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Introduction: The increasing intensity and frequency of droughts seriously

threaten the structure and function of terrestrial ecosystems. In order to

ensure the normal play of ecosystem service function under future stress, the

temporal and spatial characteristics of ecosystem productivity response to

drought need to be explored.

Methods: The net primary production (NPP) of vegetation in the Yinshanbeilu was

calculated using the Carnegie-Ames-Stanford Approach (CASA) model, and

subsequent study concentrated on the NPP’s geographical and temporal variable

characteristics. By the calculation of the standard precipitation evapotranspiration

index (SPEI), the study also sought to examine the relationship between drought and

NPP at various time scales. Researchers also built drought loss rate curves based on

various fertility stages using the vulnerability curve construction method.

Results and discussion: Findings revealed that the SPEI had varying degrees of

efficacy in capturing drought conditions at various time frames. Nonetheless, the

SPEI’s spatial distribution, which shows a wet distribution in the east and an arid

distribution in the west, exhibited identical characteristics for all scales and may

be used to indicate drought. Significant interannual variation was seen in the NPP

of the study area’s vegetation, which fluctuated in an upward direction from

2000 to 2020. 75.89%, 77.23%, 81.35%, and 83.56% of the area were found to

have a positive correlation between the SPEI and vegetation NPP at various time

scales, with 42.53%, 48.15%, 90.72%, and 92.75% of the area passing the

significance test (p < 0.05), in that order. Their results showed that as the SPEI

time scale was increased, the link between vegetation NPP and SPEI became

stronger. The loss rate of vegetation NPP fluctuated and grew regularly with the

expansion of drought degree, varying between 20-50%, according to drought

loss rate curves created for each fertility period.
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1 Introduction

It is widely acknowledged that drought is a serious natural

disaster with huge global economic repercussions. In fact, drought-

related economic losses account for a substantial portion of all

natural disaster losses (Liu et al., 2020a). Additionally, the

persistence of drought can lead to a range of cascading effects,

including reduced soil water resources for vegetation growth,

inhibited photosynthesis, and the induction of natural disasters

such as dust storms and fires. These consequences may drastically

reduce ecosystems’ capacity to serve as carbon sinks, which may

eventually lower vegetation productivity (Nejadrekabi et al., 2022;

Tian et al., 2019; Wang et al., 2022a). As a result, understanding the

impacts of drought on vegetation presence is crucial for enhancing

ecosystem stability (Ding et al., 2022; Geng et al., 2022; Shi et al.,

2022; Soleimani-Motlagh et al., 2022). Furthermore, given the

potential for increases in the intensity, frequency, and duration of

drought, it is essential to explore strategies aimed at mitigating these

negative effects and preserving the functional structure of

terrestrial ecosystems.

Numerous researchers have made use of drought indices in

order to accurately measure complex instances of drought. These

indices, which include the Palmer Drought Index (PDSI), the

Standardized Precipitation Index (SPI), and the Standardized

Precipitation Evapotranspiration Index (SPEI), are designed to

more accurately reflect the spatial and temporal characteristics of

drought (Laimighofer and Laaha, 2022; Ramirez et al., 2022; Wahla

et al., 2022; Xu et al., 2022). Several scientific investigations have

indicated that vegetation responses to drought stress involve the

closure or reduction in size of vegetation stomata, impacting CO2

uptake, and subsequently, vegetation photosynthesis (Gang et al.,

2022; Wei et al., 2022a), These effects are particularly pronounced in

areas characterized by arid and semi-arid weather, which feature

more vulnerable terrestrial ecosystems (Geng et al., 2023).

Specifically, a widespread drought incident markedly diminishes

the net primary productivity of plant communities (Li et al., 2020a).

Furthermore, it has been observed that vegetation NPP and SPEI

are predominantly positively correlated, particularly in the 20-50°N

latitude range, where vegetation is more sensitive to drought stress

(Liu et al., 2021b). As droughts become more frequent and

persistent, the loss in vegetation NPP amplifies significantly (Sun

et al., 2016). The reaction of NPP to drought displays geographical

variability and is subject to multiple uncertainties during analysis

(Khatri-Chhetri et al., 2021). One illustration of this is the research

of Kljun et al. (2007) on poplar forests in southern Canada, which

revealed that severe drought events of extended duration and high

intensity suppressed both vegetation respiration and photosynthesis

to a similar degree, ultimately resulting in little alteration of

vegetation NPP. However, under mild or moderate drought

conditions, ecosystem photosynthesis remained largely unaffected

while respiration was considerably reduced, and this led to the

observed increase in vegetation NPP. Consequently, it is clear that

while current studies tend to concur that drought-induced water

stress typically reduces vegetation NPP via stomatal closure, there is

considerable variability in the response to drought across different

regions, biomes, and land use types, as well as in relation to ambient
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climate conditions, which can all influence vegetation response

(Tong et al., 2023; Yuan et al., 2022; Zhao et al., 2019a). Currently,

the majority of studies are concentrated on the decrease in NPP

during drought episodes. However, an essential aspect regarding

quantifying the susceptibility of vegetation NPP to drought has yet

to be examined. Additionally, additional exploration into the

temporal response of NPP to drought is necessary.

There is a fragile ecological zone in China that is arid and semi-

arid, and the Yinshanbeilu region of Inner Mongolia is located

within this zone. As a consequence of this, the amount of moisture

that is accessible plays a significant part in determining the degree

to which vegetation is able to prosper in this area (Wang et al.,

2022b). A number of ecological problems, including ecological and

vegetation degradation, as well as water shortages, have surfaced as

a direct result of the exacerbation of climate change brought on by

human activities in the region. The main objectives of this paper

were to (1) reveal the spatial and temporal evolution of multi-scale

drought in grasslands and to identify the years of drought

occurrence; (2) estimation of NPP by CASA model to reveal the

spatial and temporal variation pattern of regional NPP; and (3)

construct a drought disaster loss rate curve for vegetation during the

agricultural production period and quantitatively evaluate the

effects of different drought levels on vegetation productivity. This

offered a plausible method for promptly assessing the loss due to

drought in vegetation. This research is an innovative attempt in the

field of assessing the effects of drought on vegetation, and it offers

important new theoretical insights.
2 Materials and methods

2.1 Study area

Yinshanbeilu is a transitional agricultural and pastoral area

situated between the Yinshan Mountains and the Mongolian

Plateau (Figure 1). The coordinates are 107°17′~116°53′E and 40°

43′~43°23′N, respectively. Twelve banners and counties make up

the administrative jurisdiction, which covers a massive 97,250.5

km2. temperatures averaging 1.3–3.9°C, evaporation rates averaging

1,748–2,300 mm, precipitation averaging 200–400 mm, and frost-

free periods typically ranging from 102–121 days. Soil wind erosion,

desertification, soil erosion, land degradation, and other ecological

and environmental problems are becoming increasingly serious as a

result of land use changes and human activities, severely limiting

the growth of local economies and societies (Li et al., 2023).
2.2 Data sources

2.2.1 Remote sensing data
NDVI data using MOD13A2 (https://search.earthdata.

nasa.gov/search), the time series of 2000-2020, the 16 days of

synthetic products, and a spatial resolution of 1 km. MCD12Q1

yearly synthetic products from 2000 to 2020 were used to collect

vegetation type data. Time series from 2000 to 2020 utilizing NPP

data with MOD17A3HGF yearly synthetic products. The data at a
frontiersin.org
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resolution of 1 km were resampled after pre-processing, including

reprojection, Mosaic, and clipping, for input into the CASA model

and data comparison.
2.2.2 Meteorological data
The National Weather Service’s website (http://data.cma.cn)

was utilized to download the meteorological data for this article,

which included yearly precipitation and the percentage of average

annual bright sunlight for the years 2000 to 2020. AUSPLIN

interpolation software was used to analyze the data. After

interpolation, the spatial resolution is 1 km when combined with

the digital elevation model in the study area.
2.3 Methods

2.3.1 NPP
In the CASA model, which is one of the several major light

energy utilization models currently absorbed, vegetation net

primary productivity was determined by variables absorbed by

vegetation in photosynthetic active radiation (APAR) and in light

energy conversion (e). The NPP calculation model adopted in this

study is an improved CASA model (Xue et al., 2022). Its calculation

formula is as follows:

NPP(x, t) = APAR(x, t)� e(x, t) (1)

In this equation, APAR (x, t) represents solar Photoactive

radiation received by pixel x in month t, and in this case, e (x, t)

represents actual light energy utilization of pixel x in month t.
2.3.2 SPEI
By factoring in the effects of precipitation and temperature on

water balance, SPEI is used to evaluate and predict drought

conditions at different time intervals. In this study, the monthly

difference between evapotranspiration and precipitation is

calculated after the potential evapotranspiration has been

established using the Thornthwaite method. SPEI-1, SPEI-3,

SPEI-6, and SPEI-12 are calculated for monthly, 3-month, 6-

month, and 12-month intervals, respectively, after the difference

series has been normalized using the 3-parameter log-logistic

probability distribution. Methods for determining SPEI are

described in detail in the cited works (Stagge et al., 2015; Wang

et al., 2015).
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The current research aims to investigate the effects of droughts

on plant life. So, we’re looking at the drought condition that

typically occurs during plant growth (April–September). Given

that the drought condition is represented by the September SPEI-

6 value for six months spanning the period from April to

September, thus encompassing the entire growing season, the

September SPEI-6 value has been used to formulate the drought

loss rate curve.

2.3.3 Correlation analysis
Analysis of correlation is a method that can be used to

determine whether or not there is a connection between two or

more factor variables. This can be done by comparing the levels of

similarity between the factors. The Pearson correlation coefficient

method has been selected to analyze the internal relationship

between the two variables (Li et al., 2021). The formula used in

this calculation is articulated below.

R =
o
n

i=0
(xi � x)(y� y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=0
(xi � x)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=0
(y� y)2

s (2)

In this equation, xi said the first years of NPP values, x

Represents the mean value of NPP over the years, y Represents

the mean SPEI over the years.

2.3.4 Construction of drought loss rate curve
Based on CASA model, the regional NPP was estimated. As a

representation of drought vulnerability, the drought loss rate curve

based on CASA model was constructed. The details are as follows:
(1) Identification of drought. The SPEI index of vegetation

growth season was used to judge the drought degree from

April to September, and the SPEI values of all stations were

no drought (SPEI≥0) or no more than 3 stations were no

more than light drought (-1≤SPEI <0) month is drought

free month. The identification results are shown in Table 1.

(2) According to the SPEI values identified at each station, the

SPEI index raster map year by year, and the spatial

resolution was consistent with the regional NPP raster

map, both being 1km×1km. At the same time, GIS spatial

analysis technology was used to extract the pixel value of

SPEI index into the grid where the vegetation was located,
TABLE 1 Monthly drought in the growing season at the Yinshanbeilu from 2000 to 2020.

Month Normal year Dry year

4 2000,2001,2002,2003,2005,2007,2010,2011,2012,2013,2015,2017,2019,2020 2004,2006,2008,2009,2014,2016,2018

5 2000,2002,2003,2005,2006,2007,2010,2011,2012,2014,2015,2016,2017,2019,2020 2001,2004,2008,2009,2013,2018

6 2000,2002,2003,2004,2006,2008,2010,2012,2013,2014,2015,2016,2017,2019 2001,2005,2007,2009,2011,2018,2020

7 2001,2002,2003,2004,2006,2008,2012,2013,2014,2015,2016,2019 2000,2005,2007,2009,2010,2011,2017,2018,2020

8 2000,2002,2003,2004,2008,2012,2015,2016,2018,2019,2020 2001,2005,2006,2007,2009,2010,2011,2013,2014,2017

9 2002,2003,2004,2008,2010,2012,2013,2014,2015,2016,2018,2019,2020 2000,2001,2005,2006,2007,2009,2011,2017
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Fron
and it was used to represent the drought risk value of the

vegetation on a grid basis.

(3) Obtaining monthly NPP data for the study area for the

2000-2000, and the raster map of the regional vegetation

growth season from April to September was selected from

it, which was also extracted into the grid where the

vegetation was located, and used as the grid value of

vegetation drought vulnerability year by year, month

by month.

(4) Calculate the drought loss rate, that is, the NPP loss rate of

vegetation caused by drought. The NPP values of vegetation

corresponding to normal months are considered as normal

values, and the average values of vegetation NPP in all
tiers in Plant Science 04
normal years are taken as the normal values of vegetation

NPP in that month without drought. Therefore, the pixel-

by-pixel drought loss rate can be calculated as follows:
NPPLDR =
NPPNO − NPPDR

NPPNO
� 100% (3)

Where, NPPLDR represents the NPP loss rate of drought-

induced vegetation; NPPNO represents the vegetation NPP in

normal months; NPPDR indicates the value of the NPP produced

by plants during the month of drought.

It is acceptable that the loss rate of ecosystem is between 10%-20%

(vanMinnen et al., 2002). In this study, 20%NPP loss rate of vegetation

is represented as the threshold line of drought loss. When the NPP loss

rate of vegetation exceeds 20%, drought loss event begins to occur.
3 Results

3.1 Model accuracy verification

This study aimed to compare the estimated results obtained

from the CASA model with the MOD17A3 data products spanning

the period from 2000 to 2020, The two results are in good

agreement(R2 = 0.881), thereby making it a suitable candidate for

further analysis (Figure 2).
3.2 Spatial and temporal trends of SPEI

Observations presented in Figure 3 demonstrate that the SPEI

displays varying degrees of accuracy in detecting drought

conditions at the northern base of Yinshanbeilu depending on the

time scale under consideration. Despite this, SPEI exhibits similar

spatial distribution trends for drought at different scales,

characterized by an east-west distribution pattern, depicting wet

conditions in the east and dry conditions in the west.
FIGURE 1

Location of the study area. (A) location relative to Inner Mongolia, (B) Elevation, meteorological stations, and (C) land cover.
FIGURE 2

Accuracy verification of simulation results.
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FIGURE 3

SPEI spatial distribution. (A) SPEI-1, (B) SPEI-3, (C) SPEI-6, and (D) SPEI-12.
FIGURE 4

SPEI time variation trend. (A) SPEI-1, (B) SPEI-3, (C) SPEI-6, and (D) SPEI-12.
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As can be seen in Figure 4, the sensitivity of the fluctuation of

SPEI values at multiple scales from 2000 to 2020 is obviously

different, showing a trend that is slightly decreasing at different

time scales. This change can be seen across the board. The

occurrence of drought is unpredictable and happens on a regular

basis, and the multi-scale SPEI indexes in 2005, 2009, 2010, and

2019 show a clear turnaround, demonstrating a “down-rising-

declining-rising trend.” The frequent occurrence of droughts

followed by floods in each month is reflected by the fact that

SPEI-1 experiences significant swings along the value of 0. This

demonstrates the seasonal change pattern of dryness and wetness in

the study area. The variability of the SPEI-12 is manageable,

which enables it to comprehend the overarching pattern of

drought progression.

Figure 5 reveals that the variation trend of SPEI-1 is gradually

increasing from west to east, with clear evidence of horizontal

zonality rule. This can be seen to be the case with a value of

-0.006~0.019/a. The area demonstrates a moderately weak

downward trend, with the downward trend accounting for
Frontiers in Plant Science 06
84.25% of the total area and the upward trend accounting for

15.75% of the total area, respectively. Furthermore, only 5.44% of

the area passes the significance test at the 0.05 level. They are found

most frequently in the area of the study that is located to the east.

Only 4.63% of the area met the criteria for significance when the test

was performed at the level of 0.05, and the variation trend of SPEI-3

was -0.005~0.021/a. The SPEI-6 displayed a trend of -0.003~0.026/

a, and the significance test found that only 4.12% of the area met the

criteria for passing at the level of 0.05. The significance level of the

significance test was set at 0.05, and the variation trend of SPEI-12

was -0.007~0.049/a. Only 1.71% of the area passed the significance

test. In conclusion, between the years 2000 and 2020, the SPEI index

in the western area exhibited a negative tendency across several time

intervals, which suggested that the region tended to be dry. This

pattern was consistent across all time scales. On the other hand, the

SPEI index in the majority of the eastern area showed an upward

trend, which suggested that these places exhibited a tendency

towards being wetter. This was the case despite the fact that the

western region continued to show a downward trend.
FIGURE 5

SPEI spatial variation trend:(A) SPEI-1, (B) SPEI-3, (C) SPEI-6, and (D) SPEI-12. SPEI significant change trend:(E) SPEI-1, (F) SPEI-3, (G) SPEI-6, and
(H) SPEI-12.
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3.3 Spatial and temporal trends of NPP

From 2000 to 2020, the mean NPP of vegetation at the northern

foot of Yinshan showed great inter-annual variation, and showed a

trend of fluctuation and increase, with an increase rate of 2.974g·m-

2·a-1. The area percentage of NPP in the northern foothill of

Yinshan was divided into four grades: 0∼100 g·m-2·a-1,100∼200
g·m-2·a-1,200∼300 g·m-2·a-1,>300 g·m-2·a-1. The results showed that

the area proportion of vegetation NPP in the range of 0 ~ 100 g·m-

2·a-1 was 45.01% in 2005, and the area proportion in this area tended

to decrease during the whole study period. The NPP of vegetation

ranges from 100 to 200 g·m-2·a-1, and the maximum area proportion

is 35.29% ~ 57.39%. The mean NPP of vegetation in the area larger

than 300 g·m-2·a-1 fluctuated between 0.46% and 16.22%, and

showed a slow rising trend (Figure 6).
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The slope of the vegetation NPP fitted in the Yinshanbeilu from

2000 to 2020 varied from -5.135 to 14.811 g·m-2·a-1 (Figure 7), and

the proportion of the region with a rising trend was 99.49%, spread

in most parts of the research area. In Huade and Shangdu counties,

as well as in the southwestern section of Siziwangqi, the majority of

the land that showed no significant increase in the amount of

vegetation NPP was located in the regions that were dominated by

arable land. This accounted for 22.03% of the total land area (p>

0.05). The significance test (p> 0.05) was passed by the regions that

accounted for 23.75% of the total area, while the highly significant

test ((p <0.01) was passed by the regions that accounted for 54.22%

of the total area. The Hurst index of vegetation NPP in the

Yinshanbeilu ranged from 0.066 to 0.626, with a mean value of

0.396, and the proportion of the image elements with a Hurst index

less than 0.5 was 62.36%. This suggests that the inverse persistence
FIGURE 6

Interannual variation in vegetation NPP and variation in area occupied by NPP mean grading.
FIGURE 7

Yinshanbeilu change distribution features (A) spatial trend distribution, (B) significance distribution, (C) Hurst distribution, and (D) coefficient of
variation distribution during 2000-2020.
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of vegetation NPP change in the Yinshanbeilu is greater than the

positive persistence in the future, which implies that the tendency of

vegetation NPP shift will be reverted at some point in the future.

The yearly mean value of the NPP produced by vegetation in the

northern half of the Yinshanbeilu is predicted to have a low

coefficient of variation from the years 2000 to 2020, and the

percentage of the regional image elements with the coefficient of

variation below 0.25 is 89.89%, which indicates that the mean value

of the vegetation NPP time series in the northern part of the

Yinshanbeilu is relatively stable. This was determined by

comparing the percentage of the regional image elements with the

coefficient of variation below 0.25. The coefficients of variation

ranging from 0.250 to 0.823 are most often seen in regions that have

experienced significant shifts in land use and regions that have been

significantly impacted by human activities.
3.4 The correlation between SPEI and NPP

SPEI (SPEI -1, SPEI -3, SPEI -6, and SPEI -12) and vegetation NPP

had correlation values of -0.221 to 0.822, -0.299 to 0.851, -0.186 to 0.947,

and -0.291 to 0.926, respectively, over a variety of time periods
Frontiers in Plant Science 08
(Figure 8). The average coefficients of correlation were 0.408, 0.427,

0.602, and 0.623. The overall geographical distribution is “low in the

southwest and high in the northeast.”The percentages of SPEI positively

linked with NPP at each time scale were 75.89%, 77.23%, 81.35%, and

83.56%, with 42.53%, 48.15%, 90.72%, and 92.75%, respectively, passing

the significance test (p<0.05). vegetation NPP and SPEI that

strengthened with decreasing SPEI time scale, indicating that

Yinshanbeilu’s NPP responded relatively well to drought changes on

an annual scale but poorly to those on a medium- and short-term basis,

especially to a short-term surface water anomaly and a seasonal scale.
3.5 Loss rate of NPP under drought stress

As can be seen from Figure 9, The variation range of NPP loss

rate caused by drought was 2.351~46.238%, 13.621~49.596%,

0.849~39.873%, 4.023~49.921% and 0.397-47.685 in different

growth periods of vegetation in the vegetation growing season

(each month was taken as a growth period of vegetation in this

study) %, 0.558~49.886%, and the average loss rates were 23.64%,

28.53%, 29.18%, 32.86%, and 32.95%, respectively. Generally, the

spatial distribution pattern is “low in the west and high in the east”.
FIGURE 8

Correlation between SPEI and vegetation NPP at different time scales:(A) SPEI-1, (B) SPEI-3, (C) SPEI-6, and (D) SPEI-12. The significance of SPEI and
vegetation NPP at different time scales: (E) SPEI-1, (F) SPEI-3, (G) SPEI-6, and (H) SPEI -12.
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FIGURE 9

Percentage significance of SPEI vs. NPP at different time scales. (A) SPEI-1, (B) SPEI-3, (C) SPEI-6, and (D) SPEI-12.
FIGURE 10

NPP loss rate of vegetation due to drought occurrence. (A) April, (B) May, (C) June, (D) July (E) August, and (F) September.
Frontiers in Plant Science frontiersin.org09
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In this study, positive pixels with SPEI index were excluded and

NPP losses of vegetation were only considered when the SPEI index

represented drought (Figure 10). Then, NPP loss rates caused by

different drought degrees were fitted to obtain monthly drought loss

rate curves of regional vegetation growth seasons. The results

passed the 0.05 significance test. The R2 values of each growth

period were 0.81, 0.81, 0.82, 0.89, 0.84 and 0.85, respectively,

indicating that the curve fitting accuracy of drought loss rate was

high, which could be used for drought loss analysis.

On the whole, vegetation NPP is more sensitive to the

occurrence and development of drought. With the increase of

drought degree, the loss rate of vegetation NPP in each growth

period also fluctuates and increases gradually, and the fluctuation

range of the loss rate is 20-50% (Figure 11). In the drought loss rate

curve in April, there were two obvious peaks at SPEI of -1.25 and

-1.75. In April, the grassland is in the greening period. When the

drought degree is light drought, the NPP loss rate of vegetation

fluctuates between 20-35%, and the fluctuation is relatively gentle.

When the drought degree changed from light drought to severe

drought, the NPP loss rate increased rapidly and fluctuated between

35 and 45%. When the degree of drought is extreme drought, the

NPP loss rate of vegetation changes slowly and stabilizes between

45-50%, which may be due to the fact that the soil has a certain

moisture in the early stage, so that the NPP of vegetation can still

maintain at about 50% even if the extreme drought disaster occurs.

From May to August, with the worsening of drought, the loss rate

showed an increasing trend. Among them, the NPP loss rate

fluctuated between 20-50% in May. When the drought degree

reached extreme drought, the loss stabilized at 45% and

fluctuated with the severity of drought again. In July, due to the

low drought degree in July from 2000 to 2020, the maximum

drought level only reached the severe drought level, and the NPP
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loss of vegetation showed an exponential rising trend. However,

despite the low drought degree, the NPP loss of vegetation

fluctuated between 20-40%, indicating that the drought occurred

in July had a greater impact on grassland NPP. This month is the

most critical month for the accumulation of forage production.

From June to August, when the degree of drought reached severe

drought or extreme drought, the increase rate of NPP loss rate was

slow and fluctuated between 40-50%. For September, the NPP loss

rate of vegetation also showed an increasing trend. When the

drought degree reached between moderate drought and severe

drought, the NPP loss rate fluctuated between 40-45%. However,

when the drought degree reached severe drought, the NPP loss rate

showed an accelerating trend, which may be related to the fact that

grassland harvesting and storage had begun in some areas in

September. In conclusion, NPP of vegetation is sensitive to

drought. Even under light drought conditions, NPP of grassland

will lose 10-20%, especially in July.
4 Discussion

4.1 Characteristics of vegetation NPP
and drought

In this study, it was found that NPP of vegetation at the

Yinshanbeilu increased significantly at a rate of 2.974 g·m-2·a-1

from 2000 to 2020 (p < 0.05), which is basically consistent with the

results of (Liu et al., 2020b). However, there are still uncertainties

about the main driving factors of this change. Zhao et al. (2019b)

the accumulation of organic matter in vegetation was jointly

influenced by increased precipitation and temperature,

with precipitation having a stronger impact than temperature.
FIGURE 11

Drought loss rate curve of different months. (A) April, (B) May, (C) June, (D) July (E) August, and (F) September. (Note:The red dotted line represents
the threshold for drought damage).
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Liu et al. (2021a) pointed out the surface temperature has a

considerable effect on the development of plants, although the

degree to which this influence is exerted changes with height.

Human activities have a bigger influence on the growth of

vegetation in low-altitude locations than temperature does;

nevertheless, warming has a more dramatic effect on boosting the

productivity of vegetation in high-altitude places. The majority of

the study area is made up of agricultural land, low-cover grassland,

and desert. The area suffers from an unreliable water supply, low

precipitation, high evaporation, low soil water content, and severe

drought, all of which inhibit the accumulation and fixation of

carbon in the region ’s plant life (Zhang et al., 2020).

Concurrently, human activities demonstrate a dualistic influence

on the environment. Furthermore, the presence of radiation,

atmospheric concentration of CO2, crop yield, and their

compounded consequences can also generate a discernible impact

on the escalation of vegetation productivity (Guo et al., 2021; Pei

et al., 2020; Yang et al., 2020).

In this research, the SPEI index was calculated by using the

temperature and precipitation data collected from a total of 12 sites.

It was discovered that the consequences of climate change led to a

less severe drought in the eastern areas, while the circumstances of

drought became worse in the western regions. This was the outcome

of a drop in the severity of drought in the eastern regions. The

western portions of the research area were mostly home to the

regions that were experiencing the most severe levels of drought.

The steady ascent in amounts of precipitation was the key

contributor to this development, and it was accountable for it.

Concurrently, a decrease in wind speed and an increase in the

sunlight duration greatly contributed to the reduction in potential

evapotranspiration, which is consistent with the results of the

research that used the SPEI index (Pei et al., 2020; Wei et al.,

2022b). This indicates that SPEI can accurately reflect drought

conditions in the study area.
4.2 Effects of drought on vegetation NPP

Atmospheric drought caused by insufficient precipitation will

affect soil, vegetation, runoff and groundwater to varying degrees,

and then cause agricultural drought and ecosystem drought (Lai

et al., 2018). Drought-induced water deficit and osmotic stress can

significantly impede plant growth and development, reduce crop

yields, and may even result in plant mortality under severe cases

(Doughty et al., 2015). Numerous researchers from the United

States have investigated the effect that drought has on vegetation

response at regional scales. The findings of these studies, which

were conducted in areas such as the Loess Plateau, Inner Mongolia,

Northeast China, and Northwest China, validate the substantial

ramifications that drought has on the productivity of vegetation

(Feng et al., 2016; Guo et al., 2021; Yan et al., 2021; Zhou et al.,

2015). Within the scope of this specific research, an investigation

into the degree to which the levels of NPP and SPEI at Yinshanbeilu

changed throughout the course of a variety of time periods was

carried out and analyzed. The findings showed that there is a

positive link between the values of NPP and SPEI, which suggests
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that a water shortage may have a major influence on the

development of vegetation. In addition, when looking at the

regions that were subjected to the significance test, it was

discovered that the correlation between drought and NPP

increased with the accumulation of drought over a more extended

time scale. This finding highlights the greater impact that long-term

drought has on the NPP of vegetation in Yinshanbeilu. These results

are consistent with those of other research that shown the impact of

drought accumulation on NDVI in geographical areas that are

characterized as being generally dry (Li et al., 2020b). Varied levels

of water availability may either facilitate or impede the progress of

plant growth and maturation, thereby influencing the ongoing

phase of the plant’s life cycle. In essence, the current state of a

plant’s life cycle is contingent upon the preceding stage (Lei et al.,

2015). Moreover, it is important to note that rising temperatures

and extreme weather events, including drought, have a direct

impact on the evapotranspiration of both soil water and

vegetation canopy water. This results in heightened levels of

transpiration and surface dryness, ultimately causing erosive

damage by strong solar radiation and wind, along with extreme

precipitation. Such erosive effects lead to decreased grip of

vegetation roots, further compounding the increase of

evapotranspiration in deep soil (Yan et al., 2022).

Yinshanbeilu finds itself situated in areas defined as arid and

semi-arid, facing the persistent challenges of wind and water

erosion throughout the year. Drought conditions may impede

vegetation growth, reduce biomass, and elevate vegetation

mortality rates, ultimately exacerbating soil desertification. Some

areas have surprisingly yielded a negative correlation between

drought and NPP. This discovery is suggested to arise from the

plant species in these arid and semi-arid areas, who have adapted to

their harsh environment with notable drought tolerance, therefore

exhibiting exceptional growth patterns even under drought stress.

Additionally, such vegetation can lower their water stress by way of

reduced stomatal conductance, which enhances water use efficiency,

and augments vegetation growth as a result (Fathi-Taperasht et al.,

2022; Qin et al., 2022).
4.3 Uncertainties and limitations

In the current investigation, we will be computing the standard

precipitation evapotranspiration index by making use of data that has

been interpolated from several meteorological stations. After that, we

evaluate the geographical as well as the temporal patterns of drought,

keeping in mind that there is a possibility that there will be more

ambiguity in the findings of the study. It is possible to construct

a more complex regional drought monitoring model through

the combination of data from remote sensing and observations

from ground-based meteorological stations as the accuracy

of meteorological satellite data continues to increase in tandem

with the extension of relevant data series over a longer period of

time (Wu et al., 2022; Xing et al., 2023). This is something that can be

done by integrating the data.

The application of the CASA model served as a means to

simulate vegetation NPP in the Yinshanbeilu and compare it with
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the MODIS NPP data for validation. However, the validation and

analysis of field measurement data in specific geographical areas

require further attention. Conducting field monitoring and data

collection will be prioritized in the future to enhance the

demonstrable effectiveness of the CASA model in monitoring the

NPP of vegetation in the Yinshanbeilu.

Current research investigating the determinants of vegetation

NPP has predominantly concentrated on drought-related factors,

with limited attention being paid to the effects of human activities.

Such activities may significantly impact the distribution and

decomposition of NPP, thereby having direct implications on an

ecosystem’s material and energy cycles (Zhang et al., 2022).

According to the findings of previous studies, human activities

have two fundamental impacts on the NPP of plants. To begin,

human activities may cause shifts in the kinds of land use, which may

ultimately result in a decrease in the NPP of plants. Second, the

intentional conservation efforts that have been performed by humans

are the key contributors to the rise in the NPP of plants. Grassland

ecosystems, in compared to other types of vegetation communities,

are more sensitive to the effect that human activities have on the NPP

of vegetation and are hence more fragile. As a result, the next step in

study will concentrate on determining how changes in NPP occur in

vegetation as a result of the effect of human activities.
5 Conclusions

The present study aimed to develop drought loss rate curves

through the assessment of net primary productivity losses caused by

varying intensities of drought. This approach can serve as a valuable

tool for offering guidance on the sustainable development of

terrestrial ecosystems in Yinshanbeilu, as well as mitigation

measures for tackling drought-related disasters.
Fron
(1) During 2000-2020, the western multi-timescale SPEI indices

all show a decreasing trend, indicating that the region tends

to be arid, while most of the eastern regions show an

increasing trend in multi-timescale SPEI indices, indicating

that these regions show a trend of becoming wetter.

(2) The mean vegetation NPP values from 2000 to 2020

showed a large interannual variation and a fluctuating

upward trend with a growth rate of 2.974 g·m-2·a-1.

(3) The proportion of places having a positive correlation

between SPEI and vegetation NPP at various time scales

was 75.89%, 77.23%, 81.35%, and 83.56%, respectively. This

demonstrates that the connection between vegetation NPP

and SPEI grew when the SPEI time scale was raised.
tiers in Plant Science 12
(4) Vegetation NPP is more sensitive to drought response, and

even light drought conditions can lead to 10-20% loss of

grassland NPP, especially in July when vegetation NPP is

more sensitive to drought response.
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