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Accurate identification of maize kernel morphology is crucial for breeding and

quality improvement. Traditional manual methods are limited in dealing with

complex structures and cannot fully capture kernel characteristics from a

phenome perspective. To address this, our study aims to develop a high-

throughput 3D phenotypic analysis method for maize kernels using Micro-CT-

based point cloud data, thereby enhancing both accuracy and efficiency. We

introduced new phenotypic indicators and developed a kernel phenome

interaction network to better characterize the diversity and variability of kernel

traits. Using a natural population of maize, high-resolution 2D slice data from

Micro-CT scans were converted into 3D point cloud models for detailed analysis.

This process led to the proposal of five new indicators, such as the endosperm

density uniformity index (ENDUI) and endosperm integrity index (ENII), and the

construction of their corresponding phenome interaction network. The study

identified 27 3D morphological feature parameters, significantly improving the

accuracy of kernel phenotypic analysis. These new indicators enable a more

comprehensive evaluation of trait differences between subgroups. Results show

that ENDUI and ENII are central to the phenome interaction networks, revealing

synergistic relationships and environmental adaptation strategies during kernel

growth. Additionally, it was found that length traits significantly impact the

volumes of the embryo and endosperm, with linear regression coefficients of

0.599 and 0.502, respectively. This study not only advances maize kernel

morphology research but also offers a novel method for phenotypic analysis.

By enriching the phenotypic diversity of maize kernels, it contributes to breeding

programs and grain processing improvements, ultimately enhancing the quality,

and utilization value of maize kernels.
KEYWORDS

maize kernels, plant phenomics, 3D point cloud model, phenotypic analysis, phenome
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1 Introduction

Maize (Zea mays. L) kernels are one of the primary sources of

food for humans (Li et al., 2021; Liu et al., 2017). The morphological

characteristics of maize kernels directly determines their nutritional

composition and processing quality, which are closely related to

their food functionality and industrial value (Liu et al., 2008).

Morphological characteristics of kernels, such as size, shape,

compactness, internal tissue differentiation, and the distribution

of starch and proteins, not only affect their storage quality and

nutritional value but also determine their processing suitability and

sensory quality (Ignjatovic-Micic et al., 2015). Therefore, an in-

depth analysis of the developmental patterns of kernel morphology

and its functional relationships is of significant theoretical and

practical importance for improving the comprehensive yield and

utilization value of maize.

In recent years, advances in analytical techniques have led to

significant progress in the study of kernel morphology. For instance,

methods for measuring maize kernel volume have evolved through

various stages, including the displacement method (alcohol

displacement) (Sala et al., 2007; Zhang et al., 2016; Li et al., 2022),

mathematical calculations (Singh et al., 2004; Barnwal et al., 2012),

and Micro-CT measurement (Zhao et al., 2021; Gustin et al., 2013;

Guelpa et al., 2016; Li et al., 2023). These advancements have greatly

enhanced research throughput. The application of three-

dimensional (3D) tomography technology, specifically Micro-CT

(micro-focus X-ray computed tomography), provides a new

approach for non-destructive and high-precision acquisition of

the internal and external microstructures of maize kernels. This

technology can reconstruct 3D images by measuring the varying

absorption rates of X-rays by plant tissues (Du et al., 2019),

revealing hidden internal structural changes. This significantly

expands the measurable dimensions of maize kernel phenotypes.

For example, Hou et al. (2019) utilized CT to obtain various

phenotypic indicators of maize kernels and discovered that the

breakage rate of kernels is primarily influenced by factors such as

kernel specific surface area and subcutaneous cavity volume. This

study provided new insights into the relationship between kernel

quality and morphological structure. Similarly, Orina et al. (2017)

used Micro-CT technology to perform time-series analyses of the

dynamic effects of fungal infection on the internal structure

of kernels.

Despite significant progress in the analysis of kernel

morphology using advanced techniques such as Micro-CT

(Rousseau et al., 2015; Du et al., 2019; Zhao et al., 2021; Yin

et al., 2021; Liao et al., 2022; Li et al., 2023), several challenges

remain. Firstly, while the number of three-dimensional phenotypic

indicators has increased, they are often limited to individual

features such as volume and density (Gustin et al., 2013; Hou

et al., 2019). There is a lack of systematic quantitative

characterization of overall morphological variation. As a complex

geometric system, the kernel’s surface features and internal tissue

arrangements, in addition to basic size and shape, are closely related

to its functionality. Therefore, it is necessary to establish an
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indicator system that can comprehensively represent kernel

morphological differences. Secondly, high-throughput phenotypic

identification of large-scale germplasm resources still faces technical

bottlenecks (Yang et al., 2020; Song et al., 2021). Although Micro-

CT can non-destructively obtain three-dimensional data, issues

such as long scanning times and limited sample sizes restrict its

application in genetic diversity studies. Currently, there is a lack of

methods to quickly and efficiently obtain three-dimensional

morphological phenotypes, leading to a scarcity of phenotypic

data for germplasm resources and making it difficult to identify

conformity indicators that reflect kernel morphological variation.

Based on an analysis of the current state of kernel

morphological structure research, this study aims to use a maize

association analysis population (Yang et al., 2011) to expand kernel

phenotypic variation. Utilizing Micro-CT as a technical tool, this

study aims to establish a high-throughput method for rapid analysis

of three-dimensional kernel morphological phenotypes and to

construct an indicator system that can comprehensively

characterize kernel morphological variation. This will lay a solid

foundation for the genetic analysis of kernel structure development

regulation. The specific research objectives are as follows: 1)

transform traditional Micro-CT image data into three-

dimensional point cloud data to enhance the visualization and

quantification of kernel phenotypes; 2) based on point cloud data,

develop an indicator system that can describe the overall

morphological characteristics of kernels from multiple angles and

levels, fully characterizing the morphological differences among

various germplasm resources; 3) using the aforementioned

phenotypic analysis methods and indicator systems, establish a

high-precision, high-throughput three-dimensional phenotypic

database for a large-scale natural maize population. This database

will provide a high-quality data source for subsequent genetic

analyses, such as genome-wide association studies of kernel

morphological structure.

By achieving these research objectives, we can systematically

analyze the developmental patterns of maize kernel morphology

and their intrinsic relationships with quality, providing theoretical

guidance for designing and breeding high-quality, high-yield new

varieties. Additionally, it will help accelerate the identification of

key regulatory genes and the creation of related molecular markers,

providing new tools for molecular design breeding. This is of great

significance for enhancing the comprehensive yield and utilization

value of maize.
2 Materials and methods

2.1 Experimental materials

The experimental materials used in this study included 288

maize association analysis population, sourced from a population

planted in 2018 at the Sanya base of the Beijing Academy of

Agriculture and Forestry Sciences in Hainan. These materials

comprised 57 samples from the Mixed subgroup (Mixed), 84
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from the NSS (Non-Stiff Stalk) subgroup, 21 from the SS (Stiff Stalk)

subgroup, and 126 from the TST (Tropical-Subtropical) subgroup.

Maize was planted with an equal row spacing of 60 cm and a

planting density of 67,500 plants ha-1. To ensure the genetic stability

of the kernel samples, artificial bagging and self-pollination were

performed on each variety before silking. After harvesting the ears,

3 ears were randomly selected from each material, and 3 kernels of

similar size and fullness were taken from the middle of each ear for

subsequent phenotypic data acquisition and analysis.
2.2 Kernel scanning and reconstruction

Kernel CT phenotypic data were obtained using a 1172 model

Micro-CT device (Bruker Corporation, Billerica, MA, USA,

Figure 1A). During scanning, the kernels were fixed on foam

boards and placed inside the CT machine. The scanning was set

to 2K mode (2000 × 1332 pixels), with a resolution of 13.55 mm. The

scanning voltage was 40 kV, and the current was 250 mA. The
system performed continuous scanning of the samples at 0.4°

intervals for a total of 180°. Subsequently, the raw CT scan

images were reconstructed using CT Scan NRecon 1.6.9.4 (Micro

Photonics Inc, Allentown, PA, USA, Figures 1B, C) software,

resulting in a series of reconstructed virtual kernel cross-sectional

images with a resolution of 2000 × 2000 pixels in 8-bit BMP format.
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2.3 Kernel phenotypic data analysis

The CornSeger software (Li et al., 2023) was used to extract 13

three-dimensional kernel indicators. CornSeger outputs three

folders containing kernel CT cross-sectional images, cavity

segmentation results, and endosperm and embryo segmentation

results, saved in.nii format to a specified path. The segmentation

results can be viewed using ITK-SNAP (Yushkevich et al., 2016). To

convert CT data into point cloud data, the Open3D library (an

open-source 3D data processing library) in Python was used. The

computing environment was as follows: CPU Intel Core i7-13700,

Windows 11 operating system, NVIDIA GeForce RTX 3060 Ti

graphics card, Python 3.9.0, and PyCharm 2021.3.2.
2.4 Kernel phenotypic data analysis

This study evaluated kernel structure from five perspectives,

primarily including endosperm nutrient density, endosperm

integrity, embryo volume-to-surface area ratio, kernel coat

tightness, and endosperm density uniformity. The specific

calculation formulas are as follows:

Endosperm Nutrient Density Index (ENDI): This index

quantifies the spatial distribution density of nutrients in endosperm

tissue. Higher ENDI values indicate greater nutrient content per unit
FIGURE 1

CT scanning instrument (A) and kernel reconstruction (B, C).
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volume, closely associated with the efficient accumulation of

macromolecules such as carbohydrates and proteins. From a

physiological perspective, this parameter reflects the efficiency of

nutrient translocation and deposition, subsequently influencing

nutrient mobilization capacity during germination and seedling

establishment rate. The calculation formula is (Equation 1):

ENDI =
ENV

ENL   *  ENW   *  ENT
(1)

where ENV is endosperm volume, ENL is endosperm length,

ENW is endosperm width, ENT is endosperm thickness.

Endosperm Integrity Index (ENII): This index characterizes the

structural integrity of endosperm tissue. An ENII value approaching

1 indicates dense endosperm matrix structure and tight cellular

arrangement, features that promote mechanical strength and

physiological activity maintenance. Intact endosperm structure not

only ensures storage compound stability but also regulates

germination metabolism through modulation of water absorption

and enzymatic reaction rates. The calculation formula is (Equation 2):

ENII = 1  −  
CV

 ENV
(2)

where CV is cavity volume, ENV is endosperm volume.

Embryo Volume-Surface Ratio (EMVSR): This index reflects the

relationship between embryo morphological characteristics and

functional potential. Higher EMVSR typically indicates greater

nutrient storage capacity and more developed organ primordia,

directly correlating with embryo metabolic activity and

morphogenetic capability. From a developmental biology perspective,

this parameter can predict the differentiation potential of

photosynthetic organs and the development capacity of vegetative

organs during seedling stage. The calculation formula is (Equation 3):

EMVSR =
EMV
EMS

(3)

where EMV is embryo volume, EMS is embryo surface area.

Seed Coat Tightness Index (SCTI): This index delineates the

structural coordination between seed coat and internal tissues. SCTI

values reflect potential stress resistance levels, with higher values

indicating enhanced physical barrier function of the seed coat. This

encompasses not only mechanical protection but also physiological

functions in regulating gas exchange and water permeability, thereby

influencing the spatiotemporal progression of seed dormancy and

germination. The calculation formula is (Equation 4):

SCTI =
KV

KSP   *  KV
(4)

where KV is kernel volume, KSP is kernel sphericity.

Endosperm Density Uniformity Index (ENDUI): This index

assesses the spatial uniformity of material distribution in

endosperm tissue. ENDUI values approaching 0 indicate more

uniform nutrient distribution, a characteristic associated with cell

division/differentiation synchronicity and transport efficiency.

Uniform material distribution helps maintain stable metabolic

activity, ensuring continuous nutrient supply during germination
Frontiers in Plant Science 04
processes. The calculation formula is (Equation 5):

ENDUI = 1  −  
ENS

ENL   *  ENW   *  ENT
(5)

where ENS is endosperm surface area, ENL is endosperm

length, ENW is endosperm width, ENT is endosperm thickness.
2.5 Data analysis

During the preliminary data processing, 27 kernel phenotypic

traits data were organized using Microsoft Excel 2016. Subsequently,

descriptive statistical analysis was performed using R 4.3.1 software.

The pastecs package (version 1.4.2) was used to calculate the median,

minimum, maximum, mean, coefficient of variation, skewness, and

kurtosis for each phenotype.

For correlation analysis among traits, NetCoMi package (version

1.1.0) (Peschel et al., 2021) was employed to construct the correlation

network. In the data preprocessing stage, missing values were detected

and removed, followed by centered log-ratio (CLR) transformation for

data standardization to eliminate compositional effects. Network

construction was based on Pearson correlation coefficients as

association measures, with a correlation coefficient threshold of |r|≥0.3

to screen significant correlations. Multiple replacement methods were

used to handle zero values, and network sparsification was achieved

through threshold methods. Network analysis employed the Fast Greedy

clustering algorithm for module division, which identifies closely related

trait groups by optimizing modularity. Node sizes were calculated based

on eigenvector centrality to reflect the importance of each trait in the

network. For network visualization, parameters such as node size,

transparency, connection curvature, and node repulsion were finely

adjusted to ensure network clarity and readability. Positive correlations

were represented in green, negative correlations in red, different colored

nodes represented different functional modules, and node size reflected

the centrality of that trait in the overall network. This network analysis

method not only visually displayed the strength and direction of trait

relationships but also identified trait groups with similar functions or

regulatory relationships through clustering, providing important

analytical basis for understanding complex trait associations.

Analysis of variance (ANOVA) among subgroups was

performed using the agricolae package (version 1.3.7), with

multiple comparisons conducted using HSD.test (P < 0.05). This

step helped determine significant differences between subgroups

and further clarified which subgroups showed significant differences

through multiple comparison methods.
3 Results

3.1 Construction of a kernel 3D
phenotyping system based on point
cloud data

In this study, we developed a 3D phenotyping system based on

point cloud data, which allows for high-throughput, non-
frontiersin.org
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destructive, and precise extraction of quantitative parameters

related to the spatial relationships among the embryo,

endosperm, and pericarp of maize kernels. This process mainly

involves four parts: data import and annotation, 3D structure

extraction, point cloud data conversion, and high-throughput

geometric parameter extraction (Figure 2). Additionally, by

comparing the spatial positions of the embryo point cloud data

with the kernel pericarp surface point cloud data, we calculated the

Euclidean distance from each point on the embryo surface to the

pericarp surface. This 3D phenotyping system enables high-

throughput, non-destructive, and precise phenotypic analysis of

maize kernel structures (Figure 3), overcoming the subjectivity and

inefficiency of traditional manual measurements. The extracted

quantitative parameters not only assess kernel quality but, more

importantly, provide critical scientific evidence for understanding

the correlation between embryo position and kernel traits such as

development and germination.
3.2 Descriptive statistics of
phenotypic traits

After conducting a comprehensive descriptive statistical analysis

of 27 maize kernel traits (Supplementary Table S1), we revealed the

diverse distribution characteristics and variability of these traits. For

most traits, the mean and median were close, such as the mean of

ENDI (0.03) and its median (0.03), indicating a relatively symmetrical

distribution, approximating a normal distribution. Similarly, ENL

(mean 0.31, median 0.31) and EMW (mean 0.37, median 0.68) also

showed symmetrical distributions (Table 1). However, certain traits

exhibited significant skewness and kurtosis. KSur showed a

pronounced right-skewed distribution with a mean of 267.59, a

median of 252.12, skewness of 1.38, and kurtosis of 4.81, indicating

data concentrated at higher values with significant outliers. Similarly,

KSSA and CV also displayed right-skewed distributions, with
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skewness values of 1.11 and 1.50 and kurtosis values of 3.80 and

5.19, respectively, indicating more outliers in the higher value range.

Conversely, ENP and ENII exhibited left-skewed distributions

(Table 1). ENP had a skewness of -0.72 and kurtosis of -2.51, while

ENII had a skewness of -1.50 and kurtosis of 2.45, indicating more

data points in the lower value range. Notably, ENII had the lowest

coefficient of variation (0.004), with data highly concentrated around

a value close to 1.00, showing significant consistency. For kurtosis

analysis, the high kurtosis values of KSur and CV (4.81 and 5.19,

respectively) suggested steep distributions with more extreme values,

whereas the low kurtosis values of Hgw and SCTI (-0.07 and -0.019,

respectively) indicated flatter distributions with fewer extreme values

(Table 1). Additionally, the coefficient of variation analysis showed

that the coefficients of variation for different traits ranged from 0.004

(ENII) to 0.86 (CV), reflecting differences in relative variability

among traits. For example, CP had a coefficient of variation of

0.74, a mean of 4.13E-03, and a median of 3.17E-03, indicating

high relative variability and a right-skewed distribution (skewness

1.17, kurtosis 4.00). These descriptive statistical results elucidate the

complex distribution characteristics of maize kernel traits under

genetic and environmental influences (Table 1). Most traits

displayed symmetrical distributions with moderate variability, but

certain traits, such as KSur, CV, and ENII, exhibited significant

skewness and kurtosis, indicating data concentrated around extreme

values or high consistency (Table 1).

Correlation analysis revealed complex relationships among the

27 phenotypic traits (Figure 4). Among volume-related traits, KV

showed the strongest positive correlation with ENV (r=0.99, p ≤

0.01), while EMV exhibited a high positive correlation with embryo

surface area EMS (r=0.90, p ≤ 0.01). Regarding morphological

characteristics, KS demonstrated a significant negative correlation

with KSP (r=-0.70, p ≤ 0.01), while showing a significant positive

correlation with SCTI (r=0.71, p ≤ 0.01). Among structural integrity

indicators, CV displayed a strong positive correlation with CP

(r=0.96, p ≤ 0.01), while ENII exhibited a perfect negative
FIGURE 2

Workflow of maize kernel data annotation and parameter extraction.
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correlation with CP (r=-1.00, p ≤ 0.01). Furthermore, significant

correlations were observed among dimensional parameters, with

EMV showing significant positive correlations with its three-

dimensional parameters (EML, EMW, EMT) (r values ranging

from 0.58 to 0.67, p ≤ 0.01). These correlation patterns reveal the

intrinsic relationships in maize kernel structural development,

providing a foundation for further optimization of phenotypic

evaluation systems.
3.3 Construction and analysis of
phenotypic interaction network

In this study, we constructed a phenotypic interaction network

and used nodes and edges to describe the phenotypic relationships

within different subgroups. In this network, nodes represent

different operational taxonomic units (OTUs, i.e., phenotypes),

and edges represent the associations between these operational

taxonomic units, where green edges indicate positive correlations

and red edges indicate negative correlations (Figure 5).

Additionally, the thickness of the edges represents the strength of

the association, the thicker the edge, the stronger the association.

The results showed that in different subgroups, ENII, ENDU, and

ENP were high-degree nodes (Figure 5). These nodes occupied

central positions in the network with high connectivity, indicating

that they play crucial roles in different subgroups while maintaining

important balance. Moreover, the number of green edges was

significantly higher than the number of red edges across different

subgroups, indicating that these OTUs primarily engage in

synergistic interactions (Figure 5). This also suggests that these

phenotypic traits tend to form mutualistic phenotypic networks
Frontiers in Plant Science 06
within different subgroups, enhancing intra-group stability and

functionality. The nodes in the Mixed and SS subgroups were

more concentrated, forming tight network structures, indicating a

more stable and unified phenotypic network structure under these

conditions. In contrast, under the NSS and TST conditions, the

nodes were more dispersed, showing a more complex and

heterogeneous subgroup phenotypic structure (Figure 5). This

distribution difference may reflect the growth adaptation

strategies of different subgroups: tight cooperation versus

dispersed and diverse growth strategies. Although certain nodes

like Hgw and KSur had lower connectivity under Mixed conditions,

they might play key ecological functions in specific environments

(Figure 5). The negative correlations shown by the red edges may

reflect competitive relationships between different phenotypes

within the subgroups, which could affect the diversity and

stability of the subgroups.
3.4 Analysis of differences in kernel
phenotypic traits across subgroups

After an in-depth analysis of kernel phenotypic traits across

four different subgroups (mixed subgroup, non-stiff stalk subgroup,

stiff stalk subgroup, and tropical/subtropical subgroup), five traits

were found to have significant differences among the subgroups

(Table 2), including surface area (P = 2.19E-04), specific surface

area (P = 7.86E-04), 100-kernel weight (P = 3.18E-02), embryo

width (P = 2.07E-02), and the ratio of embryo volume to surface

area (P = 3.69E-02). The stiff stalk subgroup and tropical/

subtropical subgroup had smaller surface areas, with the stiff stalk

subgroup having a 10.0% and 9.6% lower surface area than the
FIGURE 3

Maize kernel overview and instance segmentation.
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mixed subgroup and non-stiff stalk subgroup, respectively, while the

tropical/subtropical subgroup had an 11.8% lower surface area. In

terms of specific surface area, the tropical/subtropical subgroup was

8.8% and 9.5% lower than the mixed subgroup and non-stiff stalk

subgroup, respectively, and 8.1% lower than the stiff stalk subgroup

(Table 2). For 100-kernel weight, the non-stiff stalk subgroup was

8.1% higher than the mixed subgroup, 7.1% higher than the

tropical/subtropical subgroup, and 5.7% higher than the stiff stalk

subgroup (Table 2). Regarding embryo width, the non-stiff stalk

subgroup was 6.2% higher than the tropical/subtropical subgroup,

while the mixed subgroup and stiff stalk subgroup were 5.9% and

3.1% higher than the tropical/subtropical subgroup, respectively

(Table 2). For the ratio of embryo volume to surface area, the

tropical/subtropical subgroup was 3.2% lower than the non-stiff

stalk subgroup and mixed subgroup. Additionally, although other
Frontiers in Plant Science 07
traits, such as kernel length, kernel width, embryo length, and

embryo height, also showed differences across subgroups, these

differences were not significant, indicating a more uniform

distribution of these traits across subgroups (Table 2).
3.5 Analysis of factors influencing embryo
and endosperm volume and
internal structure

Through linear regression analysis of the relationship between

maize ENV and ENL, ENW, and ENT, we obtained the following

equation:

ENV  ¼  0:599 x ENL þ  0:533 x ENW þ  0:471 x ENT
TABLE 1 Descriptive statistics of maize kernel phenotypic characteristics.

Trait Median Min Max Mean CV Skewness Kurtosis

KS 0.22 0.13 0.38 0.22 0.19 0.60 2.09

KV 197.05 33.58 421.35 203.39 0.21 0.39 1.36

KSur 252.12 83.85 547.39 267.59 0.23 1.38 4.81

KSSA 1.26 0.96 2.03 1.31 0.17 1.11 3.80

KSP 0.36 0.19 0.63 0.36 0.24 0.48 1.67

EMV 29.63 4.59 60.60 30.12 0.24 0.65 2.25

EMS 94.81 21.69 184.67 97.84 0.20 0.57 1.97

EMP 0.15 0.09 0.24 0.15 0.17 0.60 2.07

ENV 167.85 28.94 389.70 172.29 0.22 0.59 2.06

ENS 238.43 57.16 509.77 242.52 0.18 0.67 2.33

ENP 1.57 1.43 1.64 1.56 0.02 -0.72 -2.51

CV 0.67 4.55E-03 3.79 0.93 0.86 1.50 5.19

CP 3.17E-03 2.72E-05 0.01 4.13E-03 0.74 1.17 4.00

Hgw 24.37 10.43 41.68 24.50 0.19 -0.02 -0.07

MiD 12.03 5.44 18.54 11.98 0.21 -0.1 -0.4

MaD 33.90 22.17 44.00 33.78 0.10 -0.25 0.46

EML 19.21 8.95 25.61 19.21 0.12 -0.26 1.36

EMW 11.67 5.46 17.97 11.84 0.15 0.37 0.68

EMT 7.38 4.94 10.96 7.51 0.13 0.44 0.29

ENL 21.64 13.39 29.54 21.87 0.12 0.31 0.41

ENW 20.68 8.51 27.31 20.72 0.12 -0.37 1.32

ENT 12.15 7.19 19.41 12.42 0.16 0.52 0.18

ENDI 0.03 0.02 0.04 0.03 0.09 -4.88E-04 -2.18E-01

ENII 1.00 0.98 1.00 0.99 0.004 -1.50 2.45

EMVSR 0.31 0.21 0.40 0.31 0.10 -5.62E-02 -5.87E-02

SCTI 2.78 1.60 5.36 2.91 0.25 0.61 -1.90E-02

ENDUI 0.96 0.93 0.97 0.96 0.005 -7.99E-01 2.23
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From the regression coefficients, we can see that ENV is

significantly influenced by ENL, ENW, and ENT (Figure 6), with

length having the greatest impact (0.599), followed by width

(0.533), and finally thickness (0.471). This indicates that during

the development of maize kernels, endosperm length has the most

significant effect on its overall volume, reflecting the morphological

characteristics of the internal structure of maize kernels.

Specifically, a longer endosperm may imply more storage

material, thus having a greater impact on the nutritional value

and growth potential of the kernel. Although width and thickness

also play significant roles, their influence is relatively lower

compared to length.

Similarly, through linear regression analysis of the relationship

between EMV and EML, EMW, and EMT, the following equation

was obtained:

EMV  ¼  0:502 x EML þ  0:426 x EMW þ  0:311 x EMT

The analysis shows that EML contributes themost to EMV (0.502),

followed by EMW (0.426), and finally EMT (0.311) (Figure 6). This

result indicates that embryo length plays the most crucial role in

determining its overall volume. Compared to the endosperm, although

embryo length, width, and thickness collectively influence volume, the

dominant role of length is more pronounced. This may be because the

embryo requires sufficient length during kernel development to

support its growth and functional realization, while width and

thickness are relatively less important.
4 Discussion

This study proposed a point cloud-based 3D analysis method

for kernels, achieving an important breakthrough in the field of 3D
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analysis of maize kernels (Figures 1, 3). Traditional two-

dimensional image analysis methods have significant limitations

in dealing with complex morphological structures, such as the loss

of spatial information and the inability to comprehensively reflect

the internal structure of kernels (Zhao et al., 2019; Li et al., 2020; Cai

et al., 2023; Li et al., 2023). In contrast, point cloud data technology,

by capturing the three-dimensional geometric information of

kernels (Wen et al., 2021), can accurately reproduce the

morphological features of kernels, including surface texture and

internal structure. Specifically, high-resolution two-dimensional

slice data generated by micro-CT scanning technology was

converted into a three-dimensional point cloud model, allowing

the detailed recording of the surface and internal structure of each

kernel (Figure 2). Through these point cloud data, basic

morphological features such as the volume, surface area, and

density of the endosperm and embryo can be calculated, and

complex geometric morphological parameters, such as curvature

and symmetry, can also be extracted (Supplementary Table S1).

Compared to traditional methods, the point cloud-based 3D

reconstruction method not only improves the accuracy and

reliability of phenotypic analysis but also provides rich data

support for the systematic study of complex morphological

features (Miao et al., 2021; Wen et al., 2021). Furthermore, the

processing and analysis techniques of point cloud data have high

automation and high-throughput characteristics, enabling us to

process a large number of samples in a short time, significantly

improving the efficiency and scale of phenotypic research.

Based on the point cloud data-driven phenotypic analysis

method, this study introduced several novel kernel morphological

phenotypic indicators, including ENDI, ENII, EMVSR, SCTI, and

ENDUI (Figure 3). These new indicators provide fresh perspectives

for more comprehensively describing kernel morphological
FIGURE 4

Heatmap of correlations among kernel phenotypic parameters.
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FIGURE 5

Kernel phenotypic interactome networks across different subgroups.
TABLE 2 Analysis of differences in 27 maize kernel traits across four subgroups.

Trait P-value Mixed NSS SS TST

KS 2.81E-01 0.22 ± 0.04a 0.22 ± 0.04a 0.22 ± 0.03a 0.23 ± 0.04a

KV 5.04E-01 204.59 ± 46.62a 207.23 ± 43.86a 194.76 ± 47.50a 201.73 ± 40.24a

KSur 2.19E-04 284.63 ± 76.94a 283.62 ± 64.96a 256.28 ± 41.07ab 251.21 ± 50.87b

KSSA 7.86E-04 1.36 ± 0.26a 1.37 ± 0.27a 1.35 ± 0.20ab 1.24 ± 0.17b

KSP 6.13E-01 0.35 ± 0.08a 0.36 ± 0.08a 0.37 ± 0.08a 0.38 ± 0.10a

EMV 8.48E-02 30.89 ± 8.30a 31.29 ± 5.58a 30.15 ± 9.74a 28.98 ± 7.06a

EMS 5.14E-01 98.45 ± 22.21a 100.10 ± 15.66a 97.67 ± 21.63a 96.08 ± 20.95a

EMP 6.25E-02 0.15 ± 0.02a 0.15 ± 0.02a 0.15 ± 0.02a 0.14 ± 0.03a

ENV 5.46E-01 172.90 ± 39.89a 175.10 ± 40.96a 163.57 ± 38.81a 171.59 ± 35.45a

ENS 6.50E-01 242.29 ± 45.00a 246.29 ± 44.05a 236.11 ± 48.61a 241.18 ± 40.30a

ENP 2.97E-01 1.56 ± 0.03a 1.56 ± 0.04a 1.56 ± 0.04a 1.57 ± 0.04a

(Continued)
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characteristics and internal structures. Through analysis of

phenotypic data across different subgroups (Mixed, NSS, SS,

TST), we found that these newly developed parameters played

crucial roles in revealing intergroup differences. For instance,
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EMVSR was significantly lower in the TST subgroup compared to

other subgroups, suggesting that the TST subgroup may possess

more compact endosperm structure, which is consistent with its

smaller KSur and specific surface area KSSA. Furthermore,
TABLE 2 Continued

Trait P-value Mixed NSS SS TST

CV 2.64E-01 0.79 ± 0.74a 0.84 ± 0.66a 1.04 ± 0.99a 1.02 ± 0.87a

CP 1.27E-01 0.003 ± 0.003a 0.004 ± 0.003a 0.004 ± 0.003a 0.005 ± 0.003a

Hgw 3.18E-02 23.81 ± 4.47b 25.73 ± 5.04a 24.34 ± 3.87ab 24.03 ± 4.66b

MiD 1.88E-01 12.07 ± 2.97a 11.75 ± 2.26a 13.07 ± 1.94a 11.91 ± 2.57a

MaD 3.53E-01 33.86 ± 4.36a 33.33 ± 3.29a 34.72 ± 2.76a 33.89 ± 3.23a

EML 4.70E-01 19.20 ± 2.36a 19.51 ± 1.81a 18.90 ± 2.58a 19.07 ± 2.34a

EMW 2.07E-02 12.16 ± 1.65ab 12.19 ± 1.56a 11.84 ± 1.39ab 11.48 ± 1.89b

EMT 6.42E-01 7.46 ± 0.85a 7.56 ± 0.89a 7.70 ± 1.26a 7.47 ± 1.05a

ENL 7.47E-01 21.54 ± 2.64a 22.06 ± 2.43a 21.43 ± 2.72a 21.96 ± 2.58a

ENW 5.75E-02 21.42 ± 2.72a 20.71 ± 2.34a 20.39 ± 1.52a 20.46 ± 2.56a

ENT 8.63E-01 12.45 ± 1.73a 12.48 ± 2.05a 12.29 ± 2.06a 12.40 ± 1.94a

ENDI 2.62E-01 0.03 ± 0.002a 0.03 ± 0.003a 0.03 ± 0.003a 0.03 ± 0.003a

ENII 1.39E-01 1.00 ± 0.004a 1.00 ± 0.004a 0.99 ± 0.005a 0.99 ± 0.004a

EMVSR 3.69E-02 0.31 ± 0.04ab 0.31 ± 0.03a 0.31 ± 0.04ab 0.30 ± 0.03b

SCTI 6.96E-01 3.00 ± 0.68a 2.97 ± 0.75a 2.84 ± 0.58a 2.85 ± 0.73a

ENDUI 2.33E-01 0.96 ± 0.004a 0.96 ± 0.004a 0.96 ± 0.004a 0.96 ± 0.005a
CV, Cavity Volume; CP, Cavity Proportion; EML, Embryo Length; E15-MarMT, Embryo Thickness; EMV, Embryo Volume; EMW, Embryo Width; EMS; Embryo Surface Area; EMP, Embryo
Proportion; ENDI, Endosperm nutrient density index; ENDUI, Endosperm Density Uniformity Index; ENII, Endosperm integrity index; ENL, Endosperm Length; ENP, Endosperm Proportion;
ENV, Endosperm Volume; ENS, Endosperm Surface Area; ENT, Endosperm Thickness; Hgw, 100-Kernel Weight; KSSA, Kernel Specific Surface Area; KSP, Kernel Sphericity; KSur, Kernel
Surface Area; KS, Kernel Sphericity; KV, Kernel Volume; MaD, Maximum distance between the embryo and the seed coat; MiD, Minimum distance between the embryo and the seed coat; SCTI.
Kernel coat tightness index. Different lowercase letters (a, b) within the same row indicate significant differences among treatments at P < 0.05 level based on Duncan's multiple range test. Values
are presented as mean ± standard deviation.
FIGURE 6

Linear regression results between embryo (A) and endosperm (B) volume and internal structure size.
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although ENII showed no significant differences among subgroups,

its values were slightly lower in SS and TST subgroups, indicating

potentially simpler internal network structures of endosperm in

these two subgroups. These findings provide important insights for

further investigation of kernel internal structural characteristics and

genetic mechanisms across different subgroups (Figure 4). While

this study significantly enhanced the accuracy and efficiency of

maize kernel morphological feature analysis through a point cloud

data-based high-throughput phenotyping system, we must

recognize that phenotypes are the result jointly shaped by the

interaction between genotype and environment. Therefore, future

research should integrate phenotypic data with genotypic analysis

to explore how these observed morphological features are

influenced by both genetic factors and environmental conditions.

For example, combining genome-wide association studies (GWAS)

or transcriptomic data can help identify gene loci or regulatory

networks associated with phenotypic indicators such as ENDUI and

ENII, and further understand their expression patterns under

different environmental conditions. This integrated analysis of

phenotype and genotype will contribute to elucidating the

molecular mechanisms behind maize kernel morphological

variation, providing a scientific foundation and potential targets

for directed improvement of kernel traits.

Inspired by the progress in microbial community research

(Faust et al., 2012; Peschel et al., 2021), this study proposed the

concept of a crop phenotypic interactome network for the first time

and successfully constructed a 3D geometric phenotypic

interactome network for maize kernels (Figure 5). This network

systematically integrated 27 different morphological features,

revealing the interrelationships and mechanisms of action among

these features. The construction of the phenotypic interactome

network not only helps identify key phenotypic indicators but also

provides new perspectives for elucidating the genetic basis of complex

traits. Through the phenotypic interactome network, we found that

ENDUI and ENII are central indicators of kernel morphological

phenotypes. These two composite indicators occupy a central position

in the network, indicating their important roles in the regulation of

kernel morphology. Further network analysis revealed the interaction

relationships between different morphological features, such as the

influence of kernel length, width, and thickness on embryo and

endosperm volume (Figure 5). These findings provide important clues

for a deeper understanding of the genetic mechanisms underlyingmaize

kernel morphological variation. Additionally, the phenotypic

interactome network also revealed the association relationships of

phenotypic features among different subgroups. The study showed

that there were significant differences in certain key indicators among

the Mixed, NSS, and TST subgroups. These differences may reflect the

regulatory effects of different genetic backgrounds on kernel

morphological features.

Although this study significantly improved the accuracy and

efficiency of analyzing maize kernel morphological features

through a high-throughput phenotyping system based on point

cloud data, there are still some limitations. For example, the

complexity of data processing and analysis requires high-
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performance computing resources and professional technical

support (Mir et al., 2019; Danilevicz et al., 2021; Kienbaum

et al., 2021), which may limit its widespread application in

resource-limited situations. Furthermore, the construction and

interpretation of new indicators and phenotypic interactome

networks still require more experimental evidence to validate

their biological significance and application value. Additionally,

the research mainly focused on maize kernel morphology and has

not been widely validated for its generality in other crops or

phenotypic features. These limitations indicate that future efforts

are needed to further optimize and extend the application scope of

this method.

In summary, the high-throughput phenotyping system based

on point cloud data developed in this study, by introducing new

morphological phenotypic indicators and constructing a

phenotypic interactome network, significantly improved the

accuracy and efficiency of analyzing maize kernel morphological

features. The surface and internal fine structures of kernels, which

are difficult to capture by traditional methods, were precisely

recorded, providing rich phenotypic data. This not only provides

new targets and strategies for mining genetic diversity and breeding

high-yielding and high-quality varieties but also promotes the

systematic and refined development of phenotypic research.
5 Conclusion

This study successfully developed a high-throughput 3D

phenotypic analysis method for maize kernels based on point

cloud data, significantly improving the accuracy and efficiency of

analyzing kernel morphological features. Through high-resolution

point cloud models generated by micro-CT scanning technology,

we were able to capture the detailed three-dimensional structure of

kernels and propose new morphological phenotypic indicators,

such as the ENDUI and the ENII. These new indicators enriched

the existing morphological phenotypic data, providing more

comprehensive information on kernel morphology. The results

showed that the analysis method based on point cloud data not

only captured more subtle morphological differences but also

revealed the complex interrelationships among different

morphological features. Through 3D phenotypic interactome

network analysis, we identified key indicators that play crucial

roles in morphological regulation, providing new perspectives for

the improvement of kernel morphology. Particularly, the study

found that the length of the endosperm and embryo played a key

role in determining their overall volume, providing important clues

for understanding the developmental mechanisms of maize kernels.

Furthermore, the analysis of morphological features across different

maize subgroups revealed significant morphological differences,

which were related to specific genetic backgrounds and adaptive

traits. This study not only achieved innovative breakthroughs in

technical methods but also provided important insights into the

developmental mechanisms of maize kernels, facilitating the

development of more precise breeding strategies.
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