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Introduction: Applying 3D reconstruction techniques to individual plants has

enhanced high-throughput phenotyping and provided accurate data support for

developing "digital twins" in the agricultural domain. High costs, slow processing

times, intricate workflows, and limited automation often constrain the

application of existing 3D reconstruction platforms.

Methods: We develop a 3D reconstruction platform for complex plants to

overcome these issues. Initially, a video acquisition system is built based on

"camera to plant" mode. Then, we extract the keyframes in the videos. After that,

Zhang Zhengyou's calibration method and Structure from Motion(SfM)are

utilized to estimate the camera parameters. Next, Camera poses estimated

from SfM were automatically calibrated using camera imaging trajectories as

prior knowledge. Finally, Object-Based NeRF we proposed is utilized for the

fine-scale reconstruction of plants. The OB-NeRF algorithm introduced a new

ray sampling strategy that improved the efficiency and quality of target plant

reconstruction without segmenting the background of images. Furthermore, the

precision of the reconstruction was enhanced by optimizing camera poses. An

exposure adjustment phase was integrated to improve the algorithm's

robustness in uneven lighting conditions. The training process was significantly

accelerated through the use of shallow MLP andmulti-resolution hash encoding.

Lastly, the camera imaging trajectories contributed to the automatic localization

of target plants within the scene, enabling the automated extraction of Mesh.

Results and discussion: Our pipeline reconstructed high-quality neural radiance

fields of the target plant from captured videos in just 250 seconds, enabling the

synthesis of novel viewpoint images and the extraction of Mesh. OB-NeRF

surpasses NeRF in PSNR evaluation and reduces the reconstruction time from

over 10 hours to just 30 Seconds. Compared to Instant-NGP, NeRFacto, and

NeuS, OB-NeRF achieves higher reconstruction quality in a shorter

reconstruction time. Moreover, Our reconstructed 3D model demonstrated

superior texture and geometric fidelity compared to those generated by

COLMAP and Kinect-based reconstruction methods. The $R^2$ was
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0.9933,0.9881 and 0.9883 for plant height, leaf length, and leaf width,

respectively. The MAE was 2.0947, 0.1898, and 0.1199 cm. The 3D

reconstruction platform introduced in this study provides a robust foundation

for high-throughput phenotyping and the creation of agricultural “digital twins”.
KEYWORDS

neural radiance fields, 3D reconstruction, plant phenotyping, digital twins, mesh
1 Introduction

3D reconstruction of plants facilitates the high-throughput

phenotypic and the realization of “digital twins” in agriculture

(Kim and Heo, 2024; Peladarinos et al., 2023; Pylianidis et al.,

2021). High-throughput phenotypic analysis is an essential

component of plant science and plays a significant role in

agricultural production and genotype-phenotype studies. In

agricultural production, the revolutionary integration of emerging

sensors with artificial intelligence (AI) has transformed precision

agriculture (PA), significantly enhancing the efficiency,

effectiveness, and productivity of agricultural industry breeding

and primary production (Sishodia et al., 2020). Consequently, the

comprehensive analysis of plant phenotypes for monitoring plant

growth has become increasingly crucial (Fu et al., 2020). In the field

of genotype-phenotype studies, recent years have seen tremendous

advances in plant genome sequencing, propelling the research of

crop improvement that combines genotyping with phenotyping

(Sun et al., 2022). However, progress in phenotypic analysis has

been slow, hindering development. Traditional phenotypic methods

largely rely on manual measurements, which are time-consuming,

labor-intensive, and cannot guarantee accuracy. Furthermore,

manual measurements cannot track the entire plant lifecycle

comprehensively (Xiao et al., 2022). High-throughput phenotypic

analysis based on 3D reconstruction overcomes the aforementioned

drawbacks of traditional methods, emerging as a potent tool for

evaluating plant phenotypes.

3D reconstruction technologies can be categorized into active

and passive vision systems (Lu et al., 2020). Active vision is a

reconstruction method that utilizes its light source to measure

distances by projecting it onto the object. LiDAR and depth

cameras are the mainstream active vision imaging devices. LiDAR

is a commonly employed technique for acquiring 3D plant data

(Luo et al., 2021; Tsoulias et al., 2023; Walter et al., 2019), renowned

for its high precision and resolution; however, it is costly and time-

consuming. In recent years, with Microsoft’s introduction of the

cost-effective Kinect series of depth cameras, methods based on

depth cameras for 3D reconstruction have been proposed (Song

et al., 2023; Teng et al., 2021a; Yang et al., 2019). Nevertheless, the

data resolution obtained from depth cameras is low, and due to the

unique structure of plants, the 3D representation capability of depth

cameras is significantly degraded by distortion and noise, this
02
significantly hampers the accuracy of reconstructing individual

plants, especially at the finer organ scale.

Passive vision systems employ cameras to capture images of

objects, extracting 3D data through image analysis. Conventional

passive vision techniques include Structure from Motion (SfM)

paired with MultiView Stereo (MVS), as well as voxel carving. Voxel

carving utilizes segmentation masks to reconstruct objects from

various perspectives, and it has been widely adopted for 3D

reconstruction and the phenotypic analysis of plants (Das

Choudhury et al., 2020; Golbach et al., 2015; Scharr et al., 2017).

However, voxel carving is generally confined to conventional plant

science laboratory environments where multiple camera positions

are static and can be precisely calibrated (Feng et al., 2023).

Moreover, when applied to larger plants, such as maize, voxel

carving can only proceed within a limited number of views. it

struggles to robustly reconstruct extensive 3D structures from

numerous angles (e.g., 15 or more), which compromises the

quality of the reconstruction (Tross et al., 2021).

SfM-MVS is extensively utilized in the analysis of

morphological and structural plant phenotypes and is

acknowledged as an optimal approach for creating a high-

throughput, cost-effective platform for individual plant

phenotyping (Wu et al., 2022). Nevertheless, it exhibits certain

drawbacks: (1) To improve the quality and efficiency of the

reconstruction process, it is imperative to acquire plant masks

and provide uniform illumination conditions (Wu et al., 2022).

(Gao et al., 2021) (2) Since the camera’s intrinsic parameters and

poses are derived through SfM, an additional calibration tool is

essential to convert the algorithm-generated models into metric

reconstructions (Li et al., 2022). (3) The time required for

reconstruction is considerable.

In recent years, the advent of NeRF (Neural Radiance Fields)

(Mildenhall et al., 2020), an innovative passive vision technology

based on deep learning, has garnered considerable interest for its

capacity to render high-fidelity reconstructions of intricate plant and

agricultural environments (Hu et al., 2024). Traditional 3D

reconstruction methodologies yield “explicit” 3D models, including

point clouds, meshes, and voxel arrays (Schönberger and Frahm,

2016; Seitz et al., 2006). These “explicit” forms are inherently discrete,

which can result in a loss of geometric and textural fidelity. In

contrast, NeRF falls under the category of implicit neural

representation methods, boasting the advantage of continuous
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implicit functions, which not only allow for the synthesis of new

viewpoint images of plants but also enable the extraction of textured

mesh models and colored point clouds. So, NeRF holds promise as a

key bridge between two-dimensional imaging and 3D reconstruction

—two methods of acquiring plant phenotypes. It thereby facilitates

the establishment of low-cost, high-throughput, and non-destructive

plant phenotyping analysis systems (Hu et al., 2024). Moreover, by

leveraging this neural implicit representation, NeRF is capable of

mapping real crops into a computational virtual space, facilitating a

VR-style immersive interaction for users. This innovative method

offers a new avenue for creating “digital twins” within the agricultural

industry (Zhang et al., 2024). Despite its potential, NeRF

demonstrates several limitations. 1. Reconstructing an individual

plant with NeRF can take upwards of 10 hours. 2. It cannot

automatically segregate a single plant from a neural radiance field

that encompasses a background. 3. There is still room for

improvement in NeRF’s ability to reconstruct highly detailed plant

geometry. 4. Its performance is highly susceptible to lighting

conditions (Cui et al., 2024).

As an early attempt in the field of 3D reconstruction of

individual plants using NeRF, a new 3D reconstruction platform

based on Object-Based NeRF(OB-NeRF) is presented for complex

plants such as citrus fruit tree seedlings, this study makes the

following contributions:
Fron
1. We propose an improved version of the NeRF model, called

Object-Based NeRF (OB-NeRF), which enables high-

throughput, automated, and high-precision 3D

reconstruction of individual plants under complex

backgrounds and uneven lighting conditions.

2. We propose a camera poses global calibration strategy,

which uses the predetermined camera imaging trajectory as

prior information to automatically calibrate the camera

pose so that the pose and size of the reconstructed plant

model can be restored to the true value.

3. A plant reconstruction platform based on the multi-view

images to reconstruct high-precision and proportional

mesh models for complex plants is constructed,

integrating a “camera to plant” video acquisition system,

as well as algorithms for Keyframe extraction, estimation

and calibration of camera parameters, and 3D

reconstruction based on OB-Nerf.
2 Materials

The saplings used in this study were obtained from the digital

orchard demonstration base at Huazhong Agricultural University

(114°366403’N, 22°756488’E). The variety selected was the

mandarin orange (Citrus reticulata ‘Yura’), a species widely

cultivated in China. The ages of the saplings ranged from 6

months to 2 years, with an average age of 18 months. The

average height of the saplings was 120 cm. All saplings were

grown under the same standard management practices, which
tiers in Plant Science 03
included regular irrigation, fertilization, and pest control. As

shown in Figure 1, we categorized saplings into three groups

based on their height: the small size group with heights ranging

from 60 to 90 cm, the medium size group from 90 to 130 cm, and

The large-size group is defined as individuals with a height ranging

from 130 cm to 170 cm. It was observed that as the saplings grew,

the complexity of their canopy structure increased. The study

included a total of 20 fruit tree saplings: 7 in the small-size group,

7 in the medium-size group, and 6 in the large-size group. The tree

seedlings were transferred into flower pots before the experiment.

the plant height, leaf width, and leaf width are initially recorded by

manual measurement. Subsequently, a video acquisition system

obtained multi-view videos of the plants, serving as the data source

for subsequent experiments.
3 Methods

The pipeline of the 3D reconstruction method proposed in this

paper is shown in Figure 2. Firstly, an image acquisition system

automatically captures Multi-view videos of plants. Then, transmit

videos to the computer. Secondly, the Zhengyou Zhang calibration

method (Zhang, 1999) is used to obtain the parameters of cameras.

Moreover, the camera poses are estimated by SFM. Thirdly, the

camera poses are calibrated by the camera poses global calibration

strategy based on Hardware-Software Co-Design. Finally, we

reconstruct the target plant’s neural radiance field using the

proposed OB-Nerf algorithms and the Marching Cubes algorithm

extracts the mesh model from the neural radiation field. The

development and testing of the reconstruction pipeline were

conducted on a computer equipped with an Intel Core i7-12700H

processor, 16GB memory, and an NVIDIA GeForce RTX 3070Ti

Laptop GPU. The computer operating system is Windows 11.
FIGURE 1

Experimental materials.
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3.1 Multi-view images acquisition

3.1.1 Video acquisition system
An automated system for video acquisition is presented, as

depicted in Figure 3. Our system comprises several components: a

controller, limit switches, a hexagonal base, a direct current (DC)

motor, a driven pulley, a metal ring, a camera bracket, a camera, and

counterweights. Notably, the metal ring has a radius of 75 cm, and

the base of the camera bracket is made from an aluminum profile

with a slotted design. This design allows for the radius of the

imaging trajectory to be adjustable, providing a range of up to 30

cm. The height of the two cameras is adjustable within a range of 0-
Frontiers in Plant Science 04
1.5 meters. This flexibility enables us to adjust the radius and height

of the camera’s imaging trajectory to accommodate plants of

varying sizes. This paper proposes a linear procedure for video

acquisition as follows:

3.1.1.1 Device setup

The target plant is centrally positioned within the system.

Adjusting the radius and camera height to accommodate the size

of the target plant, we recorded the radius rreal, the height of the

lower camera from the ground h1, and the height h2 from the upper

camera to the top of the bracket as prior knowledge for the

reconstruction algorithm.
FIGURE 2

The pipeline of 3D reconstruction method.
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3.1.1.2 Video capture

Once the system receives the start signal sent by the remote

control, the DC motor drives the metal ring equipped with the

camera bracket to rotate. The camera orbits the plant, capturing a

360-degree video. Once the video capture is complete, the DC

motor automatically stops. Each capture is completed within 15

seconds. Our System is compatible with any standard RGB imaging

device. For our experimental setup, we selected two iPhone 14 Pro

smartphones, which offer a video resolution of 1080x1920 at a

frame rate of 30fps.

3.1.2 Keyframe extraction
In the Structure from Motion (SFM) process, we observe that

the relationship between the number of images and the

reconstruction time follows a quadratic function, with the

reconstruction time increasing dramatically as the number of

images increases. Insufficient image quantity and image blur both

negatively impact the reconstruction quality when using OB-NeRF

for reconstruction. Therefore, this research aims to find the optimal

balance between reconstruction quality and time cost through a

series of experiments, which are detailed in sections 4.2.1 and 4.2.2.

The experimental results demonstrate that high-quality 3D

reconstruction can be achieved in a relatively short time by

excluding blurry frames and limiting the number of images to

approximately 90, which is a significant improvement compared to

using all available images. To achieve this, we develop an intelligent

frame extraction algorithm that can automatically select 90 clear

frames from the input video for subsequent reconstruction,

effectively reducing the computational burden while maintaining

the reconstruction quality. The algorithm workflow is as follows:
Frontiers in Plant Science 05
1. Perform equidistant downsampling on the binocular videos

obtained by the video acquisition system to acquire 50

images from each perspective, totaling 100 images.

Uniform downsampling can reduce the number of images

and effectively decrease redundancy by avoiding the

repeated selection of similar frames.

2. Eliminate blurry frames. To quantitatively assess the

sharpness of the images, this study adopted a method

based on the variance of the Laplacian operator. First, the

RGB image is converted to grayscale, and then the

Laplacian operator L is calculated using an 8-

neighborhood convolution kernel.Finally, we calculate the

variance of the resulting Laplacian image to obtain a

variance value, which serves as a measure of sharpness.

The greater the variance, the higher the image sharpness.

The mathematical expression for variance is shown in

Equation 1:
Var(L) =
1
No

N

i=1
(Li − m)2 (1)

We calculate the average variance of all images and eliminate

those that are less than 20% of the average value. If the number of

images removed exceeds 10, it is determined that the data quality is

not up to standard, and image acquisition needs to be repeated.
3. To ensure a total of 90 images, we conduct a random

sampling of the remaining images after eliminating blurry

frames, extracting 45 images from each perspective, a total

of 90 images.
To enhance efficiency, we employed multithreaded parallel

computing techniques for equidistant downsampling and the

removal of blurred frames. Consequently, the overall

preprocessing duration was reduced to roughly 3 seconds.
3.2 Estimation and calibration of
camera parameters

3.2.1 Camera parameters estimation
The camera projection model defines the mapping from a 3D

world to a 2D image plane. A is the camera intrinsic matrix, R and t

are the rotation and translation, k1, k2, k3 are the distortion

coefficients, that describe the change of coordinates from world to

camera coordinate systems.

3.2.1.1 Camera intrinsic parameters extraction

The precise camera projection model was established in this

study using Zhang Zhengyou’s calibration method. The method

involves the following steps: preparing a calibration board,

capturing calibration images, extracting corners of the calibration

board, establishing correspondences between corners, computing

the camera’s intrinsic parameters, estimating distortion parameters,
FIGURE 3

Hardware of video acquisition system.
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and Optimizing the parameters mentioned above with the L-M

algorithm. We Prepared a chessboard with a grid size of 40 mm * 40

mm and dimensions of 12 × 9 corners and obtain the internal

parameters A =

872:2 0 540:6

873:1 957:9

0 0 1

2
4

3
5 and distortion coefficients
k1 = 6.2 × 10−3, k2 = −3.95331432 × 10−2, k3 = 7.5 × 10−5,

p1 = −1.63556310 × 10−4, p2 = 4.11907012 × 10−2.

3.2.1.2 Camera pose estimation

SFM can estimate the camera poses, which are inputs to the OB-

NeRF. The input of SFM includes a set of plant image sequences,

and the camera intrinsic parameters. Initializing camera intrinsic

parameters at the beginning of SFM provides a robust initial

estimate, which reduces calculated errors, accelerates algorithmic

convergence, and enhances the accuracy of pose estimation. SFM

outputs the camera pose matrix corresponding to each image.
3.2.2 Camera poses global calibration strategy
based on Hardware-Software Co-Design

The camera poses obtained through the SFM are estimated

within a relative coordinate system, hereafter referred to as the

“virtual coordinate system”. Since the virtual coordinate system is

not directly aligned with the real-world coordinate system, the

reconstructed plant model’s dimensions and orientation may not

match the real-world counterparts. Aligning the coordinate systems

is crucial for accurate camera pose calibration, as it establishes the

transformation relationship between the virtual coordinate system

and the real-world coordinate system. The transformation

relationship between coordinate systems encompasses both

orientation and scale relationships. The orientation relationship is

characterized by the rotation matrix Rvtr. The scale relationship is

denoted by the scaling factor k. The calibration formulae for the

camera’s poses as delineated in Equations 2 and 3:

R = Rvtr · Rvirtual, tvirtual = Rvtr · tvirtual (2)

t = k · tvirtual (3)

We propose an automatic camera pose global calibration

strategy based on Hardware-Software Co-Design. It leverages the

camera’s predetermined imaging trajectory as a reference. More

precisely, the normal vector of the trajectory plane is utilized as a

direction reference for the coordinate systems, Concurrently, the

diameter of the trajectory is utilized as a scale reference for the

coordinate systems. Moreover, the process of this method is

as follows:
Fron
1. Orientation calibration of the camera pose using the Least

squares method and Rodrigues’ rotation equation. The

imaging trajectory is horizontal, suggesting that the

normal vector of the trajectory plane is parallel to the z-

axis of the real world. Initially, we use the camera positions

A = {(x1, y1, z1),(x2, y2, z2),…,(xn, yn, zn)} restored by SFM

as a discrete representation of the camera imaging
tiers in Plant Science 06
trajectory, fit the imaging trajectory to a plane using the

Least squares method to acquire the normal vector (a, b, c).

Thirdly, calculate the rotation matrix Rvtr based on the

normal vector (a, b, c) of the imaging trajectory plane and

the direction vector (0, 0, 1) of the z-axis using Rodrigues’

rotation equation. Finally, apply the orientation calibration

formulae to the camera poses.

2. Calculation of scale factor using imaging trajectory. The scale

factor k is calculated based on the actual radius of the

trajectory as prior information. First, we project the

camera trajectory points after orientation calibration onto

the XY plane. Secondly, fit the 2D trajectory points to a

circle (x − xc)
2 +   (y − yc)

2 = r2virtual using the Least squares.

Thirdly, calculate the scale factor k based on rvirtual and

the imaging trajectory’s real radius rreal according to

Equation 4. Finally, apply the scale calibration formula to

the camera poses.
k =
rreal
rvirtual

(4)

Moreover, to accelerate the training process of OB-Nerf, we

translate the coordinate system, thereby shifting the target plant to

the center of the coordinate system. First, we separate the camera

imaging positions of the upper and lower tracks by utilizing the

height difference and calculate the average zcoordinate of the two-

point sets, denoted as zup and zlow. Second, we calculate the

translation vector ~ts according to Equation 5. Finally, apply the

translation formula (Equation 6) to the camera poses.

ts = (xc, yc, zc)
T (5)

Where: zc =
zup+zlow

2 .

t = t − ts (6)
3.3 3D reconstruction using object-
based Nerf

3.3.1 Localization of region of Interest
Traditional multi-view image-based plant 3D reconstruction

methods typically utilize background removal to enhance

reconstruction accuracy and computational efficiency. But in

natural scenes, it poses a challenge, thus necessitating setting up a

solid-colored studio, which is difficult and costly for “camera to

plant” mode. To achieve high-quality reconstruction of the target

plant without performing background segmentation, it is essential

to determine the spatial region in which the plant is located within

the scene. This region is called the Region of Interest (ROI), which

acts as prior knowledge for the OB-Nerf algorithm (Figure 4). Due

to its high computational efficiency in the ray sampling process, we

use the axis-aligned bounding box (AABB) to represent the ROI. An

AABB is a rectangular box defined by its minimum and maximum

coordinates (xmin, ymin, zmin) and (xmax, ymax, zmax), which are

parallel to the coordinate axes. In section 3.3.2, we computed the

heights of two imaging trajectories, zup and zlow. The calculation
frontiersin.org
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formula for AABB as illustrated in Equation 7:

(xmin, ymin, zmin) = ( − rreal ,−rreal , zlow − h1)

(xmax, ymax, zmax) = (rreal , rreal , zup + h2)

(
(7)
3.3.3 Object-based NeRF
Neural Radiance Fields implicitly represent 3D scenes through

neural network approximations of 3D density fields and 5D color

fields. The radiation field describes the volumetric density at every

point in a scene, as well as the color of each point from every

observational direction, expressible by the function: Fq : (x,d) →

(c, s). Initially, the light rays emitted from the camera are sampled

to determine the positions of each sampling point. Subsequently,

these positions are encoded and mapped into a high-dimensional

space. Subsequently, these encoded inputs are fed into a multilayer

perceptron, which is utilized to approximate the 3D density field,

thereby obtaining the volume density corresponding to each point.

Next, the volume density output is concatenated with the view

direction vector, and these combined inputs are fed into another

multilayer perceptron, designed to fit the 5D light field, thereby

retrieving color for each point in the observed direction. Finally, the

image is synthesized through volume rendering, and the network is

optimized by minimizing the loss between the synthesized and

actual view color values using backpropagation. This study

proposes targeted enhancement strategies to address the issues

encountered by the NeRF model in plant 3D reconstruction:
Fron
1. A critical requirement for achieving high-throughput

reconstruction is completing the process of reconstructing
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individual plants within a short time frame. We have

employed a shallow multilayer perceptron to approximate

the density and color fields.

2. In phenotyping, reconstructing individual plants requires

high fidelity not only at the macroscopic level but also at the

organ level. Plant organs often have small and intricate

structures; for example, a 1.5meter-tall sapling may have

branches with diameters as small as 2 millimeters.Existing

NeRF algorithms have limitations in representing fine

geometric details. To address this issue, we propose three

steps: a novel ray sampling strategy, Hash encoding to map

input points to a higher-dimensional space, and an

optimization framework to refine camera poses.

3. Removing image backgrounds enhances p lant

reconstruction but obtaining masks in natural scenes is

challenging. Traditional solid-colored studio setups are

impractical for “plant-to-camera” modes. We propose a

ray sampling strategy integrated with prior knowledge in

OB-NeRF to improve reconstruction without plant masks.

4. A significant hurdle in reconstruction under natural scene

is the presence of uneven spatial lighting. To address this

issue, we incorporate an exposure adjustment phase into

OB-NeRF.
These strategies result in the creation of the OB-NeRF model, as

shown by its internal structure in Figure 5.

3.3.3.1 Ray sampling strategy based on region of Interest

To optimize the neural radiance field, the first step is to generate

a set of sampled 3D points along the camera rays passing through

each pixel of the input images. The scene can be divided into ROI

and background. ROI is the area where the target plant for

reconstruction is located and is dense in volume in space. The

quality of the neural field in ROI determines the reconstruction’s

quality in the target plant. Moreover, there are many empty spaces

in the scene. Sampling points falling in these empty spaces do not

contribute to the optimization process. Instead, they increase

computational and memory overhead. We utilize a hierarchical

sampling approach, and optimize two networks to reconstruct the

scene: a “coarse” network and a “fine” network, with the output of

the “coarse” network guiding the sampling point selection for the

“fine” network. Therefore, we implement a new ray sampling

strategy that focuses the neural field optimization process on the

ROI area and skips the empty spaces, thereby improving the

reconstruction quality of the target plant and reducing

reconstruction time.

First, we calculate the intersection point between the ray with

origin o = (ox, oy, oz) and direction d = (dx, dy, dz) and the ROI’s

AABB. The formula is presented in Equation 8:

tmin = max  xmin−ox
dx

,
ymin−oy

dy
, zmin−oz

dz

� �
tmax = min  xmax−ox

dx
,
ymax−oy

dy
, zmax−oz

dz

� �
8><
>: (8)

Where: tmax and tmin represent the distance from the

intersection point to the origin of the ray. The ray intersects the
FIGURE 4

Location of the region of interest.
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AABB if and only if tmin ≤ tmax and tmax ≥ 0. Because the camera

imaging position is contained within the AABB, tmin ≤ 0. We assign

a value of 0 to tmin.

Secondly, the intersection point divides the ray into two regions,

(0, tmax) and (tmax, tb), where tb represents the maximum length of the

ray. We generate sampling points with different sampling intervals in

two regions and obtain a total of Nc sampling points(Figure 6a).

Thirdly, we obtain the output wi by inputting the nc sampling

points into the coarse network, as illustrated in Equation 9, and

normalization is applied to wi to determine the respective constant

probability density function ŵ i =
wi

o
Nc
j=1wj

in two regions. Subsequently,

total Nf points are obtained through inverse transform sampling.

wi = Ti(1 − exp(sidi)), whereTi = exp  −o
i−1

j=1
sjdj

 !
(9)

where di = ti+1 − ti is the distance between adjacent samples

Finally, we combine Nc and Nf points as “fine” network

input points.

3.3.3.2 Shallow MLP

To enhance the speed of the 3D reconstruction pipeline, we

employ shallow MLP networks for approximating the density and

color fields. The architecture of the two fully connected networks is

illustrated in Figure 6b, input vectors are represented by green

rectangular blocks, intermediate hidden layers by blue rectangular

blocks, and output vectors by red rectangular blocks. The number

within each block indicates the vector’s dimension. All layers

consist of standard fully connected layers. Black arrows signify

layers with ReLU activation, dashed black arrows represent layers

with sigmoid activation, and dotted black arrows with a black dot

indicate layers with ELU activation. The “+” symbol denotes vector

concatenation. The density network takes the positional encoding

of the input location and produces a volume density and a 15-

dimensional geometric feature vector. The color network takes the

16-dimensional geometric feature along with the positional

encoding of the viewing direction to output RGB values.
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3.3.3.3 Multi-resolution hash encode

We employ a shallow multi-layer perceptron to fit color and

density fields. However, shallow MLP tends to learn low-frequency

functions, resulting in poor reconstruction of high-frequency details

in color and geometric shapes, failing to effectively represent the

plant organs. To address this issue, the study adopted multi-

resolution hash techniques from Instant-NGP (Müller et al.,

2022) for position encoding (Figure 6c). The hash table

parameters are shown in Table 1. In terms of implementation

details, to avoid increasing the computational load by simply

augmenting the number of hash table layers, this study optimizes

the design of the hash table. In the final level of the hash table, space

is divided into 2048 hash voxels instead of the conventional 512.

This design does not alter the dimension of the hash encoding

output. Moreover, it enhances the encoding capacity at finer scales,

thereby improving the fine-scale reconstruction performance of

OB-NeRF.

3.3.3.4 Exposure adjustment

In natural environments, scene lighting conditions are not

uniform, leading to varying exposure levels in images from

different perspectives. Conventional 3D reconstruction often

involves setting up controlled lighting environments to provide

stable and uniform lighting. To achieve 3D reconstruction under

uncontrolled lighting conditions, this study incorporates the

exposure rate Ei of each image as a learnable parameter into the

optimization process, incorporating the exposure adjustment into

the forward propagation. By adjusting color values during image

synthesis with the learned exposure rates, the study compensates for

the exposure variations in images. Through the backpropagation

algorithm, the study dynamically updates the exposure rate for each

image based on gradient information from the loss function. An L2

regularization term is utilized to supervise the optimization of

exposure rates to prevent overfitting. With the exposure

adjustment step, we substantially enhance the accuracy of 3D

reconstruction under uneven lighting conditions and improve the

algorithm’s robustness to complex and variable lighting scenarios.
FIGURE 5

The pipeline of OB-Nerf.
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In our proposed method, the pixel values of the synthesized

images are adjusted by calculating the scaling factors

Sicorresponding to the exposure rate Ei of each image. The

exposure rate Ei, i represents the exposure level of image i, while
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the scaling factor Si is a multiplicative factor used to adjust the pixel

values of the synthesized image i. The adjustment of pixel values can

be expressed as Equations 10 and 11:

Si = eln(2)�Ei (10)

RGBtarget = Si · RGB (11)
3.3.3.5 Camera pose optimizer

Precise camera pose ensures the accurate transformation from

the world coordinate system to the camera coordinate system,

serving as the basis of the entire rendering and training process.

Although we have already globally calibrated the camera poses, we

have observed potential minor deviations between the calibrated

camera poses and their true values on the level of a single image. In

this study, we construct a camera pose optimizer for each image that

incorporates two trainable parameters: the camera’s position offset

and rotation offset. The optimizer, integrated into the network’s

forward propagation process, iteratively updates these parameters

based on the loss function using the backpropagation algorithm. An

L2 regularization term is utilized to supervise the optimization of

the camera pose to prevent overfitting.

3.3.4 Mesh extraction from neural radiance fields
NeRF is an implicit continuous representation of the 3D scene.

To discretely sample the radiance field and generate a mesh model,

we employ the Marching Cubes algorithm, a classic method to

extract iso-surfaces from volumetric data by approximating the

surface with a polygonal mesh.

Firstly, Given the predefined 3D ROI, a set of spatial points P =

{p1, p2,…, pn} is generated via dense volumetric sampling. To

represent the region of interest more accurately, we use the

inscribed cylinder of the AABB as the sampling area. Secondly,

For each point pi ∈ P, using the OB-NeRF model to obtain the

density values, s(pi) = NeRFs(pi). Finally, The Marching Cubes

algorithm (Lorensen and Cline, 1987) identifies the isosurface by

thresholding the density values, as illustrated in Equation 12:

M = MarchingCubes(P,sthreshold) (12)

Where: M is the resultant mesh and sthreshold is an optimal

density value demarcating the object’s boundary.
FIGURE 6

Improvement strategies of OB-NeRF. (a) Ray sampling strategy. (b)
Density field and Color field MLP networks. (c) Multi-resolution
hash encode.
TABLE 1 Hash table parameters.

Parameter Symbol Value

Number of levels L 16

Max. entries per level (hash table size) T 219

Number of feature dimensions per entry F 2

Coarsest resolution Nmin 16

Finest resolution Nmax 2048
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4 Result and discussion

4.1 Evaluation of 3D
reconstruction performance

In this section, we employed our 3D reconstruction platform to

reconstruct twenty saplings from three size categories, representing

distinct growth stages, for verifying platform performance. This

categorization ensures a comprehensive analysis across the growth

stages. After acquiring the sapling mesh models, We extracted the

plant height from the Mesh model and used CloudCompare

software to measure leaf length and width. In addition, we

manually measured plant height, leaf length, and leaf width.

We evaluate the 3D reconstruction performance of our

platform using the PSNR of the generated synthetic images, along

with the accuracy, spatial resolution, and texture resolution of the

generated mesh models.

Peak Signal-to-Noise Ratio (PSNR) is a widely recognized

quantitative metric for assessing image quality. Higher PSNR

values denote better image fidelity and closer similarity to the

original image. We utilized PSNR to evaluate the quality of the

synthesized novel views, with PSNR calculations based on the Mean

Squared Error (MSE), which quantifies the average squared

difference in pixel values between the reference image and the

image under assessment. Its calculation method is shown in

Equations 13 and 14. As depicted in Figure 7, we present the rapid

reconstruction capability and exceptional effects of the OB-NeRF

algorithm, as evidenced by the synthesized images and extracted 3D

mesh models. We employ PSNR as the metric to evaluate the quality

of synthesized images of target plants. Figure 7 also demonstrates our

capability in exposure adjustment, with the exposure values

indicating deviations from the original exposure rate. These results

were achieved after merely 30 s of OB-NeRF training, substantiating

the proposed algorithm’s significant speed advantage. By introducing

a new ray sampling strategy, we embedded prior knowledge into OB-

NeRF, enabling the algorithm to reconstruct target plants amidst

complex backgrounds efficiently. Notably, the analysis indicates that

the target plants can still be reconstructed with high fidelity (PSNR =

29.95 dB), even when the background reconstruction exhibits

significant distortion (PSNR < 20 dB).

MSE =
1

MNo
M

i=1
o
N

j=1
Ireal(i, j) − Isynthesized(i, j)
� �2 (13)

PSNR = 10 · log10
MAX2

i

MSE

� �
(14)

As demonstrated in Figure 8, we present different organs of the

plant mesh model, including normal leaves, curled leaves, damaged

or perforated leaves, leaf clusters, and branches. The average

reconstruction error of these organs is less than 2mm, and the

texture resolution reaches 0.5 mm/pixel, exhibiting high geometric

and texture fidelity. The reconstruction results demonstrate that our

platform also has good reconstruction capabilities at the organ level

of plants and validates its applicability and efficiency in handling

plants with varying growth states and complexity.
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The accuracy of the mesh model directly reflects the quality of the

geometric reconstruction. To verify the precision of the 3D

reconstruction platform developed in this study, we selected three

key phenotypic parameters: tree height, leaf length, and leaf width, and

analyzed the error between their estimated and true values. These

parameters can reflect the overall growth status and leaf development

level of seedlings and are important indicators for evaluating seedlings’

phenotypes. The estimated value of the tree height is obtained by

calculating the difference between the maximum andminimum values

of the model on the z-axis.Wemanually measured each seedling using

a tape measure to obtain the true values. Each fruit tree was measured

three times, and the average value was taken as the final true value.

The estimated leaf length and width values were obtained using the

CloudCompare software. We converted the Mesh model into a point

cloud and manually segmented the target leaves. In the measurement

tool of CloudCompare, we selected the points at both ends of the long

axis and short axis of the leaf, and the software automatically

calculated the Euclidean distance between the two points, which

were used as the estimated values of leaf length and leaf width. For

the measurement of true values, we picked the target leaves and

measured them three times each in the long-axis and short-axis

directions using a vernier caliper (accuracy 0.01 mm), and the

average values were taken as the true values of leaf length and leaf

width. We used mean absolute error and coefficient of determination

to evaluate the accuracy of the reconstruction results. MAE reflects the

average size of the deviation between the estimated and true values,

with smaller values indicating smaller deviations and 0 being the ideal

value. R2 reflects the goodness of fit between the estimated and true

values, ranging from 0 to 1, with values closer to 1 indicating a higher

goodness of fit. The MAE of tree height was 2.0947 cm, with an R2 of

0.9933 (Figure 9a); the MAE of leaf length was 0.1899 cm, with an R2

of 0.9881 (Figure 9b); and the MAE of leaf width was 0.1199 cm, with

an R2 of 0.9883 (Figure 9c). Experimental results demonstrate that our

method achieves reconstruction accuracy at the millimeter level. The

results demonstrate that our reconstruction platform has high

accuracy at both the individual plant and organ levels.

Spatial resolution represents whether the model retains

sufficient detail information, while texture resolution affects the

perceived visual quality of the model. The spatial resolution reached

0.0019 mm, and the texture resolution reaches 0.5 mm/pixel,

exhibiting high geometric and texture fidelity.
4.2 Ablation experiment

4.2.1 Correlation between the numbers of images
and SFM reconstruction time consumption

To reduce the time consumption of the 3D reconstruction

pipeline, we investigated the impact of the number of images on

the time consumption using the SfM method. We established

experimental groups with varying numbers of images, specifically

45, 60, 75, 90, 105, 120, 135, 150, 165, and 180 images. Each group

included six fruit trees of different sizes as experimental subjects. To

minimize random errors in the results, each fruit tree underwent 10

independent SfM reconstructions, resulting in a total of 60

reconstructions per group (10 reconstructions × 6 trees). We
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recorded the time taken for each reconstruction and calculated the

average reconstruction time for each group to assess the

relationship between the number of images and reconstruction

duration. Ultimately, we employed Origin software for data

analysis to quantitatively explore the specific impact of the

number of images on reconstruction time. This analysis aided us

in understanding how to select the optimal number of images to

optimize the efficiency of the entire reconstruction process while

ensuring the quality of the reconstruction.
Frontiers in Plant Science 11
we conducted a systematic analysis of the time required for the

three primary steps in Structure from Motion method: feature

extraction, feature matching, and sparse reconstruction. Our

findings reveal that for datasets ranging from 30 to 180 images,

the time needed for feature extraction scales linearly with the

number of images and represents a smaller fraction of the overall

processing time (Figure 10a). In contrast, the time dedicated to

feature matching increases quadratically as the number of images

grows, accounting for the largest portion of the total processing
FIGURE 7

3D reconstruction results.
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time (Figure 10b). Regarding the sparse reconstruction phase, while

its time consumption also follows a linear trend with the image

count, this stage exhibits considerable variability in individual

reconstruction efforts (Figure 10c).

To establish a high-throughput 3D reconstruction pipeline, it is

crucial to minimize the number of images used while ensuring the

reconstruction’s quality is not excessively compromised.
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4.2.2 Correlation between the numbers of
images and reconstruction quality

We assess the quality of the reconstruction from two aspects:

the synthesized images and the extracted mesh models. To more

intuitively represent the geometric shape of the mesh, we opt to

display it using an uncolored mesh. This approach enhances the
FIGURE 8

Organ-level reconstruction results. (a) Norma leaf. (b) Curled leaf.
(c) Severely curled leaf. (d) Damaged or perforated leaves. (e) Leaf
Cluster. (f) Branching.
FIGURE 9

Correlation analysis between estimated values and true values. (a)
plant height. (b) leaf length. (c) leaf width.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1449626
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1449626
clarity of its structural details. Figure 11 clearly illustrates the

relationship between the number of images and the quality of

reconstruction. The analysis indicates that a relatively high quality

of reconstruction is already achieved with 90 images. However,

when the number of images is increased to 180, there is no

significant improvement in reconstruction quality. We conclude

that selecting 90 images as the input for the reconstruction pipeline

is optimal. When processing 90 images, SFM takes about 210s, the

pipeline takes about 250s.
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4.2.3 Assessment of training efficiency and
reconstruction quality for OB-NeRF

To accelerate the training speed and enhance the reconstruction

quality of the NeRF model for the target plant, we employed an

optimized multi-resolution hash encoding, a shallow MLP network,

exposure adjustments, camera extrinsics optimization, and a new

ray sampling strategy. We designed comparative experiments

between OB-NeRF, Based-NeRF, Mip-NeRF (Barron et al., 2021),

Neus (Wang et al., 2023a), NeRFacto (Tancik et al., 2023) and

Instant-NGP. For Neus, we use an accelerated version based on

multiresolution hash encoding and open-source library NerfAcc

(Wang et al., 2023b). The results, as shown in Table 2, indicate that

the training time requirement for Based-NeRF ranged between 9 to

12 hours, whereas OB-NeRF significantly reduced training time.

Compared with Mip-NeRF,NeRFacto and Neus, our method shows

advantages in both efficiency and reconstruction quality. Compared

to Instant-NGP, which also utilizes multi-resolution hash encoding,

our network demonstrated a faster training speed and

reconstruction quality in reconstructing target plants.

We compared the geometric reconstruction performance of

NeRFacto, Instant-NGP, NeuS, and our method, with the results

shown in Tables 3 and 4. Experimental results demonstrate that our

method achieves higher reconstruction accuracy than NeRFacto

and Instant-NGP, and is comparable to NeuS. However, NeuS

requires significantly more reconstruction time, indicating

lower efficiency.
4.3 Comparison with other 3D
reconstruction methods

Conventional image-based plant 3D reconstruction require the

acquisition of plant masks to accelerate reconstruction speed and

enhance the quality of the reconstruction. Moreover, they are

sensitive to lighting conditions, necessitating stable and uniform

illumination. However, achieving these conditions in real scenarios

is challenging. Our 3D reconstruction platforms accomplish 3D

reconstruction of small to medium-sized plants against complex

backgrounds without requiring plant masks. Additionally, it is

robust to variations in lighting, eliminating the need for stable,

uniform illumination.

The mainstream algorithm for image-based 3D reconstruction is

SfM-MVS. COLMAP is widely recognized as an advanced and

efficient tool for implementing SfM-MVS. We utilized COLMAP to

reconstruct the same datasets. As illustrated in Figure 12a, certain

saplings underwent incorrect reconstruction. In contrast, Figure 12b

demonstrates that even the correctly reconstructed saplings exhibit

low-quality results. The point cloud derived from the reconstruction

process contains numerous floating noise points, and severe artifacts

are evident along the edges of the branches and leaves. These issues

contribute to the generation of low quality meshes. Furthermore, the

reconstruction time using COLMAP exceeds two hours, whereas our

algorithm completes the reconstruction in less than five minutes.

In recent years, the field of 3D reconstruction of plants has seen

the emergence of Kinect as a novel trend. Our laboratory previously

experimented with the use of Kinect for quad-view imaging, combined
FIGURE 10

Correlation between SFM time consumption and the number of
images. (a) Feature extraction. (b) Feature matching. (c)
Sparse reconstruction.
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with Iterative Closest Point (ICP) registration techniques, successfully

reconstructing a 3D model of a single rapeseed (Teng et al., 2021b).

We subsequently attempted to apply this technique to the 3D

reconstruction of saplings(Figure 13). However, for saplings with

complex structures and larger sizes, the reconstruction results

obtained with Kinect were not satisfactory. We observed that the

point clouds reconstructed using Kinect exhibit significant data gaps

in many areas, particularly in sections with complex structures. The

point clouds are heavily affected by noise, and artifacts appear at the
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edges of branches and leaves. These issues prevent the reconstructed

models from accurately reflecting the precise geometric structure of

the plants. During the ICP registration process, we also encountered

several instances of failure.

Objective metrics evaluate the performance of reconstruction

algorithms by considering the number of points, the Spatial

resolution, and time efficiency. Figure 14 and Table 5 show the

result of the three methods’ average performance on the same

metrics. In Figure 15, we intuitively show the comparison of the

reconstruction results of the three methods. The reduction in time

consumption achieved by our method, presented in Figure 14a, is

substantial. Specifically, our method reduces time consumption by

96.08% relative to Colmap, and 49.73% relative to Kinect-based

These findings underscore the high time efficiency of the algorithm

proposed in this paper. As delineated in Figure 14b, The model’s

points generated by our method outperform Colmap by 159.26%

and Kinect-based by 393.72%. As shown in Table 5, the spatial

resolution of the model generated by our method is 0.19 mm, which

is much smaller than that of Colmap and Kinect-based methods

and has stronger geometric detail representation capabilities. As

shown in Table 6, we also present the comparison of our tree

seedling height measurement results with other literature.
FIGURE 11

Correlation between the numbers of images and reconstruction quality.
TABLE 3 H measurement results of NeRFacto, Instant-NGP, Neus
and Ours.

Method R2 MRE (%) MAE (cm)

Instant-NGP 0.963 2.60 2.67

Neus 0.992 2.05 2.11

NeRFacto 0.987 2.47 2.54

Ours 0.993 2.03 2.09
TABLE 4 Leaf width measurement results of NeRFacto, Instant-NGP,
Neus and Ours.

Method R2 MRE (%) MAE (cm)

Instant-NGP 0.947 4.20 0.2357

Neus 0.990 2.15 0.1208

NeRFacto 0.961 2.84 0.1593

Ours 0.988 2.14 0.1199
TABLE 2 Comparison between Based-NeRF, Mip-NeRF, Instant-NGP,
Neus, NeRFacto and Ours.

Method Average Training Time Average PSNR

Based-NeRF 10 h 24.71dB

Mip-NeRF 3 h 25.81 dB

Instant-NGP 30 s 26.79 dB

Neus 30min 27.31dB

NeRFacto 5min 27.64dB

Ours 30 s 29.95 dB
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5 Conclusions

A 3D reconstruction platform based on multi-view images is

proposed to reconstruct complex plants, comprising three steps:

multi-view images acquisition, estimation, and calibration of

camera parameters, and 3D reconstruction using OB-Nerf. In our

study, to address the issue of model deformation during the
Frontiers in Plant Science 15
reconstruction process, camera poses are automatically calibrated

using the imaging trajectories as priori information, eliminating the

need for additional calibrators. Furthermore, we propose OB-NeRF,

an innovative Nerf-based algorithm for 3D reconstruction. The

algorithm incorporates an optimizer of camera poses and an

exposure adjustment mechanism. a new ray sampling strategy is

introduced. It employs multi-resolution hash encoding techniques
FIGURE 12

The reconstruction result of COLMAP. (a) Error reconstruction result. (b) True reconstruction result.
FIGURE 13

The reconstruction result of Kinect.
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in conjunction with a shallow MLP network. Furthermore, the

algorithm features an automated strategy for Mesh model

extraction. OB-NeRF can reconstruct high-quality neural

radiation fields of complex plants from images acquired under

complex backgrounds and uneven illumination within 30 seconds.

Subsequently, it accomplishes the synthesis of images and the

automatic extraction of Mesh. From the perspectives of novel
FIGURE 14

Comparison of objective metrics for different methods on different data sets. (a) Time efficiency of different methods. (b) The number of points by
different methods.
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TABLE 5 Spatial resolution of three methods.

Method Spatial resolution

Colmap 0.0100mm

Kinect 0.0037mm

Ours 0.0019mm
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viewpoint image synthesis and mesh modeling, our results have

exhibited outstanding texture quality and geometric fidelity at the

levels of both individual plants and their respective organs. The

average PSNR of the synthesized images is 29.97dB, and the spatial

resolution of the Mesh model is 0.19 mm. By comparing the three

phenotypic parameters estimated from the model—tree height, leaf

length, and leaf width—with manually measured values, the Mean

Square Errors obtained were 2.0947 cm,0.1898 cm, and 0.1199 cm,

respectively. The coefficients of determination were 0.9933,0.9881

and 0.9883, leading to a robust linear relationship between the

extracted phenotype and measured traits.

In summary, the proposed low-cost reconstruction platform is

capable of completing data acquisition for an individual plant in

approximately 15 seconds and can perform high-quality

reconstruction of the collected data within 250 seconds. The

developed platform lays a solid foundation for the application of

high-throughput phenotyping and digital twins in agriculture. It

shows great potential in accelerating plant breeding, enabling

precise crop management, and facilitating plant growth monitoring.

In the future, we plan to extend our work in the

following directions:
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1. Deploying the 3D reconstruction process to the cloud and

achieving communication with the image acquisition

system. This will improve the scalability, accessibility, and

processing speed of our approach, making it more suitable

for large-scale applications.

2. Leveraging the concept of collaborative design of software

and hardware to optimize the 3D reconstruction pipeline

further. By employing precise mechanical design and motor

control, we aim to rotate and translate the camera under

known poses accurately. This hardware-based approach

will enable us to quickly obtain camera poses, replacing the

need for the SFM method.

3. Our method is primarily designed for the 3D reconstruction

of individual plants. However, when extended to large-scale

field scenarios, experimental results revealed its performance

limitations. To address this issue, future work could consider

introducing new optimization strategies or adopting more

advanced 3D reconstruction algorithms, such as 3DGS.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

SW: Conceptualization, Data curation, Methodology,

Visualization, Writing – original draft. CH: Data curation,

Investigation, Software, Writing – original draft. BT: Data

curation, Writing – original draft. YH: Funding acquisition,
FIGURE 15

Comparison of the reconstruction results for Kinect, COLMAP, and Ours.
TABLE 6 H measurement results of our platform and other literature.

Plant R2 MRE(%) MAE(cm)

Tree seedlings(Ours) 0.993 2.03 2.09

Seedlings (Yang et al., 2022) 0.991 2.79 2.72

lower plants (Wu et al., 2022) 0.991 – –

Fruit tree (Yang et al., 2019) 0.960 2.50 –

Tree (Li and Tang, 2017) 0.982 – –
frontiersin.org

https://doi.org/10.3389/fpls.2025.1449626
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1449626
Resources, Supervision, Writing – review & editing. SY: Formal

Analysis, Project administration, Supervision, Writing – review &

editing. SL: Funding acquisition, Supervision, Writing – review &

editing. SX: Funding acquisition, Investigation, Project

administration, Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work was

funded by the National Key Research and Development Program of

China (grant number 2019YFD1001900), the Fundamental Research

Funds for the Central Universities (2662022YLYJ010)Shannan City

Local Science and Technology Plan Project(SNSBJKJJHXM2023004).
Frontiers in Plant Science 18
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., and
Srinivasan, P. P. (2021). Mip-nerf: A multiscale representation for anti-aliasing
neural radiance fields. Proceedings of the IEEE/CVF international conference on
computer vision, 5855–5864.

Cui, Z., Gu, L., Sun, X., Ma, X., Qiao, Y., and Harada, T. (2024). Aleth-nerf:
Illumination adaptive nerf with concealing field assumption. Proceedings of the AAAI
Conference on Artificial Intelligence. 38, 1435–1444.

Das Choudhury, S., Maturu, S., Samal, A., Stoerger, V., and Awada, T. (2020).
Leveraging image analysis to compute 3d plant phenotypes based on voxel-grid plant
reconstruction. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.521431

Feng, J., Saadati, M., Jubery, T., Jignasu, A., Balu, A., Li, Y., et al. (2023). 3d
reconstruction of plants using probabilistic voxel carving. Comput. Electron. Agric. 213,
108248. doi: 10.1016/j.compag.2023.108248

Fu, L., Gao, F., Wu, J., Li, R., Karkee, M., and Zhang, Q. (2020). Application of
consumer rgb-d cameras for fruit detection and localization in field: A critical review.
Comput. Electron. Agric. 177, 105687. doi: 10.1016/j.compag.2020.105687

Gao, T., Zhu, F., Paul, P., Sandhu, J., Doku, H. A., Sun, J., et al. (2021). Novel 3D
imaging systems for high-throughput phenotyping of plants. Remote Sens. 13 (11),
2113. doi: 10.3390/rs13112113

Golbach, F., Kootstra, G., Damjanovic, S., Otten, G., and van de Zedde, R. (2015).
Validation of plant part measurements using a 3d reconstruction method suitabl for
high-throughput seedling phenotyping. Mach. Vision Appl. 27, 663–680. doi: 10.1007/
s00138-015-0727-5

Hu, K., Ying, W., Pan, Y., Kang, H., and Chen, C. (2024). High-fidelity 3d
reconstruction of plants using neural radiance fields. Comput. Electron. Agric. 220,
108848. doi: 10.1016/j.compag

Kim, S., and Heo, S. (2024). An agricultural digital twin for mandarins demonstrates
the potential for individualized agriculture. Nat. Commun. 15, 1561. doi: 10.1038/
s41467-024-45725-x

Li, J., and Tang, L. (2017). Developing a low-cost 3d plant morphological traits
characterization system. Comput. Electron. Agric. 143, 1–13. doi: 10.1016/
j.compag.2017.09.025

Li, Y., Liu, J., Zhang, B., Wang, Y., Yao, J., Zhang, X., et al. (2022). Three-dimensional
reconstruction and phenotype measurement of maize seedlings based on multi-view
image sequences. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.974339

Lorensen, W. E., and Cline, H. E. (1987). “Marching cubes: A high resolution 3d
surface construction algorithm,” in Proceedings of the 14th annual conference on
computer graphics and interactive techniques, vol. 87. (Association for Computing
Machinery, New York, NY, USA), 163–169. doi: 10.1145/37401.37422

Lu, X., Ono, E., Lu, S., Zhang, Y., Teng, P., Aono, M., et al. (2020). Reconstruction
method and optimum range of camera-shooting angle for 3d plant modeling using a
multi-camera photography system. Plant Methods 16, 118. doi: 10.1186/s13007-020-
00658-6

Luo, S., Liu, W., Zhang, Y., Wang, C., Xi, X., Nie, S., et al. (2021). Maize and soybean
heights estimation from unmanned aerial vehicle (uav) lidar data. Comput. Electron.
Agric. 182, 106005. doi: 10.1016/j.compag.2021.106005

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng,
R. (2021). Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM. (New York, NY, USA: ACM) 55, 99–106.
Müller, T., Evans, A., Schied, C., and Keller, A. (2022). Instant neural graphics primitives with
amultiresolution hash encoding.ACMTrans. Graphics 41, 1–15. doi: 10.1145/3528223.3530127

Peladarinos, N., Piromalis, D., Cheimaras, V., Tserepas, E., Munteanu, R. A., and
Papageorgas, P. (2023). Enhancing smart agriculture by implementing digital twins: A
comprehensive review. Sensors (Basel) 23, 7128. doi: 10.3390/s23167128

Pylianidis, C., Osinga, S., and Athanasiadis, I. N. (2021). Introducing digital twins to
agriculture. Comput. Electron. Agric. 184, 105942. doi: 10.1016/j.compag.2020

Scharr, H., Briese, C., Embgenbroich, P., Fischbach, A., Fiorani, F., and Muller-
Linow, M. (2017). Fast high resolution volume carving for 3d plant shoot
reconstruction. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01680

Schönberger, J. L., and Frahm, J.-M. (2016). “Structure-from-motion revisited,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(Piscataway, NJ: IEEE), 4104–4113. doi: 10.1109/CVPR.2016.445

Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). “A comparison
and evaluation of multi-view stereo reconstruction algorithms,” in 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 1.
(Piscataway, NJ: IEEE), 519–528. doi: 10.1109/CVPR.2006.19

Sishodia, R. P., Ray, R. L., and Singh, S. K. (2020). Applications of remote sensing in
precision agriculture: A review. Remote Sens. 12, 3136. doi: 10.3390/rs12193136

Song, P., Li, Z., Yang, M., Shao, Y., Pu, Z., Yang, W., et al. (2023). Dynamic detection
of threedimensional crop phenotypes based on a consumer-grade rgb-d camera. Front.
Plant Sci. 14. doi: 10.3389/fpls.2023.1097725

Sun, Y., Shang, L., Zhu, Q. H., Fan, L., and Guo, L. (2022). Twenty years of plant
genome sequencing: achievements and challenges. Trends Plant Sci. 27, 391–401.
doi: 10.1016/j.tplants.2021.10.006

Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Wang, T., et al. (2023). “Nerfstudio: A
modular framework for neural radiance field development,” in Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference Proceedings
(ACM), SIGGRAPH ‘23. (New York, NY, USA: Association for Computing Machinery),
1–12. doi: 10.1145/3588432.3591516

Teng, X., Zhou, G., Wu, Y., Huang, C., Dong, W., and Xu, S. (2021a). Three-
dimensional reconstruction method of rapeseed plants in the whole growth period
using rgb-d camera. Sensors 21, 4628. doi: 10.3390/s21144628

Teng, X., Zhou, G., Wu, Y., Huang, C., Dong, W., and Xu, S. (2021b). Three-
dimensional reconstruction method of rapeseed plants in the whole growth period
using rgb-d camera. Sensors 21. doi: 10.3390/s21144628

Tross, M. C., Gaillard, M., Zwiener, M., Miao, C., Grove, R. J., Li, B., et al. (2021). 3d
reconstruction identifies loci linked to variation in angle of individual sorghum leaves.
PeerJ 9, e12628. doi: 10.7717/peerj.12628

Tsoulias, N., Saha, K. K., and Zude-Sasse, M. (2023). In-situ fruit analysis by means of
lidar 3d point cloud of normalized difference vegetation index (ndvi). Comput. Electron.
Agric. 205, 107611. doi: 10.1016/j.compag.2022.107611

Walter, J. D. C., Edwards, J., McDonald, G., and Kuchel, H. (2019). Estimating
biomass and canopy height with lidar for field crop breeding. Front. Plant Sci. 10.
doi: 10.3389/fpls.2019.01145

Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., and Wang, W. (2023a). Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction.

Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., and Liu, L. (2023b).
Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction.
frontiersin.org

https://doi.org/10.3389/fpls.2020.521431
https://doi.org/10.1016/j.compag.2023.108248
https://doi.org/10.1016/j.compag.2020.105687
https://doi.org/10.3390/rs13112113
https://doi.org/10.1007/s00138-015-0727-5
https://doi.org/10.1007/s00138-015-0727-5
https://doi.org/10.1016/j.compag
https://doi.org/10.1038/s41467-024-45725-x
https://doi.org/10.1038/s41467-024-45725-x
https://doi.org/10.1016/j.compag.2017.09.025
https://doi.org/10.1016/j.compag.2017.09.025
https://doi.org/10.3389/fpls.2022.974339
https://doi.org/10.1145/37401.37422
https://doi.org/10.1186/s13007-020-00658-6
https://doi.org/10.1186/s13007-020-00658-6
https://doi.org/10.1016/j.compag.2021.106005
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.3390/s23167128
https://doi.org/10.1016/j.compag.2020
https://doi.org/10.3389/fpls.2017.01680
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1109/CVPR.2006.19
https://doi.org/10.3390/rs12193136
https://doi.org/10.3389/fpls.2023.1097725
https://doi.org/10.1016/j.tplants.2021.10.006
https://doi.org/10.1145/3588432.3591516
https://doi.org/10.3390/s21144628
https://doi.org/10.3390/s21144628
https://doi.org/10.7717/peerj.12628
https://doi.org/10.1016/j.compag.2022.107611
https://doi.org/10.3389/fpls.2019.01145
https://doi.org/10.3389/fpls.2025.1449626
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1449626
Proceedings of the IEEE/CVF International Conference on Computer Vision 2023, 3295–
3306.

Wu, S., Wen, W., Gou, W., Lu, X., Zhang, W., Zheng, C., et al. (2022). A miniaturized
phenotyping platform for individual plants using multi-view stereo 3d reconstruction.
Front. Plant Sci. 13. doi: 10.3389/fpls.2022.897746

Xiao, Q., Bai, X., Zhang, C., and He, Y. (2022). Advanced high-throughput plant
phenotyping techniques for genome-wide association studies: A review. J. Adv. Res. 35,
215–230. doi: 10.1016/j.jare.2021.05.002

Yang, H., Wang, X., and Sun, G. (2019). Three-dimensional morphological
measurement method for a fruit tree canopy based on kinect sensor self-calibration.
Agronomy 9, 741. doi: 10.3390/agronomy9110741
Frontiers in Plant Science 19
Yang, T., Ye, J., Zhou, S., Xu, A., and Yin, J. (2022). 3d reconstruction method for tree
seedlings based on point cloud self-registration. Comput. Electron. Agric. 200, 107210.
doi: 10.1016/j.compag.2022.107210

Zhang, Z. (1999). “Flexible camera calibration by viewing a plane from
unknown orientations,” in Proceedings of the Seventh IEEE International Conference
on Computer Vision, Vol. 1. (Piscataway, NJ: IEEE), 666–673. doi: 10.1109/
ICCV.1999.791289

Zhang, J., Wang, X., Ni, X., Dong, F., Tang, L., Sun, J., et al. (2024). Neural
radiance fields for multiscale constraint-free 3d reconstruction and rendering in
orchard scenes. Comput. Electron. Agric. 217, 108629. doi: 10.1016/j.compag.2024.
108629
frontiersin.org

https://doi.org/10.3389/fpls.2022.897746
https://doi.org/10.1016/j.jare.2021.05.002
https://doi.org/10.3390/agronomy9110741
https://doi.org/10.1016/j.compag.2022.107210
https://doi.org/10.1109/ICCV.1999.791289
https://doi.org/10.1109/ICCV.1999.791289
https://doi.org/10.1016/j.compag.2024.108629
https://doi.org/10.1016/j.compag.2024.108629
https://doi.org/10.3389/fpls.2025.1449626
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	A 3D reconstruction platform for complex plants using OB-NeRF
	1 Introduction
	2 Materials
	3 Methods
	3.1 Multi-view images acquisition
	3.1.1 Video acquisition system
	3.1.1.1 Device setup
	3.1.1.2 Video capture

	3.1.2 Keyframe extraction

	3.2 Estimation and calibration of camera parameters
	3.2.1 Camera parameters estimation
	3.2.1.1 Camera intrinsic parameters extraction
	3.2.1.2 Camera pose estimation

	3.2.2 Camera poses global calibration strategy based on Hardware-Software Co-Design

	3.3 3D reconstruction using object-based Nerf
	3.3.1 Localization of region of Interest
	3.3.3 Object-based NeRF
	3.3.3.1 Ray sampling strategy based on region of Interest
	3.3.3.2 Shallow MLP
	3.3.3.3 Multi-resolution hash encode
	3.3.3.4 Exposure adjustment
	3.3.3.5 Camera pose optimizer

	3.3.4 Mesh extraction from neural radiance fields


	4 Result and discussion
	4.1 Evaluation of 3D reconstruction performance
	4.2 Ablation experiment
	4.2.1 Correlation between the numbers of images and SFM reconstruction time consumption
	4.2.2 Correlation between the numbers of images and reconstruction quality
	4.2.3 Assessment of training efficiency and reconstruction quality for OB-NeRF

	4.3 Comparison with other 3D reconstruction methods

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


