of pulse protein content and quality under different processing

conditions are presented in Figures 1C-E. The essential amino acid

content of the various pulse classes and processing methods
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remains consistent, with variation being more present among the

non-essential amino acids. While still under review (Health Canada,

2023), use of alternative conversion factors between PER and

PDCAAS may be advisable depending on the protein source and

processing method.
Bioactivity of amino acids

In addition to the direct nutritional value of pulse protein, it has

been well established that dietary amino acids can influence various

aspects of metabolism including muscle growth, immune response,

and prevention of non-communicable diseases such as

hypertension and cardiovascular disease (Pedroche et al., 2002;

Hong et al., 2008; Garcia-Mora et al., 2015). Many studies have

investigated the biological activities of individual amino acids/

peptides and the topic has been discussed in multiple reviews

(Wu, 2009, 2010; Zaky et al., 2022). Individual amino acids have

been demonstrated to have a wide range of functions including

regulation of cell division and gene expression, nucleotide synthesis,

regulation of protein turnover, and intracellular signaling among

other activities (Wu, 2009). These activities are related to the
FIGURE 1

(A) Total essential and (B) non-essential amino acids in thermally processed pulses. EAA: Essential amino acids; NEAA: Non-essential amino acids.
Data on processed peas were adapted from Nosworthy et al. (2017), lentils from Nosworthy et al. (2018b), chickpea from Nosworthy et al. (2020),
and beans from Nosworthy et al. (2018a). (C) Protein content, (D) Protein Efficiency Ratio (PER), and (E) Protein Digestibility Corrected Amino Acid
Score (PDCAAS) of thermally treated pulses. (F) Impact of pulse consumption angiotensin converting enzyme and Dipeptidyl-peptidase IV activity
and downstream implications in human health. (G) Workflow for the identification and evaluation bioactive peptides derived from pulse protein.
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individual amino acid, but during metabolic and enzymatic

activities these amino acids can be converted into other

compounds, such as creatine (tripeptide of arginine, glycine and

methionine), glutathione (cystine, glutamine, and glycine), and

taurine (formed from cystine), which are all antioxidants, as well

as exhibiting other biological effects. This highlights that it is not

simply the essential amino acids that need to be considered when

investigating the bioactivity of different proteins and their

constituent parts. Of particular interest in pulses are the amino

acids arginine and leucine due to their high amounts in pulses and

multifaceted bioactive effects.

Pulses are known to have a high arginine content, in particular

chickpeas and fava beans (Boye et al., 2010; Bessada et al., 2019).

Beyond protein synthesis, arginine is involved in many

physiological processes including the synthesis of creatine,

polyamines, and nitric oxide (NO) which is a known vasodilator

(Tuteja et al., 2004; Maeda et al., 2006; Wu et al., 2021). Multiple

studies have demonstrated that consumption of pulses lowers the

incidence of cardiovascular disease and hypertension which may be

tied to the higher arginine content and its function in vasodilation

and cellular signaling, or the generation of bioactive peptides

targeting angiotensin converting enzyme (Roy et al., 2010; Padhi

and Ramdath, 2017). Leucine is a member of the branch-chain

amino acids which also includes isoleucine and valine, and has been

implicated in stimulating protein synthesis and muscle anabolism,

as well as multiple immunomodulatory effects and attenuation of

glucose response (Bonvini et al., 2018; Kamei et al., 2020). This is of

particular importance in elderly individuals where a higher leucine

content of a protein source has been demonstrated to enhance

myofibrillar protein synthesis (Devries et al., 2018). Importantly,

while content claims can be made for protein content as described

previously, no regulatory body accepts health claims based on any

specific amino acids (EFSA Panel on Dietetic Products, 2010;

Krasniqi et al., 2016; Roberts, 2016). While this highlights the

bioactivities of two amino acids with high concentration in

pulses, it is the biological activity of peptides derived from pulse

protein that has been the focus of significant amounts of research in

recent years.
Pulse protein and derived
bioactive peptides

Recent studies suggest that protein hydrolysates and bioactive

peptides derived from pulses are among the most promising

bioactive proteins (Guardado Félix and Gutierrez Uribe, 2019)

thus positioning these legumes as excellent sources for the

development of new protein-derived products. Bioactive peptides

are small amino acid sequences derived from food proteins through

in vivo or in vitro enzymatic proteolysis of the inactive precursor

proteins (Udenigwe and Aluko, 2012) that can hold physiological

properties (López-Barrios et al., 2014). Within the native protein,

the amino acid sequence conforming the bioactive peptide is either

inactive or exhibits diminished activity. However, once the peptide

is released it can display diverse biological activities (Udenigwe and
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Aluko, 2012). Accumulating evidence from in vitro and in vivo

studies indicate that pulse-derived bioactive peptides can be active

toward several chronic diseases like autoimmune disorders,

cardiovascular disease and diabetes, and have been used as

opiates, immunomodulators, antimicrobials, antioxidants,

antihypertensives and antithrombotic agents (Duranti, 2006).

Many bioactive peptides have common structural properties,

including a relatively short residue length, hydrophobic amino

acid residues, and the presence of aromatic side chains, mainly

with arginine, lysine or proline in the C-terminal position

(Marambe and Wanasundara, 2012; López-Barrios et al., 2014).

The biological and pharmacological properties of pulse protein-

derived bioactive peptides have been recently reviewed (Tak et al.,

2021; Fan et al., 2022). Of particular interest are the peptides

demonstrating either ameliorative or protective effects on non-

communicable diseases such as diabetes and cardiovascular

disease (Figure 1F). Selected peptide sequences demonstrated to

have inhibitory activities on angiotensin converting enzyme and

dipeptidyl peptidase IV are presented in Table 1.
TABLE 1 Bioactive peptides from pule protein sources and
their function.

Bioactive
function

Protein
source

Peptide sequence Reference

ACE
Inhibition

Common
Beans

Peas

Lentils

Chickpeas

Faba bean

PVDDPQIH, KKSSG, LSFNT,
KMARPV, KYMKS, SGSYS,
CPGNK, INQGSLLPH,
FVVAEQAGNEEQFE

GGSGNY, DLKLP, GSSDNR,
MRDLK, HNTPSR

KLRT, TLHGMV, VNRLM

MD, MFDL, MDLA, MDFLI,
MDL

EEEDEDEPR, KEEEDEDEPR,
VIPTEPPH, VIPTEPPHA,
VVIPTEPPH, VVIPTEPPHA,
NYDEGSEPR,
PVNRPGEPQ,
LDNINALEPDH

Rui et al.
(2013);
Jakubczyk
et al. (2017);
Mojica et al.
(2017);

Jakubczyk and
Baraniak
(2014);
Jakubczyk and
Baraniak
(2013);
Pedroche et al.
(2002); Yust
et al. (2012);

Martineau-
Côté
et al. (2022)

DPP-
IV Inhibition

Common
Beans

Peas

Chickpeas

Faba bean

KKSSG, LSFNT, KMARPV,
KYMKS, SGSYS, CPGNK

EPF, SPGDVF, IPYWTY

AIPPGIPYW, PGIPYW

VIPTEPPH, VIPTEPPHA,
VVIPTEPPH, VVIPTEPPHA,
NYDEGSEPR,
PVNRPGEPQ,
LDNINALEPDH

Mojica et al.
(2017);

Zhang et al.
(2022, 2023);

Zan et al.
(2023);
Martineau-
Côté
et al. (2022)
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Anti-hypertensive peptides
(ACE inhibitors)

Hypertension, a known risk factor for cardiovascular disease,

can be treated with the administration of drugs inhibiting an

enzyme known as Angiotensin I-Converting Enzyme (ACE). This

enzyme is responsible for the hydrolysis of angiotensin I to

angiotensin II, which is a potent vasoconstrictor inducing

elevated blood pressure. As hypertension can also be managed by

alterations in diet, as well as exercise regimes, there is an interest in

identifying compounds present in foods that can modify metabolic

enzymes such as ACE. In the case of pulses there are multiple

peptides that have been identified to inhibit ACE activity, thereby

potentially leading to a reduction in blood pressure. A study

investigating chickpea and pea hydrolysates demonstrated that

desi and kabuli chickpeas, as well as yellow peas, are capable of

inhibiting ACE activity (Barbana and Boye, 2010). Interestingly the

enzymes used for hydrolysis impacted the IC50 for the protein

hydrolysates with a range of 229-316 µg/mL for kabuli chickpea,

140-228 µg/mL for desi chickpea, and 128-412 µg/mL for yellow

pea. For both types of chickpeas the use of a gastrointestinal

digestion resulted in the lowest IC50 while papain digestion

generated the lowest value for yellow peas, highlighting the

importance of identifying the appropriate conditions depending

on initial ingredient. A recent investigation into faba beans

synthesized peptides based on those identified after in vitro

gastrointestinal digestion and determined the differences in ACE

inhibition based on peptide sequence (Martineau-Côté et al., 2024).

While multiple peptides did not have any impact on ACE activity,

four sequences were identified to have IC50 values between 43-118

µg/mL. Common among these peptides was the sequence

VIPTEPPH, with the peptide having the lowest IC50 value of 43

µg/mL being VVIPTEPPH. In combination, this supports the idea

that proper selection of initial ingredient combined with processing

methods to generate a peptide with known activity can impact the

development of hypertension.
Diabetic prevention peptides (DPP-IV)

Diabetes is a well-known non-communicable metabolic disorder

characterized by inadequate production of insulin or development of

insulin resistance thereby leading to reduced control over glucose

homeostasis. While there are multiple methods of treatment available

for individuals with diabetes, ranging from a modification of diet to

oral and injectable drugs, one such treatment is inhibition of the

enzyme dipeptidyl peptidase-IV, or DPP-IV (Silveira et al., 2013).

This enzyme is a serine protease responsible for the degradation of

glucagon-like peptide-1, as well as glucose-dependent insulinotropic

polypeptide. As these two incretins are responsible for stimulating

insulin release and decreased glucagon release, DDP-IV activity

results in an increased blood glucose concentration, a concern for

diabetics. The ‘-liptin’ group of drugs such as sitagliptin are an

approved drug for diabetic treatment that target this enzyme.
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Similar to that of ACE, there has been great interest in identifying

peptides present in foods such as pulses that can also inhibit the

activity of DPP-IV. One study investigated the generation of bioactive

peptides targeting DPP-IV in post-simulated gastrointestinal

digestion from pulses via milling, thermal treatments, fermentation,

and germination (Di Stefano et al., 2019). The combination of heat

treatment and fermentation increased DPP-IV inhibition in

chickpeas, while fermenting ground green lentils and yellow peas

induced increase of DPP-IV inhibition compared to other treatments

investigated. Another study investigated the use of different digestive

enzymes on the generation of DPP-IV inhibitory peptides from

chickpea protein (Zan et al., 2023). In this case, application of

Neutrase or Papain resulted in the greatest inhibition of DPP-IV at

approximately 47% and 35% inhibition respectively. A time-course

experiment determined that a digestion time of 60 minutes with

Neutrase generated the highest inhibitory activity (52.50 ± 0.88%).

During this experiment the IC50 values for the identified inhibitory

peptides ranged from 12.43 µM, IAIPPGIPYW, to 110.50 µM, LAFP,

with the positive control peptide exhibiting the greatest inhibition,

diprotin, reaching 6.81 µM as a point of comparison. As there are a

wide range of protein fragments and peptides generated by

processing and digestion, it is crucial to employ methods for

identification of these peptides and characterization of cultivars

that can generate greater concentrations of bioactive peptides.
Proteomics platforms for analysis of
pulse protein-derived
bioactive peptides

The scientific advances in ‘OMICS’ technologies combined with

molecular biology approaches in recent years have impacted crop

breeding and food science significantly (Varshney et al., 2009; Kato

et al., 2011). In particular, the application of these technologies to

identify and select crop varieties that offer wider functional scope,

enhance the nutritional profile of seed/grain and possess bioactive

potential, is of significant interest to farmers, consumers, and

product developers. OMICS technologies are driving a knowledge

revolution toward a comprehensive understanding of functional

attributes of foods, particularly the variability of bioactive molecules

composition in food production and processing to improve

nutritional value and health. Ahmed et al. (2022) emphasized

three key advances in omics technology enabling unprecedented

food composition analysis and application: (i) high-throughput

platforms for analysis of a broad range of food molecules; (ii)

high-resolution biochemical libraries; and (iii) data integration and

machine learning.

Generally, analysis of plant protein-derived peptides is based on

high-throughput proteomics platform to comprehensively profile

untargeted and targeted peptides using mass spectrometry (MS)

techniques, nuclear magnetic resonance, and bioinformatics tools.

MS has arguably become the core technology for the qualitative and

quantitative analysis of food proteins and peptides, and providing

understanding of their nature, structure, functional properties and
frontiersin.org
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impact on human health. Interfacing of high-resolution MS for food

protein analysis with robust standard reference chemical libraries

has enabled the identification of peptides based on their mass

spectra with a high degree of accuracy and confidence. Some of

the techniques used for bioactive peptides purification and

identification have been recently reviewed by Du and Li (2022).

The emergence of open-source protein databases (reviewed by

Naeem et al., 2022) offers comprehensive spectral libraries that

increase the efficiency of identifying bioactive molecules including

molecular weight and structure.

To exploit the functional value of peptides, sequential

purification and identification of various peptides are routinely

used (Singh et al., 2023). This review is intended to highlight some

of the MS-based strategy applications in pulse crops research

defining structure/functional relation of protein and derived

peptides. Commonly, ultrafiltration or in combination with

chromatographic techniques allows protein hydrolysates to be

separated into different fractions with specific molecular weights

(MWs) for the determination of their biological activities

(Figure 1G). In a study by Li and Aluko (2010), purified peptide

fractions from pea protein isolate were analyzed by ultra-

performance liquid chromatography-tandem mass spectrometry

(UPLC-MS/MS) to identify and obtain amino acid sequence of

the most abundant peptide in each peak. The major peptides

identified showed strong inhibitory properties toward ACE and

renin that may be potentially useful as ingredients to formulate

multifunctional food products and nutraceuticals. In a recent study

to establish a peptide profile and identify specific pea protein-

derived peptides that suppressed glucose production in mouse liver

cell-line AML-12 cells, Liao et al. (2022) analyzed pea protein

hydrolysate using a nano-UPLC coupled with a Q Exactive HFX

Orbitrap instrument. The MS spectra of most of the peptides within

the range of molecular weight of 1000 to 1499 kDa were processed

using the Proteome Discoverer (PD) software (Version 2.4.0.305,

Thermo Fisher Scientific) and the built-in Sequest HT search

engine. The sequences were searched for in the UniProt FASTA

databases (uniprot-Pisum sativum_3888.fasta). Consequently, this

study revealed a new function of pea protein hydrolysate in its

ability to exhibit anti-diabetic activity. A study by Karkouch et al.

(2017) aimed to identify peptides with antioxidant, antityrosinase

and antibiofilm activities released from Vicia faba (dry broad bean)

seed proteins hydrolysate. The purified fraction was analyzed by

liquid chromatography mass spectrometry (LC–MS/MS) coupled

with an LTQ-Orbitrap hybrid mass spectrometer equipped with a

nano-ESI source and annotation of peptide sequence based on MS/

MS spectra was performed using the Peaks software (BSI, Canada).

As such, seven peptides were identified and further demonstrated

their potential as a natural source of bioactive peptides for

applications in the cosmetic and pharmaceutical industries. A

recent review by Hou et al. (2023) provided a comprehensive

review of MS-based technologies for identification of peptides

purified from mung bean, their biological activities, and their

potential applications. Although there are some variations in MS

equipment, applications of these instruments, the integration of

large spectral datasets with bioinformatics has enabled and
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advanced quantitative determination and identification of pulse

protein-derived peptides (Figure 1G). The review by Du and Li

(2022) also highlights the available web-based tools to evaluate the

relationship between the function and structure of bioactive

peptides. Models based on quantitative structure/activity

relationships (QSAR) and quantitative structure/property

relationships (QSPR) are employed to evaluate specific bioactive

peptide activities quantitatively (by QSAR) or qualitatively (by

QSPR), using unknown activity data and structural information.

In particular, PeptideRanker is widely used QSPR to predict the

activity of different peptides by integrating peptides sequence

datasets and structural parameters. The utilization of

bioinformatics tools is essential when employing various MS-

based technologies as it offers opportunities for the pulse industry

to deploy products with enhanced nutritional values.
Conclusion

Pulses are a staple food in many regions of the world with a rising

consumer interest in theWestern world due to their nutritional density

and environmental sustainability. Although the protein content and

overall nutritional quality of pulses is high compared to other crops

such as cereals, pulse class selection and method of processing can

significantly impact the overall quality. This is particularly notable in

the case of baked beans as they did not stimulate growth at a

comparable rate to other thermal processing methods. In addition to

their high nutritional quality, pulse protein also possesses numerous

bioactive properties. Of particular interest is their inhibitory properties

on ACE and DPPIV leading to a reduction in the severity of

hypertension and diabetes. Identification and characterization of

these bioactive peptides using modern technologies and tools such as

proteomics, bioinformatics, peptide libraries and in vitro assays, will

lead to the development of functional food ingredients and

nutraceutical products with enhanced health benefits.
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