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Green vegetation is an essential part of natural resources and is vital to the

ecosystem. Simultaneously, with improving people’s living standards, food

security and the supply of forage resources have become increasingly the

focus of attention. Therefore, timely and accurate monitoring and accurate

and timely vegetation classification are significant for the rational utilization of

agricultural resources. In recent years, the unmanned aerial vehicle (UAV)

platform has attracted considerable attention and achieved great success in

the application of remote sensing identification of vegetation due to the

combination of the advantages of satellite and airborne systems. However, the

results of many studies haven’t yet been synthesized to provide practical

guidance for improving recognition performance. This study aimed to

introduce the primary classifiers used for UAV remote-sensing vegetation

identification and conducted a meta-analysis of relevant research on UAV

remote-sensing vegetation identification. This meta-analysis reviewed 79

papers, analyzed the general characteristics of spatial and temporal distribution

and journal sources, and compared the relationship between research

objectives, sensor types, spatial resolution, research methods, number of

target categories, and the overall accuracy of the results. Finally, a detailed

review was conducted on how unmanned aerial vehicle remote sensing is

applied in vegetation identification, along with the current unresolved issues

and prospects.
KEYWORDS

unmanned aerial vehicle (UAV), remote sensing, meta-analysis, identification,
classification, overall accuracy (OA)
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1 Introduction

Vegetation, a crucial component of natural resources, serves as

the collective term for surface plant communities (Sun et al., 2015). It

is an essential component of natural resources and plays a vital role in

the ecosystem (Pavol and Patrıćia, 2017; Tran and Brown, 2018). It is

not only the production base of agriculture and animal husbandry

and environmental fundamental element for human survival (Jones

et al., 2019), but also the basis of ecological security barrier protection

(Xu et al., 2021), with ecological (Jin et al., 2020), production (Kessler

et al., 2014) and life functions. However, in recent years, ecological

problems have become more and more prominent due to natural

factors such as rising temperature and human factors that pay

attention to the production function of vegetation but ignore the

ecological function (Jun Li et al., 2007; Kooch et al., 2022; Oñatibia

et al., 2020), leading to ecological problems such as fragile vegetation

ecosystem (Jiang et al., 2022), soil erosion (Fang et al., 2019), and

reduced vegetation utilization performance (Liu et al., 2021b).

Simultaneously, the problem of food security (Campi et al., 2021;

Potgieter et al., 2013) and forage resource supply (Berauer et al., 2021)

has become the hot spot of people’s attention. Therefore, the

monitoring and high-quality identification data of vegetation

growth processes directly impact the natural resource management

and agricultural and animal husbandry industries, which are crucial

for farm planning and management decisions.

Nevertheless, traditional ground investigation and identification

methods have many limitations, such as extended time, low

efficiency, labor-intensive, and destructive. In particular, some

large-scale and frequent research is even more challenging to

achieve, which brings much trouble to research and application

(Wardlow and Egbert, 2008). It is even more to identify and

manage the grassland vegetation, which is not easily controlled,

and the individual plants are small. In contrast, remote sensing

technology has irreplaceable advantages (Valasek et al., 2016).

Remote sensing technology has recently gained significant attention

from researchers and practitioners as a non-destructive and efficient

method for monitoring vegetation. At present, agricultural remote

sensing has been widely used in vegetation mapping (Prosěk and

Šı ́mová, 2019), vegetation identification and classification

(Heuschmidt et al., 2020), vegetation growth monitoring (Li et al.,

2019a), crop yield estimation (Wang et al., 2021), vegetation pest

monitoring (Cao et al., 2013), biomass estimation (Yan et al., 2015) or

other fields and achieved good performance. Therefore, remote

sensing tools also play a crucial role in relevant identification tasks

in the vegetation field by collecting spectral data (Li et al., 2021; Sun

et al., 2018; Tao et al., 2018).

Remote sensing data are mainly collected through three platforms,

namely spaceborne, airborne and terrestrial platforms. Satellite remote

sensing data has the advantages of covering a wide range and

comprehensiveness being comprehensive. Nevertheless, the temporal

resolution of satellite remote sensing data with high spatial resolution is

generally low, so vegetation phenology cannot be directly extracted.

The spatial resolution of medium/low-resolution data alone is

insufficient to capture the distinctive characteristics of vegetation,

making it challenging. In contrast, the airborne platform not only
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has higher flexibility but also higher economic value. It can obtain

flexible remote sensing image resolution (Yang et al., 2014). In

particular, unmanned aerial vehicle (UAV) platforms have aroused

great concern in agricultural remote sensing identification applications

because they combine the respective advantages of satellite and

airborne systems (Hunt et al., 2010; Padró et al., 2019), such as fast

response capability, high image resolution, and low operating costs

(Colomina and Molina, 2014; Pádua et al., 2017).

With the increasing universality of UAV remote sensing data,

research on exploiting the conveniences of the information, it

provides to study agriculture monitoring and management is

gaining considerable pace. More and more scholars have studied

identification processes by UAV remote sensing in vegetation fields.

However, this vast body of research and applications still needs to be

synthesized further to provide guidance and reference for the further

application of UAV remote sensing technology in grasslands, offering

more possibilities for the precise identification and management of

grassland vegetation. Meta-analysis reviews contribute to reviewing

the scope, sources, geographical distribution, and temporal patterns

of research on the subject, as well as the effects of various factors on

identification accuracy, such as spatial resolution, sensor types, and

methods. In recent years, several scholars have already provided

reviews concerning remote sensing-based applications in the

agriculture field, such as agro-environmental monitoring based on

UAV imagery (Eskandari et al., 2020), land use mapping and

monitoring (Joshi et al., 2016), estimate aboveground biomass of

grasslands (Morais et al., 2021), wetland classification (Mahdianpari

et al., 2020a) and wetland monitoring (Adeli et al., 2020). Hence, this

study offers a meta-analysis and review of vegetation identification

using UAV remote sensing, providing valuable insights for fellow

researchers in the field.

Therefore, this article aimed to review the application of

unmanned aerial vehicle (UAV) remote sensing data in the

identification field and conduct a meta-analysis of relevant

literature in the past decade. It illustrates the importance of UAV

agricultural identification research. It reviews the development trends

in UAV agricultural identification research, aiming to facilitate its

better and faster application in farm management and ecological

conservation, thereby promoting its better and quicker application in

agricultural management and environmental conservation. The

second section briefly overviews the mainstream unsupervised and

supervised classifiers. The third section introduces the method of

meta-analysis. The results and discussions of the meta-analysis are

elaborated in Section 4. In Section 5, we reviewed in detail the

research progress and future development opinions on the

application of UAV remote sensing in the vegetation identification

process. In the final section, we summarized the conclusions.
2 Overview of remote sensing
vegetation classifier

Recently, vegetation classification methods based on remote

sensing technology have significantly progressed. Studies have

shown more accurate vegetation classification through the
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continuous development of feature extraction, classifier selection,

and training. Up to now, many classical machine learning

algorithms can effectively distinguish different vegetation types

according to the extracted features, which provides strong

support for the application of remote sensing technology. The

remaining part of this section focuses on several commonly used

vegetation classifiers in remote sensing, mainly including

unsupervised and supervised classification (Figure 1).
2.1 Unsupervised classification

Unsupervised classification categorizes pixels or objects without

prior knowledge or training samples (Behmann et al., 2014; Puletti

et al., 2017). Using statistical algorithms like clustering or self-

organizing maps can identifies patterns and similarities in remote

sensing data, revealing natural clusters corresponding to different

land cover or vegetation types.

2.1.1 K-means
K-means, a foundational unsupervised clustering algorithm

introduced in the 1960s, is pivotal in remote sensing image

classification and agricultural monitoring. For instance, Gao et al

(Gao and Li, 2017). used K-means to map degraded grasslands in the

Qinghai-Tibet Plateau. However, it’s sensitive to noise and outliers, and

finding the best number of clusters (K) is essential. With the deepening

of algorithm research, researchers have proposed various improvement

methods, such as K-means++, to enhance the selection of initial cluster

centers, reduce convergence time, and improve classification accuracy

(Yuchechen et al., 2020). As demand for processing large-scale remote

sensing data grows, research into distributed computing and

parallelization of K-means is increasingly essential.
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2.1.2 Iterative self-organizing data analysis
technique

ISODATA emerged in the 1970s as an enhancement to basic

clustering algorithms like K - means (Hemalatha and Anouncia,

2017). It adjusts cluster centroids and data assignments iteratively

using similarity metrics, but with a dynamic approach to

determining cluster numbers through split or merge operations.

This adaptability makes ISODATA helpful in handling complex

datasets, yet it’s sensitive to noise and outliers and may produce

overlapping clusters. Currently, ISODATA classification is widely

used in agricultural remote sensing image analysis. multi-

dimensional features like spectral bands and vegetation, it can

effectively distinguish crop types can effectively distinguish crop

types by leveraging multi-dimensional features like spectral bands

and vegetation. This makes it valuable for monitoring crop

distribution and land-use patterns and enhancing agricultural

productivity. For example, R et al. used LandSat7 and LandSat8

imagery data for unsupervised image classification with ISODATA,

categorizing images into land-use classes (roads, urban areas,

vegetation, water bodies, fallow land, mining areas, and barren

land) with an accuracy of 83% - 86% across all categories (R, 2020).

Moreover, ISODATA can be combined with machine-learning

algorithms for post-processing, such as using a support vector

machine to refine ISODATA-generated clusters to potentially

boost overall classification accuracy.
2.2 Supervised classification

Supervised classification, utilizing training samples with known

class labels, is a technique for categorizing pixels or objects in

remote sensing imagery (Han et al., 2022). This method enables
FIGURE 1

Remote sensing vegetation classifier.
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precise class assignment to image features by leveraging prior

knowledge and training samples, making it valuable for

applications such as land cover mapping, environmental

monitoring, and resource management (César Pereira Júnior

et al., 2020).

2.2.1 Support vector machine
SVM is a widely used classification method in remote sensing

(Melgani and Bruzzone, 2004; Mountrakis et al., 2011), first

proposed by Vapnik et al. in the 1970s (Shebl et al., 2022;

Sheykhmousa et al., 2020). It is particularly effective for high-

dimensional datasets and image classification tasks (Bazi and

Melgani, 2006; Huang et al., 2018; Mazzoni et al., 2007), offering

strong performance even with small training sets by maximizing the

margin between classes (Kuo et al., 2014; Mathur and Foody, 2008a;

Srivastava et al., 2012). SVM also handles noise and outliers well,

addressing data quality variations common in remote sensing (Pal

and Mather, 2006). Comparative studies show that SVM

outperforms methods like maximum likelihood classifiers and

avoids dimensionality issues such as the Hughes Effect (Oommen

et al., 2008). Meanwhile, there are also studies showing that SVM

models optimized by techniques such as Particle Swarm

Optimization have further enhanced the classification accuracy

(Jia et al., 2022). Despite the many advantages of SVM, some

challenges cannot be ignored, such as the selection of appropriate

parameters and the difficulties faced by many non-specialist users in

interdisciplinary applications (Chunjuan et al., 2016; Shebl and

Csámer, 2021). Future developments may involve integrating SVM

with multi-view learning using diverse remote sensing data sources

(Hao et al., 2022), and leveraging quantum computing to improve

efficiency in processing large-scale datasets (Delilbasic et al., 2024).

2.2.2 Random forest
Introduced by Leo Breiman in 2001, RF is a robust machine-

learning method that aggregates numerous decision trees, each built

from randomly selected subsets of the dataset and features (Naidoo

et al., 2012; Richman and Wüthrich, 2020). t is widely used in

remote sensing for tasks such as image classification and land cover

extraction due to its ability to effectively handle high-dimensional

data and large datasets (Belgiu and Drăgut,̧ 2016). It mitigates

overfitting risks and enhances generalization through random

feature and sample selection (Harris and Grunsky, 2015). The

ensemble approach of RF boosts classification accuracy and

improves interpretability and reliability by providing results from

individual decision trees (Belgiu and Drăgut,̧ 2016). For instance,

using high-resolution multispectral imagery, Bhatt and Maclean

successfully applied RF to classify forest vegetation and adjacent

wetland communities (Bhatt and Maclean, 2023). However, RF has

some drawbacks, such as a lack of interpretability and performance

sensitivity to parameter selection (Guo et al., 2022; Vogels et al.,

2019). Future research may combine RF with deep neural networks

to leverage the feature extraction capabilities of deep learning and

the classification strengths of RF, potentially achieving more

efficient vegetation classification (Petrovska et al., 2020).
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2.2.3 Neural network
NN has a long history, with the first simple neural network models

developed in the 1940s (ROSENBLATT, 1958). However, these early

models were limited in handling complex classification tasks. T The

development of multi-layer perceptrons (MLPs) in the 1980s and 1990s

significantly enhanced neural network performance (David et al., 1986;

Sumsion et al., 2019). The advent of deep learning in the 2010s,

particularly convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), further revolutionized vegetation

classification (Li et al., 2019b; Verbeiren et al., 2008; Zhang et al.,

2016; Ho Tong Minh et al., 2018; Isola et al., 2017). CNNs have been

incredibly effective in extracting spatial features from remote sensing

imagery (Krizhevsky et al., 2017). Gambarova et al. successfully applied

artificial neural networks (ANNs) to classify rare vegetation

communities (Gambarova et al., 2008). Papp et al. demonstrated

superior accuracy (99.61%) using ANNs compared to SVM on high-

resolution hyperspectral images (Papp et al., 2021). However, neural

networks face challenges like initial weight selection and slow

convergence, impacting classification outcomes.

2.2.4 Maximum likelihood
The ML classifier has been a staple in remote sensing since the

early days of digital image processing. Initially applied to simple

datasets, it assumes spectral signatures follow a normal distribution.

As remote sensing evolved and more complex datasets emerged, ML

was modified to handle non-Gaussian distributions and multi-class

classification, includingmixture models for complex class distributions.

ML effectively classifies land cover and vegetation, especially in

agriculture, where it maps crop types, irrigation patterns, and

assesses crop health. Its ability to process large datasets and perform

well in complex landscapes makes it crucial for modern agricultural

decision-making. For instance, Otukei et al. applied ML to LandSat

imagery in Kibale County, Uganda, achieving over 87% accuracy in

classifying land cover types such as forest, wetland, and pasture (Otukei

and Blaschke, 2010). However, ML requires accurate estimates of class

means and covariances, which can be challenging, particularly with

limited or noisy training data. Improving parameter estimation or

relaxing the normality assumption remains a key research focus.

2.2.5 Minimum distance
The MD classifier, a simple and intuitive supervised

classification method, calculates the distance between a pixel’s

feature vector and the mean feature vectors of known classes to

assign the pixel to the closest class. In agricultural remote sensing, it

has been used for land cover classification, including crops and soil

variations (Castillejo-González et al., 2009). However, the

performance of the minimum distance classifier highly depends

on the choice of distance metric. Different distance metrics may lead

to different classification results, and finding the optimal metric for

a specific vegetation classification task can be challenging.

2.2.6 Parallelepiped
The parallelepiped algorithm classifies data by defining

multidimensional thresholds for each class in the feature space
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using parallelepiped boxes. Its simplicity and versatility make it

widely used in remote sensing tasks such as land cover mapping,

environmental monitoring, and resource management (Jensen,

2013). Yadav et al. applied this method to UAV-captured

multispectral images to identify volunteer cotton in cornfields

(Yadav et al., 2019). However, the technique assumes rectangular

class distributions in the feature space, which may not be accurate

for many vegetation identification scenarios. Future developments

should focus on handling outliers and adapting the parallelepiped

shape to match actual class distributions better.

2.2.7 K-nearest neighbors
The K-NN algorithm is a simple yet effective machine learning

method for pattern recognition and classification. It classifies data

points based on the majority class of their nearest neighbors in feature

space, using distances such as Euclidean or Manhattan (César Pereira

Júnior et al., 2020). The algorithm’s performance depends on the

choice of k value and distance metric, and its non-parametric nature

allows it to adapt to various data distributions. K-NN has been

extensively used in agricultural remote sensing to classify crops and

land cover types, leveraging spectral information from imagery to

accurately categorize agricultural landscapes, including crop types

and soil variations. Its simplicity and non-parametric nature make it

suitable for handling complex, multi-dimensional feature spaces. For

instance, Verma et al. applied object-based K-NN techniques to

classify land cover in a 5000-hectare grazing property in Australia,

achieving overall classification accuracy of 86% (Verma et al., 2014).

However, K-NN’s computational cost can be substantial for large

datasets, as it involves calculating distances between each query pixel

and all training samples.

2.2.8 Decision tree
The DT classification algorithm is fundamental in machine

learning and is widely used for predictive modeling and pattern

recognition. It constructs a tree-like structure where nodes

represent features, and leaf nodes represent class labels (Pal and

Mather, 2003). DT recursively partitions the feature space to

minimize impurity and enhance class homogeneity, offering

interpretability and operational efficiency. Verma et al. applied

DT to classify cultivated and non-cultivated areas and crops using

satellite images (Verma et al., 2016). Integrating texture features

with vegetation indices achieved an 89.42% accuracy in classifying

Indian satellite IRS-P6, LISS IV remote sensing images. However,

DT is prone to overfitting, especially with noisy or high -

dimensional data. Extension and ensemble methods like RF and

Gradient Boosting have been developed to address this while

retaining interpretability. Further research is needed to enhance

DT’s prediction accuracy and expand its application scope through

continuous refinement.

Although the recent vegetation identification methods based on

UAV remote sensing have made much progress, there are still many

challenges. For unsupervised methods, determining the optimal

number of clusters and mitigating the impact of initial conditions

on the clustering outcome remain significant hurdles. For

supervised methods, particularly complex models like NN, the
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risk of overfitting and the reliance on extensive, high-quality

training datasets pose substantial challenges. Additionally, the

computational demands of advanced machine learning algorithms

necessitate efficient processing solutions, such as cloud computing,

to handle large-scale UAV remote sensing data effectively.

Therefore, we will explore the performance of different

classification methods in different situations and the impact of

various factors on classification performance through previous

relevant studies provide effective programs for further research,

especially the tradeoff between specific classification problems and

method selection.
3 Meta-analysis methods

3.1 Literature collection

This review involved three steps: literature collection, filtering

relevant papers, and comprehensive analysis and review of relevant

studies. We performed a search of the “Web of Science (WoS)” and

“PubMed” databases in December 2022 using the designed search

query to identify relevant literature for this comprehensive review. In

our meta-analysis, we specifically focused on the application of

unmanned aerial vehicle (UAV) remote sensing for identifying

smaller-scale vegetation types, such as crops, herbaceous plants,

and fruits, while excluding studies related to woody plants. By

narrowing our scope to non-forest vegetation, we aim to provide a

more detailed examination of the emerging applications, challenges,

and limitations of UAV remote sensing technologies in scenarios

involving less extensive and potentially more varied vegetation types,

offering insights into their precision and versatility in diverse

ecological contexts. The search was structured with variations on

each key term included via the OR operator. To determine recent

findings while keeping the workload at controllable levels, our search

focused on articles within the ten years, from 2013 to 2022. The

Preferred Reporting Items for Systematic Reviews andMeta-Analyses

(PRISMA) were applied for study selection (Moher et al., 2009). This

search strategy resulted in a total of 785 unique papers. Then, 730

articles were obtained after removing duplicates. Next, we filtered the

initial result by document title and abstract, reducing the number of

results to 243. After investigating the 243 papers in detail and after

eligibility assessment, 79 were selected to collect data for further

meta-analysis, as shown below. Figure 2 depicts the selection of

relevant papers based on the PRISMA flow diagram. It must also be

noted that studies related to f forests were excluded from this study

and, as a result, are not captured in this search. The following norms

were also applied to select relevant papers:
1. Articles included a quantitative accuracy assessment that

reported overall accuracy (OA) of classification or identification.

2. Only research papers published in journals were included.

This meta-analysis does not include conference papers due

to their lack of information.

3. Articles were limited to study with UAV-based data as the

sole or primary source.
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3.2 Data extraction

For the following comprehensive review, the parameters in Table 1

were extracted by reviewing 79 publications in detail. The parameters

include general literature characteristics fields such as title, author, year,

and literature source, as well as specific fields related to identification,

including fly altitude, sensor type, spatial resolution, and classifier. We

defined a “case” as the unique combination of the features and

corresponding result (overall accuracy), e.g., if a study used an

identical data set but identified using different methods; then we

treated them as other cases. Furthermore, if an article gives multiple

filter sizes, patch sizes, window sizes, sizes of training data sets, and so

on for the same input data, only the version with the highest overall

accuracy was used in the meta-analysis. In addition, the test set is

preferred for results with the same input data, followed by the

validation set, and finally the training set in an article.
3.3 Selected references

For the selected 79 journal papers, most articles were published

in the 11 journals listed in Figure 3. The remaining journals

involving only one paper are not listed. As can be seen from the

figure, from the perspective of the number of published articles, the

top five journals with the number of published articles, in turn, are:

Remote Sensing (23%), Sensors (9%), Computers and Electronics in

Agriculture (9%), Frontiers in Plant Science (8%) and Agronomy

(5%). Notably, they accounted for 53% of all the selected papers,

more than half. Among them, the number of Remote Sensing

journals is the largest, with 18 articles.
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3.4 Performance evaluation index

Figure 4 shows the overall situation of evaluation indexes used

to evaluate the results of studies. A majority of studies use multiple

metrics to assess the identification performance. In addition to the

overall accuracy, the Kappa coefficient, producer accuracy (PA),

and user accuracy are the indicators most commonly used in 39, 22,

and 22 studies, respectively.
4 Results and discussion

4.1 General characteristics of studies

As shown in Figure 5, the number of identification studies based

on UAV remote sensing has increased significantly over the past

decade, indicating an increasing interest in research in this area.

Simultaneously, the rate of increase also showed an upward trend.

This illustrates that the employment of UAV data gained the

researchers’ attention. The number of published articles is

expected to expand in the coming years.

The number of articles by country is uneven (Figure 6), and the

depth of color is proportional to the number of studies. We mapped

study sites from the 79 papers and found that applications of UAV

data have been widely distributed in research worldwide, mainly in

Asia, Europe, and North America. And they accounted for 63%,

19%, and 11% of all studies collected, respectively. Most studies

have been carried out in Asia, notably in China 43 studies.

Countries with more than five studies are China (43) and the

United States (8). Italy, Australia, and the UK followed it. To sum
FIGURE 2

PRISMA flowchart demonstrating the selection of studies.
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up, the studies for our meta-analysis covered a broad scope of

geographical areas and abundant topics.
4.2 Parameters and studies performance

4.2.1 Case study target
Most studies focused on weed detection, plant pests and

diseases (vigor) recognition, and plant identification or counting

(Figure 7a) hey accounted for 30%, 23%, and 15% of all studies.
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This demonstrates that, with the wide application of remote sensing

in various fields of agriculture, weed identification has essential and

diverse application prospects in agricultural remote sensing (dos

Santos Ferreira et al., 2017; LÓPez-Granados, 2010). In the weed

identification scenario, when weeds and crops are intermingled

within the same image, the issue becomes more complex due to

their similar spectral characteristics (Weiss et al., 2020). UAV

remote sensing paves the way for exploring new avenues in

precision vegetation classification (Lu and He, 2017). de Camargo

et al. (2021) proposed optimizing a deep residual convolutional

neural network (ResNet-18) for classifying weed and crop plants in

UAV imagery. Rozenberg et al. (2021) used a simple unmanned

aerial vehicle (UAV) to survey 11 commercial plots of Allium cepa

L. They used ML and SVM to study their late weed classification

and spatial patterns, which constitute an essential step in developing

accurate weed control management in onion fields. Timely and

precise weed identification would enhance the understanding of

weed growth patterns and spatial distribution patterns for analyzing

and forecasting the mechanism of growth and reproduction and

provide further convenience for practitioners and researchers to

manage weeds in farmland, thereby increasing crop productivity

(Sulaiman et al., 2022; Zhang et al., 2023b). The availability of UAV

data in recent years has made weed detection possible with less time

and effort (Alexandridis et al., 2017; Stroppiana et al., 2018). After

mastering the growth and distribution of weeds, targeted herbicide

spraying can effectively avoid the problems of herbicide waste and

agricultural ecological environment pollution.

Simultaneously, the recognition of plant pests and diseases and

identifying plant vitality have increasingly become a hot issue based on

remote sensing (Abd El-Ghany et al., 2020; Mahlein, 2016; Mahlein

et al., 2012). Some researchers (Khan et al., 2021a) used hyperspectral

imaging technology to identify wheat powdery mildew disease without

apparent symptoms and estimate the corresponding disease severity.

This study used remote sensing to detect and prevent crop diseases

early, which is more efficient than traditional methods relying on

disease symptoms. Wang et al. (2020) investigated the use of UAV to

collect high-resolution remote sensing images of cotton fields in three
FIGURE 3

Number of primary literature sources.
TABLE 1 Fourteen parameters used for Meta-analysis.

ID Attribute Type Categories

1 Title Text

2 Authors Text

3 Year Classes

4 Literature source Text

5 Evaluation indices Classes

Overall accuracy; user’s
accuracy; producer’s
accuracy; kappa coefficient;
F1-Score; not available;

6 Study field Text

7 Fly altitude Numeric

8 Case study purpose Text

9 Sensor type Classes
Hyperspectral; multispectral;
RGB; SAR; LIDAR; others

10 Spatial resolution Numeric

11 Number of classes Numeric

12 Classifier Classes
SVM; RF; CNN; DT; MLC;
ISODATA; ANN; Others

13
Enhancement methods for
the input data

Classes
Texture; ancillary data;
spectral indices; without

14 Overall accuracy Numeric
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known cotton root rot (CRR)-infested areas of Texas, classifying

CRR-infected and healthy plants in cotton fields. Therefore, there is

no doubt that the rapid monitoring of the vegetation health status and

the prediction of early plant diseases by UAV is becoming an active

research field, which has also made a significant contribution to crop

yield and farmers’ income (Neupane and Baysal-Gurel, 2021). Our

meta-analysis also demonstrated this point. Food security is one of the

hot issues in today’s society and may be one of the reasons for this

situation (Lu et al., 2022).

It is worth noting that, among the research we have collected,

studies related to crop classification only account for about 14%.
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Several reasons for this can be hypothesized: (1) farmland ground

sample acquisition is time-consuming and labor-intensive, and data

storage is scattered and discontinuous (Ma et al., 2021); or (2) related

technologies need to be further improved, and some traditional

machine learning methods cannot meet the generalization

requirements of increasingly complex farmland crop classification.

Compared to industries like forestry, the application of drone remote

sensing in crops, especially grassland, classification lags and requires

further research investment. The complexity of various grass plants on

the grassland may hinder the acquisition and differentiation of ground

reference data (Dong et al., 2019). Additionally, it increases the

likelihood of different spectra for the same objects, thereby

complicating the identification of plant individuals and species. In

early grassland vegetation classification mapping, visual interpretation

or the delineation of broad grassland categories was predominantly

used (Li et al., 2005). In recent years, with the advancement of UAV

remote sensing technology and enhancements in spectral resolution,

the precise identification of specific grass species has emerged as a new

trend in grassland vegetation classification mapping (Melville et al.,

2019). Given the smaller research objects within grass vegetation,

higher sensor accuracy and data acquisition requirements are

essential. Algorithms used in other fields may require enhancements

or redevelopment before they can effectively apply to grassland

research. It is worth noting that about 6% of the study is relatively

small and belongs to other specialized research, such as invasive plant

identification (Qian et al., 2020) and cultivated land identification (Lu

et al., 2017).

Figure 7b shows a box plot graph of overall accuracy (OA)

regarding the types of case study purpose, including the accuracy of

weed detection, plant pests and diseases (vigor) recognition, plant
FIGURE 5

Cumulative and yearly frequency of relevant publications.
FIGURE 4

Overview of evaluation indexes used to evaluate the results of studies.
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identification or counting, crop identification or classification, plant

lodging identification, invasive plant identification and other.

Invasive plant identification had the highest median identification

accuracy. However, these reference values need further study and

validation due to the small sample size of invasive plant

identification and others (less than 5%). In addition, plant

identification or counting had the highest median accuracy

(∼91.67%), and weed detection had the second-highest median
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accuracy (∼90.60%), with a difference of 0.07%. Among them, plant

identification or counting was superior to weed detection in terms

of variation in overall accuracies. Nevertheless, crop identification

or classification had the lowest median accuracy (∼86.05%), and the
lower and upper whiskers extended from 58.00% to 99.33%.

Therefore, it is necessary to further develop and explore the

application of crop classification in UAV remote sensing

(Bouguettaya et al., 2022).
FIGURE 7

Distribution (a) and overall accuracy (OA) (b) for different study targets in related publications. WD, weed detection; PP, plant pests and diseases
(vigor) recognition; PI, plant identification or counting; CI, crop identification or classification; PL, plant lodging identification; IP, invasive
plant identification.
FIGURE 6

Spatial distribution of relevant publications. The degree of color is proportional to the number of studies.
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4.2.2 Sensor types
Regarding sensor type, RGB sensors (visible sensors) are the

most adopted type, with about 57%. The result is consistent with

our assumption (Diez et al., 2021; Liu et al., 2021a). This shows that

the RGB sensor has been the most commonly used within UAV

remote sensing for identification studies, which benefits from its

ease of installation for UAV platforms (López-Garcıá et al., 2022).

Although RGB spectral data contains less spectral information, it

has gradually become a shared data source for uncrewed aerial

vehicle (UAV) plant species identification due to its low cost, easy

acquisition, fast data processing speed, and high spatial resolution

(Zheng et al., 2022). Followed by multispectral imaging at about

33% and hyperspectral imaging at about 10% (Figure 8a). The

relatively low usage frequency of multispectral and hyperspectral

data is not surprising, given their higher economic costs, especially

for hyperspectral sensors (Adão et al., 2017). Their spatial

resolution is also relatively lower than RGB (Kattenborn et al.,

2021). One major obstacle in vegetation classification using UAV

remote sensing has been the limited availability of fine spatial

resolution data, insufficient spectral information, and insufficient

processing capacity (Weiss et al., 2020). Multi-source remote

sensing data can synthesize the advantages of each sensor; for

example, the image after the fusion of RGB image and multi-

spectral image has the characteristics of high spatial resolution and

spectral resolution so that more abundant and accurate information

can be extracted (Ashraf et al., 2012). Therefore, the fusion

technology of UAV remote sensing images is increasingly
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becoming the preferred choice for effectively mitigating sensor

limitations (Jabari et al., 2017). The fusion of UAV remote

sensing images can be considered an image super-resolution

problem, where the high-resolution source image assists in

enhancing the low-resolution source image (Ma et al., 2019).

In addition to the widely-studied RGB, multispectral, and

hyperspectral sensors, other types of sensors also hold potential in

UAV-based vegetation identification (Tunca et al., 2023). Thermal

infrared sensors, for instance, can detect the temperature differences

of vegetation surfaces (Stutsel et al., 2021). Since plant water stress,

pest infestations, and disease infections can all lead to changes in the

plant’s surface temperature, thermal infrared sensors can provide

unique insights into the physiological status of plants (Sagan

et al., 2019).

At the same time, although LiDAR sensors are not as widely

used as RGB, multispectral, and hyperspectral sensors in

agricultural remote sensing, especially in vegetation classification

and identification, they offer unique advantages by capturing the

vertical structure of vegetation (Yel and Tunc Gormus, 2023).

LiDAR can accurately measure vegetation height, canopy density,

and biomass by generating three-dimensional point clouds,

providing rich three-dimensional information for vegetation

classification (de Conto et al., 2024). For example, LiDAR can

effectively distinguish between healthy and damaged vegetation in

crop areas, identify the spatial distribution and growth patterns of

vegetation, thus improving the classification accuracy (Farhan et al.,

2024). Moreover, LiDAR can provide detailed canopy structure

information, which helps distinguish plant species that have similar

spectral characteristics but differ in structure. Although LiDAR

equipment is expensive and data processing is complex, brings its

high-precision three-dimensional information to agricultural

remote sensing, especially in vegetation classification under

complex environments, demonstrates excellent potential (Karim

et al., 2024). Future research should address the challenges related

to cost and data processing to further promote the application of

LiDAR in vegetation classification and identification.

The overall accuracy assessment shows the maximum median

accuracy and the lowest variability for the RGB sensor, with almost

92.54%, followed by a hyperspectral sensor, with about 90.32%, and

the multispectral sensor, with about 87.37% (Figure 8b). The

underlying reason may be that UAV data is closer to the ground

than satellite remote sensing data, and its spatial resolution

advantage may be greater than the spectral resolution in

recognition research. At the same time, we observed that some

studies in the database extracted the texture features of remote

sensing data to enhance its spatial features, which may be regarded

as a further supplement to the spatial resolution (Liu et al., 2020;

Stroppiana et al., 2018; Xiao et al., 2021). The multispectral sensor

exhibits the highest maximum, yet its wider distribution and the

lowest minimum show less consistent results than RGB and

hyperspectral sensors. In addition, it’s worth noting that the

median overall accuracy of the three sensor types surpassed 87%.

The results show that the RGB sensor has the highest overall

accuracy and muscular stability of the three sensor types,

consistent with the most significant number of studies in Figure 8a).
FIGURE 8

Distribution (a) and overall accuracy (OA) (b) for different sensor
types in related publications.
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4.2.3 Spatial resolution
Spatial resolution, the size of the smallest unit that can be

distinguished in detail on a remote sensing image, is an indicator

used to characterize the resolution of ground target details by an

image. Medium spatial resolution UAV-based remote sensing

imagery with a resolution between 1 and 10 cm is the most

frequently used data source amongst those utilized for studies of

agriculture identification with 62% (Figure 9a). This may be because

these data contain rich spatial feature information and can also

maintain the spectral resolution of UAV data at a relatively stable

level. Furthermore, some researchers have proved that adding

texture features improves recognition and classification accuracy

under the same UAV multi-spectral data and spatial resolution

(Sun et al., 2019; Tamouridou et al., 2016). They were followed by

high resolution (between 0 to 1 cm) in approximately 28% of all

studies. Regarding remote sensing imagery with low resolution

(more than 10 cm), the case studies are most minor, with

about 10%.

As the spatial resolution increases, so does its potential to

achieve higher accuracy (Figure 9b). Simultaneously, the accuracy

ranges from large to small in low-resolution, medium-resolution,

and high-resolution images. This may be related to the number of

their study samples. The maximum median overall accuracy is

related to datasets with high spatial resolutions, with about 92.00%

median accuracy, and the lower and upper whiskers extend from

71.90% to 99.47%. It has minimal variability because it gets a more

compact shape than another shape, similar to the results of

Tamiminia’s study (Tamiminia et al., 2020). However, it is

imperative to recognize that the relationship between spatial
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resolution and accuracy is not unidirectional (Pampanoni et al.

2024). While higher spatial resolution offers the potential for

enhanced performance, it also brings challenges. For instance,

increased spatial detail can amplify the impact of noise present in

the images (Silvestre et al. 2018). Sensor noise, atmospheric

interference, or other sources of distortion become more

pronounced at finer scales, potentially degrading the quality of

the data and leading to misclassification. Additionally, in machine

learning-based identification models, high-spatial-resolution data

may contain an abundance of features, increasing the risk of

overfitting (Zhang et al. 2012). Overfitted models perform well on

the training data but fail to generalize effectively to new, unseen

data, resulting in decreased accuracy during practical applications.

Therefore, careful consideration must be given to data

preprocessing, model selection, and parameter tuning when

working with high-spatial-resolution images to mitigate these

potential issues and fully harness the benefits of enhanced

spatial detail.

In addition, we also made a correlation fitting between UAV

flight height and spatial resolution in related research (Figure 10).

Notably, studies that did not report flight altitude, spatial resolution,

or both were excluded from the analysis. At the same time, separate

outliers outside the range of most values are not shown in the figure.

In our study, we observed a positive correlation between the drone’s

flight altitude and the spatial resolution of the captured images.

Increasing flight height improves ground sampling distance (GSD)

and reduces the spatial image resolution, thus increasing the

coverage area. Therefore, in specific tasks under different

environmental conditions, determining UAV flight height

requires more flight tests to cover the appropriate research area

and meet the experimental requirements. Additionally, as pointed

out in the related review, spatial resolution is also associated with

some other factors (such as the capture time of the sensor)

(Eskandari et al., 2020), which is also worthy of our further study.
FIGURE 9

Distribution (a) and overall accuracy (OA) (b) for different spatial
resolution in related publications.
FIGURE 10

Relationship between flight altitude and spatial resolution based on
relevant publications.
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4.2.4 Integrated application of sensor type and
spatial resolution

In UAV-based vegetation identification, the selection of sensor

type and spatial resolution significantly influences the accuracy and

reliability of the results (Ubben et al., 2024; Xie et al., 2008). The

sensor type determines the range and quality of spectral

information captured, while spatial resolution affects the ground

coverage of each pixel (Ubben et al., 2024). High-resolution sensors

provide detailed information about vegetation structure but may

also increase data processing complexity. Conversely, low-

resolution sensors can cover larger areas but may fail to capture

subtle vegetation features (Miao et al., 2024).

Different vegetation types exhibit unique physical and spectral

characteristics, influencing the sensor requirements and spatial

resolution needed for classification tasks (Pan et al., 2023; Rowan

et al., 2021). For instance, crop identification often demands high

spatial resolution RGB sensors to detect individual plants’ growth

and health indicators (Khan et al., 2021b; Koh et al., 2021).

Moreover, for grassland identification, multispectral sensors with

moderate spatial resolution are typically essential (Al-Ali et al.,

2020). These sensors enable the differentiation of various grass

species and facilitate monitoring grassland coverage (Alexandridis

et al., 2017).

Identification purpose also plays a key role in sensor selection

and resolution determination. To identify early signs of vegetation

pests and diseases, sensors must pick up subtle physiological and

morphological changes (Zhang et al., 2023a, 2019). In such cases,

multispectral or hyperspectral sensors with medium-to-high spatial

resolution may be more appropriate (Ishengoma et al., 2021; Xiao

et al., 2021).

Furthermore, the required spatial resolution for classification

varies depending on the vegetation’s scale and complexity (Liu

et al., 2025; Räsänen and Virtanen, 2019). For dense vegetation or

fine-scale features, higher resolution may be necessary to distinguish

individual plants or specific traits (Feng et al., 2015). On the other

hand, broader vegetation types or more significant areas may require

lower resolution to maintain processing efficiency without sacrificing

classification accuracy (Peng et al., 2024; Zhang et al., 2024).

In conclusion, in UAV-based vegetation classification,

achieving high accuracy is crucial but must be balanced with cost,

mission objectives, and data processing needs. High-resolution

sensors, while enhancing accuracy by capturing detailed spectral

and spatial information, often entail higher costs, longer processing

times, and more significant data storage requirements. Therefore,

selecting the optimal sensor and resolution involves weighing the

trade-offs between accuracy and practical constraints (Saltiel et al.,

2022). Ultimately, the choice should align with the project’s

objectives, ensuring an efficient balance between precision and

operational feasibility (Ishida et al., 2018).

4.2.5 Number of target categories
Through the analysis of the number distribution of different

target categories in related research, most studies identified a

smaller number of target categories, such as two classes with

almost 38%, three courses with nearly 20%, and four classes with
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about 13%, which their total has reached 71% (Figure 11a). In

summary, with the increase in the number of target categories, the

proportion of the number of studies is gradually decreasing.

As shown in Figure 11b), when the number of classes is 9, the

median overall accuracy is the highest, at about 94.60%. This may

be due to the small number of research samples, which is only 3%.

In addition, when the number of classes is 3, the overall accuracy

median is the highest, about 93.04%. Meanwhile, its interquartile

range (IQR) and overall accuracy change less than other categories.

This shows no clear relationship between number of classes and

overall accuracy.

4.2.6 Classification methods
NN, SVM, and ML are the most commonly used methods in

related studies, with 50,26 and 11 studies, respectively (Figure 12a).

And RF is next to the above, with eight studies. Consistent with the

findings of Masoud Mahdianpari et al (Mahdianpari et al., 2020a),

CNN models are generally more common in remote sensing

applications than other deep learning methods (Kamilaris and

Prenafeta-Boldú, 2018; Yao et al., 2017). The results show that the

neural network method has succeeded in many applications

compared to the conventional methods used in UAV remote

sensing identification (Deng et al., 2020; Zhang et al., 2022). In

addition, SVM, with its strong generalization ability and optimal

solution and discrimination ability, also attracted the industry’s

attention (Cervantes et al., 2020). There are only five studies on the

K-nearest neighbor (KNN) algorithm.
FIGURE 11

Distribution (a) and overall accuracy (OA) (b) for different number of
classes in related publications.
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The overall accuracy box plot of different methods is shown in

Figure 12b). The median overall accuracy for all methods is higher

than 85.00%. The median overall accuracy of NN is the highest, at

92.55%. Meanwhile, NN has lower variability than other methods.

This shows that NN performs excellently in agricultural
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identification (Chew et al., 2020; Darwin et al., 2021). However,

in most cases, artificial intelligence is still a “black box” with poor

interpretability (Li et al., 2022b). Followed by KNN, its median

accuracy was 90.19%. Maximum likelihood (ML) classification had

the lowest median overall accuracy, about 86.00%. In addition, RF

has the worst stability, probably because a small amount of training

data will likely cause misclassification for the RF algorithm.

In addition, we analyzed the overall accuracy of various

classification methods based on different sensors and study

targets. It is worth noting that no further analysis was performed

under the smaller sample size categories such as “invasive plant

identification” and “cultivated land identification” in the study

target. At the same time, the classification method with less than

three samples and “Others” are ignored to ensure the relative

reliability and reference of the analysis results.

Figures 13a, b, c show the overall accuracy distribution of the

classification method under RGB, multispectral, and hyperspectral

sensors, respectively. It can be seen that ML has the highest median

overall accuracy of 95.93% in studies using RGB sensors, and the lower

and upper whiskers extend from 90.00% to 99.30%. This may be

because such a method is more suitable for multi-band data with fewer

bands, which is one of the reasons for their wide application (Hogland

et al., 2017; Sun et al., 2013). Therefore, the ML method, which is

simple and easy to operate, may be more suitable for agricultural

identification using RGB sensors. They were followed by NN ‘s median

overall accuracy of 92.70%, which is unsurprising. Simultaneously, NN

is also a method with the highest median overall accuracy in multi-

spectral sensor applications, reaching 93.02%. The highest median

overall accuracy of the remaining techniques is SVM, 89.75%. The K-

means algorithm performs worst, with a median overall accuracy of

only 81.44%. Therefore, in the research based on multi-spectral data,

we can use more ISODATA algorithms (Li et al., 2020; Wang et al.,

2011). The threemainmethods of research based on hyperspectral data

are SVM, CNN, and RF. Among them, the median overall accuracy of

SVM is the highest at 90.84%, while CNN’s is similar at 90.37%.

Figure 14 shows the overall accuracy of each method in research

applications for different study targets. In addition to weed

detection, NN still has the best identification performance among

other study targets, with the highest median overall accuracy. This
FIGURE 12

Distribution (a) and overall accuracy (OA) (b) for different
classification methods in related publications.
FIGURE 13

The overall accuracy (OA) distribution of classification methods under different sensor types [(a) RGB, (b) Multispectral, (c) hyperspectral].
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shows that neural networks, especially CNN, are increasingly

favored by agricultural remote sensing practitioners and have

achieved remarkable results with the popularity of deep learning

algorithms. However, the best method for identification

performance in related applications of weed detection is SVM.

This may be because the study of weed identification is more of a

two-category classification task (Mathur and Foody, 2008b); the

specific reasons are also worth further exploration.

Our meta-analysis showed the advantages and disadvantages of

numerous methods for vegetation classification, suggesting almost

none of them is universally applicable (Du et al., 2012). Therefore,

With the increasing demand for classification accuracy, multi-

classification systems have gradually developed, which can

integrate the advantages of multiple classification algorithms and

overcome the limitations of a single algorithm (Ceamanos et al.,

2010). Choosing the appropriate algorithm combination can

improve the accuracy of classification results. Chen et al. (2017)

introduced a multi-classifier system MCS_WV_AdaBoost, which

integrates SVM, C4.5, and ANN with AdaBoost as the combining

strategy. This system aimed to extract land use/cover information

from a time series of remote sensing images from 1987 to 2015 at an

average interval of 3 years, ultimately leading to enhanced accuracy.
5 Recommendations and prospects

Through the comprehensive analysis of agricultural

identification based on UAV remote sensing in recent years, we
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found that the application of related fields has considerably

developed. Still, the full potential in some areas has yet to be

tapped. This section aims to point out some research challenges

and prospects for future directions:
5.1 Feature selection and extraction

In the problem of vegetation classification based on UAV remote

sensing, due to the similar spectral information of vegetation itself, it is

easy to the phenomenon of “same object different spectrum” or “foreign

object same spectrum”, which affects the classification accuracy. Almost

all plant life is affected by seasonal changes, the seasonal phases or

dynamics of this plant, called phenology (Kattenborn et al., 2021). This

means that changes in plant characteristics with the phenological stages

can be reflected in the spectral data (Zhou et al., 2023). Using

phenological information to assist species classification has strong

operability (Weisberg et al., 2021). Different species have different

seasonal effects, and the specificity of their phenological

characteristics can be used as an essential reference index for

classification. The work of Torres-Sánchez et al. meticulously

evaluated the impact of spatial and spectral resolution of UAV

imagery in a multi-temporal study (Torres-Sánchez et al., 2014).

Subtle differences and complex relationships between many

vegetation species require more precise correlation features (Shahi

et al., 2022). With the improvement of spatial resolution of remote

sensing images, many features are used for vegetation classification,

such as spectral features (Torres-Sánchez et al., 2015), color
FIGURE 14

The overall accuracy (OA) distribution of classification methods under different study targets [(a) weed detection, (b) plant pests and diseases (vigor)
recognition, (c) plant identification or counting, (d) crop identification or classification, (e) plant lodging identification].
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features, and spatial features (Suarez et al., 2013). Stroppiana et al.

(2018) used the multi-spectral spectral data of UAV to monitor

weeds and added a variety of vegetation indices and texture features.

The results showed that the classification based on the vegetation

index had a good effect, and the overall accuracy was 96.50%.

However, it should be noted that conventional vegetation indices

like NDVI may reach saturation in dense vegetation canopies (LAI

> 3), limiting their sensitivity to subtle variations in high-biomass

conditions (Gitelson, 2004). To address this, recent studies have

proposed: (1) enhanced vegetation indices (e.g., EVI2) that

maintain linearity under high LAI conditions, and (2) the

integration of texture metrics with narrow-band indices derived

from hyperspectral sensors, particularly in the red-edge region

(700-750 nm), which shows improved discrimination capability

for dense vegetation (Appice and Malerba, 2019).

However, blindly adding more features to the classification

process is likely to cause a large amount of data redundancy and

even cause the problem of “dimension disaster” (Zhang et al., 2017).

Especially for hyperspectral sensors, detecting of numerous spectral

bands with strong correlations between adjacent bands has posed

particular challenges for data processing and analysis (Jia et al.,

2011). Hence, feature selection and feature extraction are vital parts

of UAV vegetation classification, and the effective use of multiple

features is the key to improving classification accuracy (Fu et al.,

2017). This helps prevent any loss in accuracy within the vegetation

classification model due to data redundancy. Feature selection

involves directly choosing specific spectral feature variables from

the original variables for modeling. In contrast, feature extraction

entails extracting information from the original variables to obtain a

new set of variables based on mathematical relationships among

spectral variables (Xiao et al., 2022). Especially in the current

research, the spectral feature extraction of grassland vegetation is

still concentrated in the RGB band, and the spectral features of

multispectral and hyperspectral are worthy of in-depth exploration.
5.2 Expansion of data sets and optimization
of deep learning algorithms

Our research demonstrates that convolutional neural networks

(CNNs), the most widely used method among deep learning

algorithms, offer significant advantages in agricultural UAV remote

sensing applications. However, training CNNs requires a substantial

amount of labeled data, which poses a significant challenge in

agricultural applications (Ghanbari et al., 2021). To address this

challenge, future efforts should actively explore advanced data

augmentation techniques, such as data synthesis methods based on

Generative Adversarial Networks (GANs), to generate realistic virtual

agricultural images and expand the training dataset (Hao et al., 2023).

Additionally, the use of transfer learning strategies, where models

pre-trained on large-scale general image datasets are adapted to

specific agricultural tasks, can leverage the learned general features

and reduce reliance on large-scale, agriculture-specific datasets,

thereby improving the stability and accuracy of models in

agricultural UAV remote sensing identification tasks.
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5.3 The integration of edge computing and
real-time vegetation identification
decision-support systems

In UAV-based vegetation identification studies, how to rapidly

transform the large amounts of remotely sensed data collected in real-

time into effective vegetation information is crucial for enhancing

accuracy and response speed. Currently, images and data generated

by UAV remote sensing technology usually need to be processed

through the cloud. However, this often leads to delays, affecting the

real-time nature of vegetation identification and subsequent

decisions. To address this issue, edge computing technology can be

utilized to perform local data processing and vegetation identification

directly on drones or ground stations (Li et al., 2024). Through an

edge computing platform, efficient image processing and machine

learning models can be used to identify vegetation types, health

status, and growth stages in real-time on-site, without the need to

transmit large amounts of data to the cloud. This approach not only

significantly enhances processing speed but also enables rapid

decision-making in urgent situations, such as precise livestock

management, targeted irrigation, fertilization, or pest control.
5.4 Breakthrough in multi-source data
fusion technology

At present, all kinds of remote sensing data products have

advantages and disadvantages, so multi-source fusion has become

one of the directions of exploration in the current and future fields.

However, during the fusion process, different spatiotemporal scales of

different datasets make effective information interaction challenging

(Li et al., 2022a). Furthermore, the similarity of vegetation spectral

characteristics is a pervasive problem. Classification methods that rely

solely on remote sensing spectral data yield limited results in some

instances. To break through these bottlenecks, innovative fusion

methods should be developed in the future, such as developing

end-to-end fusion models based on deep learning, mining fusion

features from raw multi-source data, and combining high-resolution

details of drone images with the macro vision of satellite data. At the

same time, multi-modal data is incorporated, integrating not only

remote sensing data but also geographical, meteorological, soil, and

other types of information to provide a more comprehensive basis for

identification (Hong et al., 2021).
5.5 Establishment of a standardized
process for vegetation identification using
UAV remote sensing

While UAV remote sensing technology holds immense potential

for agricultural identification, there is still a notable absence of

transparent standardized processes in specific research and

application contexts. For example, determining the optimal flight

altitude, spatial resolution, and sensor selection under different

environmental and terrain conditions to balance flight efficiency and
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identification accuracy remains a technical challenge. The choice of

sensors, such as multispectral, hyperspectral, or LiDAR, significantly

impacts the quality and type of data captured, influencing the accuracy

of vegetation classification and health assessment. Additionally,

selecting an appropriate spatial resolution based on the specific

requirements of vegetation identification—whether it is for large-

scale crop monitoring or fine-scale health analysis—is critical for

achieving optimal results. In the future, a standardized system should

be established that encompasses various aspects such as drone

selection, flight parameter settings, sensor specifications, data

collection protocols, and data processing procedures (Wang et al.,

2024). Through a large number of experiments and data analyses, the

optimal parameter combinations for different agricultural scenarios,

including sensor type and spatial resolution, will be determined (Lukas

et al., 2022). An intelligent UAV flight and data acquisition system will

be developed to achieve one-click operation, lower the operation

threshold, and improve the efficiency and reliability of UAV remote

sensing in agricultural applications.
5.6 Challenges and future development
directions of identifying vegetation in
grassland

Identifying the vegetation in grassland is an important direction

in the application of UAV remote sensing in agriculture. However,

the existing technologies are mainly focused on the identification of

agricultural crops, and there are still big challenges for the

identification of grassland species whose growth is not easy to

control. In the future, further research is needed to develop

classification algorithms tailored for grassland vegetation, taking

into account factors such as growth characteristics, community

structure, and others, in order to create a model better suited for

herbaceous plants (Lyu et al., 2022). This not only promotes the

coordinated development of agriculture and animal husbandry but

also provides a scientific basis for the ecological protection and

sustainable use of grasslands, thereby facilitating the rational

development and management of grassland resources.
6 Conclusion

Agriculture identification in remote sensing has recently drawn

widespread attention and obtained fine performances. This paper

provides a comprehensive overview of vegetation identification

using UAV remote sensing data. Based on information provided

by 79 references, this study established a database of UAV-based

agricultural identification processes and conducted meta-analyses

to showcase the performance and trends of these studies.

Findings from ourmeta-analysis indicate that since 2016, the use of

drones in agricultural identification applications has shown an

increasing trend, and its growth rate is also rising. Further analysis

indicates that identification based on UAV remote sensing is widely

used in plant pest (vitality) identification, plant identification or

counting, and weed identification. In addition, RGB is the sensor

type with the highest overall accuracy and the most muscular stability.
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The medium spatial resolution remote sensing image is the most

commonly used data source. With the improvement of spatial

resolution, the potential to achieve higher overall accuracy is also

increasing. Among the various methods, NN and SVM are the most

commonly used. In particular, neural networks have shown the best

performance in vegetation identification based on UAV and have

garnered widespread attention in recent years. While this study has

made significant contributions, it also acknowledges limitations such as

regional data biases and the inherent constraints of meta-analysis,

suggesting that future research should focus on mitigating these biases

to enhance the accuracy and universality of the analysis.

In conclusion, this review analyzed the research directions and

progress in vegetation identification using UAV remote sensing,

offering suggestions and prospects for future development.

Although existing technologies have greatly enhanced vegetation

identification and monitoring, there is still further need for

improvement in the technical support for grassland remote sensing

identification and management. By overcoming the limitations of

current research, we aim to enhance the accuracy and reliability of

agricultural remote sensing, ultimately supporting better agricultural

management and promoting sustainable development.
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Belgiu, M., and Drăgut,̧ L. (2016). Random forest in remote sensing: A review of
applications and future directions. ISPRS J. Photogrammetry Remote Sens. 114, 24–31.
doi: 10.1016/j.isprsjprs.2016.01.011

Berauer, B. J., Wilfahrt, P. A., Schuchardt, M. A., Schlingmann, M., Schucknecht, A.,
and Jentsch, A. (2021). High land-use intensity diminishes stability of forage provision
of mountain pastures under future climate variability. Agronomy 11, 910. doi: 10.3390/
agronomy11050910

Bhatt, P., and Maclean, A. L. (2023). Comparison of high-resolution NAIP and
unmanned aerial vehicle (UAV) imagery for natural vegetation communities
classification using machine learning approaches. GIScience Remote Sens. 60, 1-25.
doi: 10.1080/15481603.2023.2177448

Bouguettaya, A., Zarzour, H., Kechida, A., and Taberkit, A. M. (2022). Deep learning
techniques to classify agricultural crops through UAV imagery: a review. Neural
Comput. Appl. 34, 9511–9536. doi: 10.1007/s00521-022-07104-9

Campi, M., Dueñas, M., and Fagiolo, G. (2021). Specialization in food production
affects global food security and food systems sustainability. World Dev. 141, 105411.
doi: 10.1016/j.worlddev.2021.105411

Cao, X., Luo, Y., Zhou, Y., Duan, X., and Cheng, D. (2013). Detection of powdery
mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Prot.
45, 124–131. doi: 10.1016/j.cropro.2012.12.002
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