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1The Alan Turing Institute, London, United Kingdom, 2Zalando Societas Europaea (SE),
Berlin, Germany, 3Department of Plant Science and the Bioeconomy, Rothamsted Research,
Harpenden, United Kingdom, 4Department of Chemical Engineering and Biotechnology, University of
Cambridge, Cambridge, United Kingdom
Introduction: Recent advancements in sensor technologies have enabled

collection of many large, high-resolution plant images datasets that could be

used to non-destructively explore the relationships between genetics,

environment and management factors on phenotype or the physical traits

exhibited by plants. The phenotype data captured in these datasets could then

be integrated into models of plant development and crop yield to more

accurately predict how plants may grow as a result of changing management

practices and climate conditions, better ensuring future food security. However,

automated methods capable of reliably and efficiently extracting meaningful

measurements of individual plant components (e.g. leaves, flowers, pods) from

imagery of whole plants are currently lacking. In this study, we explore

interdisciplinary application of MapReader, a computer vision pipeline for

annotating and classifying patches of larger images that was originally

developed for semantic exploration of historical maps, to time-series images

of whole oilseed rape (Brassica napus) plants.

Methods: Models were trained to classify five plant structures in patches derived

from whole plant images (branches, leaves, pods, flower buds and flowers), as

well as background patches. Three modelling methods are compared: (i) 6-label

multi-class classification, (ii) a chain of binary classifiers approach, and (iii) an

approach combining binary classification of plant and background patches,

followed by 5-label multi-class classification of plant structures.

Results: A combined plant/background binarization and 5-label multi-class

modelling approach using a ‘resnext50d_4s2x40d’ model architecture for both

the binary classification and multi-class classification components was found to

produce the most accurate patch classification for whole B. napus plant images

(macro-averaged F1-score = 88.50, weighted average F1-score = 97.71). This

combined binary and 5-label multi-class classification approach demonstrate
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similar performance to the top-performing MapReader ‘rai lspace ’

classification model.

Discussion: This highlights the potential applicability of the MapReader model

framework to images data from across scientific and humanities domains, and

the flexibility it provides in creating pipelines with different modelling approaches.

The pipeline for dynamic plant phenotyping from whole plant images developed

in this study could potentially be applied to imagery from varied laboratory

conditions, and to images datasets of other plants of both agricultural and

conservation concern.
KEYWORDS

plant phenotyping, computer vision, machine learning, image analysis,
plant development
1 Introduction

The phenotype, or observable and quantifiable physical traits of

individual plants, represents the interaction between their genetics,

environment, and management conditions (Costa et al., 2019;

Walter et al., 2015). The collection of accurate phenotype data is

therefore essential for improving our understanding of the

fundamental developmental mechanisms in plants and for the

future of plant breeding, as this will allow for identification of

advantageous genes and management practices to ensure plants are

optimally suited for growth and production of high yields in their

given environment (Costa et al., 2019; Walter et al., 2015). As

climate conditions are predicted to continue to change rapidly over

the coming decades, leading to novel or intensified environmental

pressures on agricultural crops, accurate and rapid plant

phenotyping are becoming increasingly integral to ensuring future

food security (Campbell et al., 2016; Corcoran et al., 2023a; Lobell

et al., 2011; Maraveas, 2024). However, conventional manual

methods for collecting plant phenotype data are often time and

labor intensive, and often require destruction of the plants being

measured (Campbell et al., 2016; Lobell et al., 2011). Therefore

phenotype data cannot be collected with the frequency required to

gain an in-depth understanding of the dynamics of plant growth,

including how development of different parts of plants may affect

each other throughout their growth cycle, or how fine temporal

resolution changes may be used to predict yield or abnormal

development (Corcoran et al., 2023b; Costa et al., 2019).

Sensor-based automated phenotyping can capture plant growth

dynamics more efficiently, however, the precision of image

segmentation tools remains a persistent challenge. Although

advancements in image systems and software have improved

mask creation for more accurate plant segmentation, these tools

often require manual adjustments, complicating the separation of

individual plant organs. Automated methods using machine

learning-based computer vision models have the potential to
02
significantly improve the accuracy and efficiency of data

extraction from images of crops at various scales (Gill et al., 2022;

Li et al., 2020). These methods have been primarily developed for

analysis on two kinds of plant imagery; plant organ images and

images of whole plants (Das Choudhury et al., 2019; Gill et al., 2022;

Li et al., 2020). Application of machine learning-based object

detection and segmentation models to count or collect

measurements of a specific plant organ such as leaves (Aich and

Stavness, 2017; An et al., 2017; Dobrescu et al., 2017; Golbach et al.,

2016; Lee et al., 2020; Namin et al., 2018), roots (Wan et al., 2019;

Xu et al., 2018), and seeds (Corcoran et al., 2023b) have

demonstrated high accuracy and efficiency. However, automated

analysis of whole individual plants has proven more challenging

(Gill et al., 2022; Li et al., 2020). This is due to the complexity of

whole plants as they are made up of multiple connected organs that

can be hard to segment and often overlap or occlude each other in

two-dimensional images (Gill et al., 2022; Li et al., 2020). Use of

multiple angles for 2D images, as well as 3D imaging, have been

proposed as viable solutions to inaccuracies introduced by

overlapping plant parts (An et al., 2017; Das Choudhary et al.,

2020; Gelard et al., 2017; Harandi et al., 2023; Paulus, 2019; Xu et al.,

2019). However, 3D images tend to be large and computationally

expensive to analyze, so this type of analysis may not be practical

when the aim of research is to extract data on the overall abundance

and distribution of various plant organs (e.g. leaves, flowers, pods)

and how these change across a time-series of images (Gelard et al.,

2017; Harandi et al., 2023; Paulus, 2019; Xu et al., 2019).

MapReader is an openly accessible and open-source Python

software library that allows users with limited expertise in computer

vision to load image data and divide original images into patches

which can be manually annotated to train deep convolutional

neural network models to classify patches in novel images

(Hosseini et al., 2022). MapReader was originally developed for

semantic exploration of historical maps at scale, specifically to

classify railways and related infrastructure (‘railspace’) in maps
frontiersin.org
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and explore how railspace changed over time and how it related to

other structures around it (Hosseini et al., 2022). Through the

‘railspace’ use case it was demonstrated how the abundance and

distribution of a branching structure (railway lines), and connected

or adjacent related structures (railway-related buildings) could be

accurately classified within complex two-dimensional images, and

compared across time-series images (Hosseini et al., 2022).

Therefore, this method appeared promising for application to

analysis of whole plant images as a MapReader model could be

trained on patches taken from these images and could allow for

computationally efficient segmentation of branches (a structure

similar in appearance in 2D images to rail networks) and

connected plant organs (Hosseini et al., 2022). In particular, the

MapReader pipeline offered a potential advantage in that spatial

relationships between patches could be used to better inform patch

classification and produce more accurate predictions of plant organ

abundance and distribution (Hosseini et al., 2022).

This paper explores the application of the MapReader pipeline

to the extraction of data on plant phenotypes from images of whole

oilseed rape (Brassica napus, hereinafter B. napus) plants (Hosseini

et al., 2022; Wood et al., 2024). The performance of multi-class

models for classification of six classes of patch (background, branch,

leaf, flower bud, flower and pod), an approach involving a chain of

binary classifier models for each of the aforementioned classes, and

a combined approach where the image is first classified into plant

and non-plant patches, with plant patches then being further

classified into the five plant organ classes (branch, leaf, flower

bud, flower, pod) are compared in terms of accuracy and

efficiency. The capacity to examine growth trends by comparing

classification of images of individual whole plants across time-series

is then demonstrated, and the potential use of data extracted using

the adapted MapReader pipeline to improve models of plant

development is discussed.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Data collection and annotation

A sub-set of 384 color (RGB) images of three whole Brassica napus

plants from the ‘Collection of side view and top view RGB images of B.

napus from a large scale, high throughput experiment’ created by

Williams et al. (2023a) were used in the development of the plant

patch classification model. These images were originally collected as part

of an experiment to assess flowering response in B. napus in response to

varying levels of winter cold, or vernalization (Williams et al., 2023b). All

plants were grown in an environmentally controlled glasshouse and

images were collected daily for six weeks from 6th June 2018 to 25th July

2018 (Williams et al., 2023a). Plants were imaged using a semi-

automated conveyor system (LemnaTec Scanalyzer) which transported

plants to a photo booth in which 4 RGB images were collected per day,

comprising of 1 top-down view image and 3 side view images at 0-, 45-,

and 90-degrees rotation (Williams et al., 2023a) (Figure 1). All top-down

view images were consistent in scale with each other and shared a 2454

by 2056 pixels resolution. Side-view images were all consistent in scale

with each other regardless of the degree of plant rotation and shared a

2056 by 2454 pixels resolution. Metadata attached to each image

identified the individual B. napus plant, the data of image capture,

genotype information, and which of two experimental vernalization

treatments the plant was exposed to prior to flowering (Williams et al.,

2023b). Side-view images from all angles were selected to performmodel

training, validation, and testing due to the lack of occlusion of different

plant parts compared to the top-down view images.

MapReader version 0.3.3 was used to carry out image

annotation, model training and model inference (https://

github.com/Living-with-machines/MapReader). Each side-view

whole plant image was sliced into a grid of 10 x 10-pixel patches

using the MapReader toolkit (Hosseini et al., 2022) (Figure 2). This
FIGURE 1

Images of whole Brassica napus plants collected by Williams et al. (2023a) using the LemnaTec Scanalyzer system used to develop the plant patch
classification model. Images were collected daily for six weeks from 06/06/2018-07/25/2018 from a top-down view (A), and side views at 0- (B),
45- (C), and 90- (D) degree angles.
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patch size was selected as it was the largest patch size for which the

majority of patches contained only a single class of plant part, as the

MapReader pipeline only allowed providing each patch with a

single label. Patches were then labelled using the MapReader

annotation interface, which allowed the annotator to view each

patch in isolation and assign it a label based on the predominant

plant organ or structure present within the patch (Hosseini et al.,

2022). These labels included five classes for different plant organs

and structures (branches = ‘branch’, leaves = ‘leaf’, flower buds =

‘bud’, open flowers = ‘flower’ and green pods containing seeds =

‘pod’) and one class for patches that did not contain any part of a

plant (‘background’) as shown in Figure 3; Supplementary Image 1-

6. As the flower buds, mature flowers, and pods tended to appear

only later in the growth period of each plant, the majority of

annotated patches were taken from images collected after 1st July

2018. After all, ‘background’, ‘leaf’ and ‘branch’ patches were

annotated, remaining patches were filtered based on pixel color in

order to retrieve supplemental ‘flower’, ‘bud’ and ‘pod’ patches as
Frontiers in Plant Science 04
these were smaller and present in less images than other classes,

therefore patches containing these plant structures were rarer.

The total number of patches annotated was 62,303

(Supplementary Table 1). Of these, the majority contained

‘background’ (44,872), with 7,942 ‘leaf’ patches, 5,426 ‘branch’

patches, 2,488 ‘flower’ patches, 839 ‘pod’ patches and 736 ‘bud’

patches (Supplementary Table 1). Due to the highly unbalanced

nature of the dataset, a stratified sampler was used to split the total

dataset into training, validation and testing batches, allocating 60%,

20% and 20%, respectively. To train models a weighted sampler was

used to ensure that each classifier model was shown examples from

all classes, including those that were underrepresented in the

dataset. The sample of patches shown to classifier models during

training was defined where weight for each class was calculated as:

class weight =
1

( (class sample count)
10 )
FIGURE 2

Side-view image of whole Brassica napus plant divided into 10 x 10-pixel patches using the MapReader toolkit.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1443882
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Corcoran et al. 10.3389/fpls.2025.1443882
This resulted in the following weights for each class:

‘background’ = 0.0004, ‘flower’ = 0.0067, ‘bud’ = 0.0226, ‘leaf’ =

0.0021, ‘pod’ = 0.0199, and ‘branch’ = 0.0031. This resulted in a

model training dataset comprised of 37,381 patches, a validation

dataset comprised of 12,461 patches and a testing dataset also

comprised of 12,461 distinct patches (Supplementary Table 1).

In this case, it was found not to be necessary to apply an further

preprocessing steps to patches before they were used in model

training and inference, although the MapReader pipeline does allow

patches to be normalized based on the mean and standard

deviations of pixel intensities where relevant (Hosseini et al., 2022).
2.2 Model training, validation and testing

The following model architectures that were previously trained

to detected ‘railspace’ as demonstrated by Hosseini et al., 2022 were

fine-tuned using the training dataset for classification of patches

derived from images of whole B. napus plants; ‘resnest101e’ with
Frontiers in Plant Science 05
and without generalized pre-training (Zhang et al., 2020),

‘resnext50d_4s2x40d’ (Yalniz et al., 2019), ‘tf_efficientnet_b3_ns’

(Tan and Le, 2020), ‘resnet152’ (He et al., 2015), ‘resnext101_32x8d’

(Yalniz et al., 2019), ‘vit_base_patch32_224’ (Dosovitskiy et al.,

2020), and ‘swin_base_patch4_window7_224_in22k’ (Liu et al.,

2021). These model architectures fine-tuned on ‘railspace’ data

can be accessed for further fine-tuning on other annotated

datasets at https://huggingface.co/papers/2111.15592.

Three modelling approaches for classification of whole B. napus

plant image patches were explored. Firstly, a 6-label multi-class

modelling approach in which all model architectures were fine-

tuned using the entire training dataset including labelled patches of

all five plant organ classes (‘branch’, ‘leaf’, ‘bud’, ‘flower’ and ‘pod’)

and labelled background patches. These were then validated using

the entire validation dataset, with the output of these models being a

prediction of which of the six total classes each patch was most

likely to contain, and the confidence level for that classification.

The second classification method explored was a chain of

binary-classifiers approach. For this approach, a binary-classifier
FIGURE 3

Labelled patches for each class derived from side-view images of whole Brassica napus plants including 5 plant parts (1 = ‘branch’, 2 = ‘leaf’,
3 = ‘bud’, 4 = ‘flower’, 5 = ‘pod’) and image background (0).
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model with each model architecture was fine-tuned for each of the

six classes (‘flower’, bud’, ‘leaf’, ‘branch’, ‘pod’, and ‘background’) by

adjusting the labels of the annotated patches so that a label of ‘1’

indicated that the patch contained the relevant class, and a label ‘0’

indicated that it did not contain the relevant class. So, for example,

when training a binary classifier for classification of ‘flower’ patches

a label of ‘1’ indicated that the patches contained flowers, and ‘0’

indicated that the patch contained another plant organ or

background. The output of these models was a prediction label of

‘0’ or ‘1’ for each class for each patch, as well as a confidence value.

The results of binary-classifiers for all six classes could then be

combined by taking the class with a ‘1’ label and highest confidence

value as the final prediction for each patch.

The final modelling approach explored was a two-step process

combining a binary-classifier and multiclass model. The first step

involved classifying all patches into either ‘background’ or ‘plant’

patches. To achieve this, the top-performing binary-classifier model

for ‘background’ patches developed for the second approach was

used, therefore this step did not require additional model training

and validation. For the second step, a 5-label multi-class model was

trained with each model architecture to classify patches into the five

plant organ classes (‘flower’, bud’, ‘leaf’, ‘branch’, and ‘pod’). Only

patches containing plants, meaning only patches assigned a ‘0’ label

by the top-performing ‘background’ binary-classifier model used in

the first step, were passed to the second 5-label plant classification

step. Therefore ‘background’ patches were filtered out and the 5-

label multi-class models were therefore trained on a subset of 10,458

patches, validated on a subset of 3,486 patches, and test on a subset

of 3,486 patches from the original training dataset that contained

plant parts (Supplementary Table 2).

For each of the three classification approaches outlined above,

all model architectures were trained, tested and validated using a

Baskerville Tier 2 high-performance computing service (HPC)

compute node with 512GB RAM, an Intel® Xeon® Platinum

8360Y CPU with 36 cores at 2.4GHz (with boost to 3.5GHz) and

a single NVIDIA A100 40GB graphics processing unit (GPU). The

training patch size was 10 by 10 pixels equal to the size of patches

sliced from the original B. napus images, the batch size was 16, and

training ran for 50 epochs. The learning rate for all model

architectures was set to 0.001, and an ‘Adam’ optimization

algorithm was used for all models (Kingma and Ba, 2017). The

scheduler parameters for all model architectures was step size = 10,

gamma = 0.1 and last epoch = -1. Training took on average 125

minutes to complete for each model and models were trained

concurrently on the Baskerville Tier 2 HPC service.

Accuracy of patch classification for the validation and testing

datasets was measured using the recall, precision, and F1-score.

Recall values were calculated as:

Recall =
TP

TP + FN

Where TP equaled ‘true positive results,’ or the number of

patches from each class that were correctly assigned that class label

during model inference, and FN equaled ‘false negative results’, or

the number of patches from each class that were incorrectly
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assigned another label that did not match the one assigned during

manual annotation.

Precision values were calculated as:

Precision =
TP

TP + FP

Where TP equaled the number true positive results as above,

and FP equaled the number of patches that were incorrectly

classified as belonging to each class.

F1-score (F) was then calculated as:

F = 2 ·
Precision · Recall
Precision + Recall

For each of these measures (recall, precision, and F1-score)

values were reported using three aggregation methods, resulting in a

micro-averaged, macro-average, and weighted average score for

each metric. Micro-averaged values were calculated using the

combined total number of true positive (TP), false negative (FN),

and false positives (FP) without considering the proportion of labels

in the dataset. For macro-averaged values recall, precision and F1-

score were first calculated for each class, and then averaged by the

number of classes without considering the proportion of labels in

each class. Weighted average values were calculated by first

calculating recall, precision, and F1-score for each class and then

returning the average considering the proportion of labels of each

class in the dataset.

Although the dataset was highly unbalanced with 72% of

labelled patches being ‘background’, reliable classification of the

five plant classes (‘flower’, ‘pod’, ‘leaf’, ‘bud’, and ‘branch’) was

considered high priority, as this was determined to be critical to

allowing accurate assessment the rate and pattern of growth of these

plant structures over time from the whole plant images. Therefore,

it was decided model performance would be ranked by macro-

averaged F1-score to emphasize accurate classification of minority

plant structure classes, rather than by micro-averaged or weighted

F1-score measures that were more representative of accuracy in

classification of background versus plant patches.
3 Results

3.1 Model performance on validation
dataset

3.1.1 6-label multi-class models
For the validation dataset, the top performing six label multi-

class model for classification of different B. napus plant structures

was a ‘resnest101e’ neural network (Table 1). This unweighted

macro-average accuracy of this model across all classes was 89.06%

and the micro-average 97.89%. When averaged across performance

on all classes, and weighted for class imbalance in the validation

dataset, the overall accuracy of the ‘resnest101e’ model was 97.89%.

The macro-average recall across all classes was 88.73%, meaning

that the mean rate of false negative errors across classes was 11.27%.

When weighted based on the imbalance number of examples of
frontiersin.org
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each class in the validation dataset, the average recall was 97.89%,

indicating a weighted false negative rate of 2.11%. The macro-

average precision was 89.46, indicating a 10.54% false positive rate

when averaged across all classes. This was lower than the 90.07%

macro-average precision of the ‘resnest101e_no_pretrain’ which

performed second best on the validation dataset when ranked

according to weighted F1 score. However, the weighted precision

of the ‘resnest101e’ model (97.89%) was higher than that of the

‘resnest101_no_pretrain’model (97.76%) when accounting for class

imbalance. As shown in Table 1 the ‘resnest101e’model was the top

performing model for classification of patches containing five out of

six individual classes: ‘background’, ‘bud’, ‘leaf’, ‘pod’, and ‘branch’.

Of these five classes this model most accurately differentiated

‘background’ patches from patches containing plant parts (F1-0 =

99.87%). ‘Flower,’ ‘leaf’, and ‘branch’ patches were also classified

with over 90% accuracy using this model architecture, while

classification of ‘bud’ (F1-2 = 76.25%) and ‘pod’ (F1-4 = 76.14)

patches was comparatively less accurate. For classification of

‘flower’ patches, the top performing model architecture was

‘resnext50d_4s2x40d’ with the overall top performing model,
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‘resnest101e’, ranking third behind ‘resnest101e_no_pretrain’.

Classification of all patches included in the validation dataset was

completed using a single GPU in 46 seconds. Micro- and weighted

average F1-score for all 6-label multiclass models on the training

dataset can be found in Supplementary Table 3.

3.1.2 Chain of binary classifier models
The overall top performing model architecture for classification

of B. napus plant parts in the validation dataset was

‘resnext50d_4s2x40d’ with a macro-averaged F1-score of 88.58%

and a weighted average F1-score across all six classes of 98.08%

(Table 2). As shown in Table 2, the ‘resnext50d_4s2x40d’ model

demonstrated the highest accuracy for five out of six individual

classes (‘background’, ‘flower’, ‘bud’, ‘leaf’, and ‘branch’) compared

to other model architectures. Binary classification using the

‘resnext50d_4s2x40d’ model was most accurate for differentiating

‘background’ patches from plant parts and was similar to the

accuracy of background classification using the top performing

multi-class model. Classification of ‘flower’, ‘leaf’, and ‘branch’

patches was marginally more accurate and classification of ‘bud’
TABLE 1 Performance of 6-label multi-class computer vision classifier models on the validation set with 12,461 labelled patches (20% of all manually
annotated patches) including macro-averaged recall and precision in descending order according to F1-macro.

Model Name Rec-
macro

Prec-
macro

F1-macro F1-
0

F1-
1

F1-
2

F1-
3

F1-
4

F1-
5

Time

‘resnest101e’ 88.73 89.46 89.06 99.87 91.90 96.39 76.25 93.78 76.16 0m 46s

‘vit_base_patch32_224’ 88.16 83.43 85.36 99.77 88.31 94.91 69.23 94.09 65.85 0m 24s

‘resnext101_32x8d’ 85.03 86.87 85.91 99.87 88.14 94.67 70.59 91.19 71.03 0m 40s

‘resnet152’ 84.73 88.37 86.13 99.82 88.55 94.68 71.49 93.81 68.47 0m 34s

‘tf_efficientnet_b3_ns’ 85.62 87.31 86.32 99.83 90.28 95.50 70.07 92.93 69.31 0m 28s

‘resnext50d_4s2x40d’ 86.17 88.97 87.41 99.87 90.53 95.42 71.85 94.22 72.56 0m 48s

‘resnest101e_no_pretrain’ 87.18 90.07 88.41 99.80 91.67 96.12 74.05 94.00 74.85 0m 46s

‘swin_base_patch4_window7_224_in22k’ 16.67 0.20 0.39 0.0 0.0 0.0 2.33 0.0 0.0 0m 45s
frontie
The F1-score for each class label is also listed. F1-0: ‘Background’; F1-1: ‘Branch’; F1-2: ‘Leaf’; F1-3: ‘Bud’; F1-4: ‘Flower’; and F1-5: ‘Pod’. Time is for model inference on the total 12,461
patch dataset.
Bold values indicate the top-performing model for each performance metric specified by column name.
TABLE 2 Performance of computer vision binary classifier models on the validation set with 12,461 labelled patches (20% of all manually annotated
patches) in descending order according to F1-macro. The F1-score for each class label is also listed.

Model Name F1-macro F1-0 F1-1 F1-2 F1-3 F1-4 F1-5 Time

‘resnext50d_4s2x40d’ 88.58 99.88 92.36 96.75 75.80 94.89 71.81 5m 14s(0m 52s)

‘resnest101e_no_pretrain’ 87.50 99.85 91.04 95.54 71.34 92.99 74.21 4m 50s(0m 49s)

‘resnest101e’ 87.29 99.81 89.83 95.98 72.37 94.43 71.34 4m 48s(0m 48s)

‘tf_efficientnet_b3_ns’ 87.15 99.85 91.46 95.21 74.26 92.57 69.54 2m 42s(0m 27s)

‘resnet152’ 87.09 99.15 90.24 94.69 73.76 93.81 70.87 3m 13s(0m 32s)

‘resnext101_32x8d’ 85.82 99.70 89.76 95.28 67.34 93.70 69.14 3m 51s(0m 39s)

‘vit_base_patch32_224’ 73.33 99.70 82.87 92.84 24.14 93.89 46.55 2m 33s(0m 26s)

‘swin_base_patch4_window7_224_in22k’ 18.17 83.73 0.0 22.61 0.0 0.0 2.66 4m 12s(0m 42s)
F1-0, ‘Background’; F1-1, ‘Branch’; F1-2, ‘Leaf’; F1-3, ‘Bud’; F1-4, ‘Flower’; and F1-5, ‘Pod’. Time is for model inference on the total 12,461 patch dataset.
Bold values indicate the top-performing model for each performance metric specified by column name.
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patches was marginally less accurate using the chain of binary

classifier approach compared to the top performing multi-class

model, with the difference in accuracy for classification of all

aforementioned classes between the top performing multi-class

and binary classifier models being less than 2% (Tables 1, 2).

Similar to the top performing multi-class model, the ‘pod’ class

was classified with the lowest accuracy. There was also the largest

discrepancy in accuracy between model approaches for ‘pod’

patches, with the binary classifier model demonstrating 4.35%

lower accuracy than the top performing multi-class model

(Tables 1, 2). Additionally, ‘resnext50d_4s2x40d’ was not the

highest performing model architecture for binary ‘pod’ patch

classification as a ‘resnest101e_no_pretrain’ binary classifier

model demonstrated 74.21% accuracy on the validation dataset,

though this was still lower than the accuracy of ‘pod’ classification

for the top performing multi-class model (Tables 1, 2). The total

time taken to complete binary classification of the validation dataset

with the ‘resnext50d_4s2x40d’ model was 5 minutes 14 seconds

with a single GPU, however it should be noted that with access to a

GPU cluster capable of running multiple jobs, binary classification

for each class could be run simultaneously reducing the time

required to 52 seconds (Table 2). Weighted average F1-score for

all binary classifier models on the training dataset can be found in

Supplementary Table 4.

3.1.3 Combined plant/background binarization
and 5-label multi-class model of plant structures

The top-performing 5-label (‘flower’, ‘bud’, ‘leaf’, ‘pod’, ‘branch’)

model architecture for classifying B. napus plant structures in the

validation dataset following binary classification of plant patches

from background patches based on macro-averaged F1-score was

‘resnext50d_4s2x40d’ (F1-macro = 86.22%) (Table 3). However, the

top performing model architecture when accounting for class

imbalance was ‘resnest101e_no_pretrain’ with a weighted F1-score

of 91.91%. The ‘resnest101e_no_pretrain’ model architecture

performed best at classification of ‘leaf’, ‘pod’ and ‘branch’ patches

while the ‘resnext50d_4s2x40d’ architecture performed best at
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classification of ‘bud’ patches. A ‘resnest101e’ model performed

best at classification of ‘flower’ patches and ranked second best in

terms of weighted F1-score and fourth by macro-average F1-score.

After combining the results of binary plant/background classification

with 5-label classification of plant structures, the top-performing

model architecture was ‘resnext50d_4s2x40d’ with a macro-average

F1-score of 88.50% (Table 4). Classification of plant patches in the

validation dataset using the overall top performing model

architecture (‘resnest101e_no_pretrain’) took 14 seconds to

complete using a single GPU (Table 3). Micro- and weighted

average F1-score for these models on the training dataset can be

found in Supplementary Tables 5, 6.
3.2 Model performance on test dataset

3.2.1 6-label multi-class models
The top performing 6-label multiclass model for classifying B.

napus plant structures in the test dataset was ‘resnext101_32x8d’ with

a macro-average F1-score of 90.28%, which also provided the most

accurate classification of ‘flower’ and ‘branch’ patches for the

validation dataset (Table 5). When accounting for class imbalance,

the top-preforming model architecture was ‘resnest101e_no_pretrain’

with a weighted F1-score of 98.01%. The model that demonstrated the

highest performance on the validation dataset, ‘resnest101e’ ranked

third in for both weighted and macro-average F1-score, however the

performance of this model was consistent with the validation dataset

with a less than 1% difference in both weighted and macro-average

F1-score between datasets. The ‘resnest101e’ also exhibited a less than

1% difference in accuracy of classification of ‘background’, ‘flower’,

‘leaf’, and ‘branch’ patches for the test dataset compared to the

validation dataset. The ‘resnest101e’ was also the top performing

model for classification of ‘pod’ patches in the test displaying a 5.06%

improvement in accuracy compared to the validation dataset.

However, the accuracy of ‘bud’ patch classification for the test

dataset using this model was 6.44% lower than for the validation

dataset, with a ‘resnest101e_no_pretrain’ model demonstrating the
TABLE 3 Performance of 5-label multi-class computer vision classifier models on the validation set with 12,461 labelled patches (20% of all manually
annotated patches) in descending order according to F1-macro.

Model Name Rec-macro Prec-
macro

F1-macro F1-
1

F1-
2

F1-
3

F1-
4

F1-
5

Time (m)

‘resnext50d_4s2x40d’ 87.28 85.30 86.22 89.93 95.51 77.52 94.22 73.92 0m 14s

‘resnext101_32x8d’ 85.22 86.44 85.52 90.11 95.41 73.49 93.62 75.0 0m 14s

‘tf_efficientnet_b3_ns’ 86.48 84.58 85.42 90.73 95.32 74.58 93.59 72.88 0m 9s

‘resnest101e’ 85.87 84.78 85.32 90.50 95.53 74.74 94.47 71.35 0m 14s

‘vit_base_patch32_224’ 88.77 85.85 85.21 89.20 94.92 72.20 94.28 75.44 0m 7s

‘resnest101e_no_pretrain’ 85.76 84.45 84.96 90.93 95.82 68.10 93.93 76.03 0m 14s

‘resnet152’ 85.48 84.90 84.69 89.28 95.30 72.45 94.33 72.08 0m 9s

‘swin_base_patch4_window7_224_in22k’ 20.0 9.11 12.52 0.0 62.59 0.0 0.0 0.0 0m 12s
The F1-score for each class label is also listed. F1-0, ‘Background’; F1-1, ‘Branch’; F1-2, ‘Leaf’; F1-3, ‘Bud’; F1-4, ‘Flower’; and F1-5, ‘Pod’. Time is for model inference on the total 12,461
patch dataset.
Bold values indicate the top-performing model for each performance metric specified by column name.`
frontiersin.org

https://doi.org/10.3389/fpls.2025.1443882
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Corcoran et al. 10.3389/fpls.2025.1443882
highest accuracy for this class in the test dataset. The top performing

models (‘resnest101e_no_pretrain’, ‘resnext101_32x8d’, and

‘resnest101e’) all took 46–48 seconds to complete classification of all

patches in the test dataset using a single GPU. Micro- and weighted

average F1-score for these models on the testing dataset can be found

in Supplementary Table 7.

3.2.2 Chain of binary classifier models
The top performing binary classifier model for ‘background,’

‘flower’, ‘bud’, ‘leaf’, and ‘branch’ classes in the test dataset used a

‘resnext50d_4s2x40d’ architecture, which conformed with binary

classifier model performance on the validation dataset (Table 6).

For ‘pod’ patches a binary classifier with a ‘resnest101e_no_pretrain’

was the top performing model which was also similar to the

performance of binary classifier models on the validation dataset.

The combined time taken to complete classification of all patches for

all classes in the test dataset with the ‘resnext50d_4s2x40d’model was

4 minutes 52 secs, however with access to a GPU cluster capable of

running multiple jobs, binary classification for each class could be run

simultaneously reducing the time required to 49 seconds. Weighted
Frontiers in Plant Science 09
average F1-score for these models on the testing dataset can be found

in Supplementary Table 8.

3.2.3 Combined plant/background binarization
and 5-label multi-class model of plant structures

The top performing 5-label model architecture for classifying B.

napus plant structures in the test dataset following binary

classification of plant patches from background patches was

‘resnext50d_4s2x40d’ with a weighted F1-score of 88.08% when

accounting for class imbalance and a macro-average F1-score of

88.12% without accounting for class imbalance (Table 7). The

‘resnext50d_4s2x40d’ model architecture performed best as

classification of all plant structure classes except ‘leaf’ patches, for

which a ‘resnest101e_no_pretrain’ model architecture performed

most accurately. Classification of plant patches in the test dataset

with the ‘resnext50d_4s2x40d’ model architecture took 14 seconds

to complete with a single GPU. After combining the results of

binary plant/background classification with 5-label classification of

plant structures, the top-performing model architecture was

‘resnext50d_4s2x40d’ with a macro-average F1-score of 90.08%

(Table 8). Micro- and weighted average F1-score for these models

on the training dataset can be found in Supplementary Tables 9, 10.
3.3 Post-processing and application to
novel whole-plant images

Inference was performed on 93 additional images of whole B.

napus plants from the ‘Collection of side view and top view RGB

images of B. napus from a large scale, high throughput experiment’

(Williams et al., 2023a) that were not used in model training,

validation, or testing datasets. Predictions for each ten-by-ten pixel

patch were generated using the top-performing models for each

modelling approach (6-label classification, chain of binary

classifiers, and combined binary plant/background classification

with 5-label plant part classification) and overlaid with the

original image in order to visualize and assess model performance

and sources of error in classifying novel intact whole plant images.
TABLE 5 Performance of 6-label multi-class computer vision classifier models on the test set with 12,461 labelled patches (20% of all manually
annotated patches) in descending order according to F1-macro. The F1-score for each class label is also listed. .

Model Name Rec-macro Prec-macro F1-macro F1-0 F1-1 F1-2 F1-3 F1-4 F1-5 Time

‘resnext101_32x8d’ 89.06 91.85 90.28 99.84 91.38 94.47 82.08 95.86 78.05 0m 48s

‘resnest101e_no_pretrain’ 89.58 90.95 90.08 99.84 91.21 95.21 84.07 95.82 74.31 0m 48s

‘resnest101e’ 89.02 88.23 88.39 99.83 90.98 95.33 69.81 93.13 81.22 0m 46s

‘vit_base_patch32_224’ 90.66 86.24 88.20 99.85 90.55 95.30 80.74 93.52 69.21 0m 26s

‘tf_efficientnet_b3_ns’ 88.00 87.34 87.61 99.68 89.74 93.60 71.06 93.27 78.29 0m 28s

‘resnet152’ 88.96 87.12 87.32 99.85 88.76 94.95 84.68 94.40 61.27 0m 32s

‘resnext50d_4s2x40d’ 86.12 79.36 81.89 99.76 85.88 93.94 58.06 92.87 60.80 0m 49s

‘swin_base_patch4_window7_224_in22k’ 16.67 12.37 14.20 85.20 0.0 0.0 0.0 0.0 0.0 0m 41s
fronti
F1-0, ‘Background’; F1-1, ‘Flower’; F1-2, ‘Bud’; F1-3, ‘Leaf’; F1-4, ‘Pod’; and F1-5, ‘Branch’. Time is for model inference on the total 12,461 patch dataset.
Bold values indicate the top-performing model for each performance metric specified by column name.
TABLE 4 F1-scores for combined results of plant/background
classification using the top performing binary classifier model
(‘resnext50d_4s2x40d’, see Table 2) and 5-label multiclass plant patch
classification (Table 3) for the validation dataset.

Model Name F1-macro

‘resnext50d_4s2x40d’ 88.50

‘resnext101_32x8d’ 87.91

‘tf_efficientnet_b3_ns’ 87.83

‘resnest101e’ 87.75

‘vit_base_patch32_224’ 87.65

‘resnest101e_no_pretrain’ 87.44

‘resnet152’ 87.22

‘swin_base_patch4_window7_224_in22k’ 27.08
Bold values indicate the top-performing model for each performance metric specified by
column name.
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An example of an original inference image can be seen in Figure 4A,

with classification of patches in this image using the top-performing

6-label shown in Figure 4B, the top-performing chain of binary

classifiers approach in Figure 4C, and top-performing combined

binary plant/background with 5-label plant part classification in

Figure 4D. The results of 6-label classification with the ‘resnest101e’

were applied directly to the novel images without any further

preprocessing. When compared to the original image (Figure 4A),

this approach exhibited substantial misclassification errors where

background patches were wrongly identified as ‘leaf’ patches

(Figure 4B). To get the final classification for each image using

the top-performing chain of binary classifiers approach

(‘resnext50d_4s2x40d’ binary models for all but pod patches

which were classified using the binary ‘resnest101e_no_pretrain’

model) the prediction and confidence generated for each patch by a

the binary classifier for each of the six labels was compared so that

final label was the label for which the confidence that the patch

contained that label was highest. This approach produced similar

results to 6-label classification with the most common source of

error being background patches misclassified as ‘leaf’ patches
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(Figure 4C; Supplementary Image 7-12). Final classification for

each image using the combined binary plant/background was

achieved by first using the ‘resnext50d_4s2x40d’ binary classifier

to predict whether each patch in the image contained the

background or part of the plant, and then automatically passing

plant patches to the ‘resnext50d_4s2x40d’ 5-label model for to

predict which part of the plant (‘branch’, ‘leaf’, ‘bud’, ‘flower’, ‘pod’)

was contained in each plant patch. This approach substantially

reduced misclassification of background patches as plant parts as

was seen in the 6-label classification and chain of binary classifiers

approaches (Figure 4D).
4 Discussion

The modelling approach that produced the top-performing

model for classification of patches in the validation and testing

datasets was the 6-label multi-class classification approach. This

approach yielded the most accurate classification of validation and

testing patches when ranked by macro-average F1-score to
TABLE 7 Performance of 5-label multi-class computer vision classifier models on the test set with 12,461 labelled patches (20% of all manually
annotated patches) in descending order according to F1-macro.

Model Name Rec-macro Prec-macro F1-macro F1-
1

F1-
2

F1-
3

F1-
4

F1-
5

Time (m)

‘resnext50d_4s2x40d’ 88.28 88.18 88.12 86.70 94.00 82.35 89.53 88.02 0m 14s

‘resnest101e_no_pretrain’ 86.35 86.79 86.25 84.82 95.16 78.88 87.95 84.42 0m 13s

‘resnest101e’ 86.44 86.86 86.21 84.85 92.97 80.54 88.84 85.06 0m 13s

‘tf_efficientnet_b3_ns’ 85.98 86.55 86.01 83.40 93.60 80.8 88.95 83.30 0m 8s

‘vit_base_patch32_224’ 85.90 86.34 85.78 81.99 93.47 79.58 86.87 86.96 0m 7s

‘resnext101_32x8d’ 85.58 85.98 85.17 82.93 94.05 74.65 87.26 86.93 0m 12s

‘resnet152’ 85.31 86.05 85.07 84.27 94.94 75.07 86.96 84.13 0m 9s

‘swin_base_patch4_window7_224_in22k’ 20.00 3.76 6.33 0.0 31.63 0.0 0.0 0.0 0m 11s
F1-0, ‘Background’; F1-1, ‘Branch’; F1-2, ‘Leaf’; F1-3, ‘Bud’; F1-4, ‘Flower’; and F1-5, ‘Pod’. Time is for model inference on the total 12,461 patch dataset.
The F1-score for each class label is also listed.
Bold values indicate the top-performing model for each performance metric specified by column name.
TABLE 6 Performance of computer vision binary classifier models on the test set with 12,461 labelled patches (20% of all manually annotated
patches) in descending order according to F1-macro. The F1-score for each class label is also listed.

Model Name F1-macro F1-0 F1-1 F1-2 F1-3 F1-4 F1-5 Time

‘resnext50d_4s2x40d’ 88.76 99.88 92.36 96.75 75.80 95.97 71.81 4m 52s(0m 49s)

‘resnest101e_no_pretrain’ 87.50 99.85 91.04 95.54 71.34 92.99 74.21 4m 38s(0m 46s)

‘resnest101e’ 86.90 99.82 89.83 95.98 72.37 92.08 71.34 4m 38s(0m 46s)

‘tf_efficientnet_b3_ns’ 86.48 99.85 91.46 95.21 74.26 88.56 69.54 2m 49s(0m 28s)

‘resnet152’ 86.40 99.15 90.24 94.69 73.76 89.70 70.87 3m 14s(0m 32s)

‘resnext101_32x8d’ 85.41 99.70 89.76 95.28 67.93 90.66 69.14 3m 56s(0m 39s)

‘vit_base_patch32_224’ 72.78 99.70 82.87 92.84 24.14 90.58 46.55 2m 27s(0m 25s)

‘swin_base_patch4_window7_224_in22k’ 13.96 83.73 0.0 0.0 0.0 0.0 0.0 4m 11s(0m 42s)
F1-0, ‘Background’; F1-1, ‘Branch’; F1-2, ‘Leaf’; F1-3, ‘Bud’; F1-4, ‘Flower’; and F1-5, ‘Pod’. Time is for model inference on the total 12,461 patch dataset.
Bold values indicate the top-performing model for each performance metric specified by column name.
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prioritize classification of minority plant structure classes. However,

when the top-performing models from each of the three modelling

approaches (6-label classification, chain of binary classifiers, and

combined binary plant/background classification with 5-label plant

part classification) were used to classify patches in the context of

entire images of B. napus plants, as opposed to the isolated patches

classified in the model validation and testing, the combined binary

plant/background classification with 5-label plant part classification

was found to be the most accurate (weighted F1-score of 88.08%).

The overall top-performing model pipeline was therefore found to

be a combination of the binary classifier of plant versus background

patches and a 5-label multi-class classification model, both using a

‘resnext50d_4s2x40d’ model architecture.

The success of the combined binary plant/background

classification with 5-label multiclass ‘resnext50d_4s2x40d’ model

can be attributed to the high accuracy this approach displayed at

distinguishing background from plant patches (99.88%). This may be

partially due to the fact that the whole plant images were similar to

the ‘railspace’ images used in initial development of the MapReader

pipeline in that they both contained a high number of patches

containing ‘background.’ Misclassification of part of the

background as part of the plant was the most common source of

error in the inference results of the 6-label multi-class classification.

This is likely due to ‘leaf’ patches often being a solid dark green color

that was sometimes confused with the solid black background, and

‘bud’ and ‘pod’ patches often containing only a small portion of the

relevant plant part on the edge of the patch with the rest of the patch

taken up by solid black background. Creating final predictions labels

from a combination of all binary classifiers for each class and using

the highly accurate binary background/plant model to set labels for

‘background’ patches in the first step of the combined approach

eliminated the majority of misclassification errors for these patches.

As ‘background’ patches made up the majority of each image, this

greatly increased the accuracy and usefulness of predictions for

analysis of whole plant images. However, since the combined

binary plant/background classification with 5-label plant part
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classification was more efficient than the chain of binary classifiers

approach in terms of both pipeline complexity and time required to

complete training and inference, it is recommended that this model

be applied to the wider dataset of time-series images of whole

B. napus plants. Automated passing of patches identified as part of

the plant to the 5-label plant part model for further classification

ensured this method was more efficient in terms of time and

researcher input required to complete model training and inference.

In model validation and testing, classification of ‘bud’ and ‘pod’

patches were found to have the highest error rates (F1-score of

75.80-77.20 and 71.81-76.16 respectively). This is likely due to the

fact that ‘bud’ and ‘pod’ patches were the most underrepresented

classes, and binary classification models often tend to skew towards

categorizing data into the majority class, in this case patches not

containing flower buds or pods, leading to lower recall of the

minority class (Rawat and Mishra, 2022).

Overall, the combined plant/background binarization and 5-label

multi-class plant patch classification models tended to perform better

(82.35%) than 6-label multiclass (82.08%) or chain of binary classifier

models at classifying these most underrepresented classes; ‘bud’ and

‘pod’ patches (75.80%). However, this enhanced performance on

these minority classes was offset by less accurate classification or the

other plants classes (‘flower,’ ‘leaf’, and ‘branch’ patches) compared to

the other two modelling approaches when applied to the validation

and testing datasets (86.70% as opposed to 99%). This may be due to

the plant classes appearing more similar to each other without the

additional context of ‘background’ patches, leading to greater

confusion between plant classes than when this context is retained

inmodel training.When applied to novel whole plant images, the rate

of confusion between plant classes was similarly low for all three

approaches, providing further support for the benefits of using the

combined approach to analyses whole plant images due to the overall

low rate of misclassification errors between patches containing

different plant parts and between patches containing part of the

plant and ‘background’ patches.

Systemically, across all model architectures and modelling

approaches, the most common sources of error were ‘bud’ and

‘pod’ patches being misclassified as ‘background’ patches. This was

likely due to the small number of labelled patches for these classes to

compared to others in the dataset, as well as the fact that both flower

buds and pods are small and thin in appearance, and placed at the

extremities of the plant, leading to patches for these classes often

containing a large amount of background and a small amount of

plant material of the relevant class. Overall, there was relatively little

confusion between plant classes, which was unexpected as ‘pod,’

‘branch’ and ‘leaf’ patches can appear very similar to the human eye.

This suggests that the difference in shape and coloration of these

structures is sufficiently different in B. napus plants for computer

vision to reliably distinguish between, solidifying this species as a

good candidate for automated image analysis as well as highlighting

the potential application of these models to other species with

similar phenotypic traits such as other Brassica species.

The accuracy of the top-performing models for all three modelling

approaches was similar to the top-performing model for classification

of railspace in the original development use case for the MapReader
TABLE 8 F1 scores for combined results of plant/background
classification using the top performing binary classifier model
(‘resnext50d_4s2x40d’, see Table 2) and 5-label multiclass plant patch
classification (Table 7) for the test dataset.

Model Name F1-macro

‘resnext50d_4s2x40d’ 90.08

‘resnest101e’ 88.69

‘resnest101e_no_pretrain’ 88.52

‘tf_efficientnet_b3_ns’ 88.32

‘vit_base_patch32_224’ 88.13

‘resnext101_32x8d’ 87.62

‘resnet152’ 87.54

‘swin_base_patch4_window7_224_in22k’ 21.92
Bold values indicate the top-performing model for each performance metric specified by
column name.
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modelling framework (Hosseini et al., 2022). This provides strong

evidence for the versatility of this framework, both in terms of

application to developing models for automated analysis of images

from a vast variety of scientific and humanities disciplines, but also in

terms of allowing great flexibility in the modelling approaches the

MapReader framework can facilitate. Despite being developed

originally to compare multi-class modelling approaches, the

MapReader framework proved easily adaptable to a chain of binary

classifier approach and hierarchical, multi-step pipeline incorporating

multiple different modelling approaches (Hosseini et al., 2022). The

MapReader annotation tool also played a crucial role in being able to

develop a reliable model for the classification of patches in whole B.

napus plant images, as the functionality provided by the tool to filter

patches to easily locate and annotate patches for underrepresented
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classes greatly reduced the time and researcher effort that would have

otherwise been required to label sufficient training data.

The high accuracy of the top-performing combined plant/

background binarization and 5-label multi-class model suggests that

it can be applied to the full whole B. napus plant dataset to quantify the

abundance and distribution of plant structures, record when structures

first appear, such as first flowering and pod development and track

how these change over time throughout the time-series images of each

plant. This extracted dynamic phenotype data can then be linked to the

data that is available on the genetics, management, and environmental

conditions of the imaged plants, allowing for statistical analysis of how

these factors impact the processes of plant growth at an individual

scale. These insights have the potential to further our understanding of

how to breed and manage B. napus to produce high oilseed yields
FIGURE 4

(A) Original image of whole Brassica napus plant. (B) Classification of patches in an image of a whole Brassica. napus plant using the top-performing
6-label multi-class classification approach. (C) Classification of patches in an image of a whole Brassica. napus plant using the top-performing chain
of binary classifiers approach. (D) Classification of patches in an image of a whole Brassica. napus plant using the top-performing combined plant/
background binary classification and 5-label plant part classification approach.
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under varying climate conditions, as the automated analysis of the

time-series images enabled by the model developed in this paper allows

researchers to collect finer spatiotemporal phenotype data than has

previously been feasible with manual image analysis or conventional

phenotyping methods (Campbell et al., 2016; Corcoran et al., 2023b;

Costa et al., 2019; Lobell et al., 2011).

To improve the performance of the top-performing model on

novel whole B. napus plant image data it is recommended that the

model be fine-tuned with a larger set of plant class patches from the

total ‘Collection of side view and top view RGB images of B. napus

from a large scale, high throughput experiment’ (Williams et al.,

2023a). This can be achieved efficiently by using the top-performing

binary classifier model for distinguishing between background and

plant patches, which was found to be over 99% accurate, to filter

background patches from the patch dataset so that the annotators are

presented with only patches containing part of the plant. It is also

recommended that the model be applied to the top-down view

images of B. napus. If the model performance is not found to

decrease on application to this dataset, the model can be fine-tuned

based on a dataset of labelled patches taken from these images, again

using the plant/background binary classification model to speed up

the process of collect a representative sample of plant patches. The

dynamic phenotype data extracted from the top-down images can

then be used to supplement and verify the data extracted from the

corresponding side view images, as using multiple views is likely to

mitigate the issue of plant parts occluding each other in a single view.

If multi-label classification capabilities, wherein multiple plant parts

could be labelled within a single patch, were integrated into the

MapReader pipeline, it would also be beneficial to explore the use of

larger patch sizes that may provide more information about each

plant part to improve the accuracy of classification but cannot

currently be used due to the limitation of having to provide a

single label per patch.

Application of the model to other B. napus datasets collected using

more simplistic imaging set-ups, such as using a handheld digital

camera with a plant on a turntable, is feasible provided the limitations

derived from the data used to train the current version of the model are

addressed. Firstly, the scale of images within novel datasets would need

to be consistent with that of the ‘Collection of side view and top view

RGB images of B. napus from a large scale, high throughput

experiment’ (Williams et al., 2023a)’, and a variety of patch sizes

would need to be explored with theMapReader pipeline to find the size

which yields the most accurate results. Secondly, it would be

recommended that plants be photographed in front of a plain black

background to be consistent with the booth used for photographing

plants in the current dataset. Thirdly, as the lighting conditions are very

consistent across the current training data, it is likely that the model is

likely to be less accurate when applied to images that are significantly

darker or brighter. This limitation could be addressed by performing

data augmentation on images from the wider ‘Collection of side view

and top view RGB images of B. napus from a large scale, high

throughput experiment’ dataset to randomly alter the brightness and

contrast of some images to train a version of the model able to better

detect parts of B. napus under more varied conditions. Application of
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the top- performing model to images of other plant species should also

be explored, as the training effort for future models will be reduced by

the capacity to fine-tune the existing model using a relatively small

amount of data, and the ability to use the binary plant/background

model to aid in creation of new training data.

As the method outlined in this paper is a patch classification

model, rather than an object detection or image segmentation

model, it is important to note that it does not directly output the

discrete number of plant organs within each image. Instead the

model provides a label for what plant organ (or part thereof) is

contained within each patch, and the location of each patch. This

patch-by-patch breakdown of each image could be highly useful as

it allows for identification of when plant organs first appear in a

time series of plant growth images for each plant as well as

exploration of when, where, and why the total amount of certain

plant organs may change over time. The length and angle of

branches could also be retrieved based on the patch locations,

which can also provide answers to questions about the distribution

of plant organs in relation to one another, such as whether more

flowers occur on main or secondary branches. Patch classification

could also be used to speed up manual analysis of plant

phenotyping images to provide number of plant organs as it

could be used to filter and show only patches containing plant

organs to annotators who could then quickly provide a count.
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