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Optimizing Mask R-CNN for
enhanced quinoa panicle
detection and segmentation
in precision agriculture
Manal El Akrouchi1,2*†, Manal Mhada1†, Dachena Romain Gracia1,
Malcolm J. Hawkesford3 and Bruno Gérard1
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Ben Guerir, Morocco, 2School of Collective Intelligence, University Mohammed VI Polytechnic
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Quinoa is a resilient, nutrient-rich crop with strong potential for cultivation in

marginal environments, yet it remains underutilized and under-researched,

particularly in the context of automated yield estimation. In this study, we

introduce a novel deep learning approach for quinoa panicle detection and

counting using instance segmentation via Mask R-CNN, enhanced with an

EfficientNet-B7 backbone and Mish activation function. We conducted a

comparative analysis of various backbone architectures, and our improved

model demonstrated superior performance in accurately detecting and

segmenting individual panicles. This instance-level detection enables more

precise yield estimation and offers a significant advancement over traditional

methods. To the best of our knowledge, this is the first application of instance

segmentation for quinoa panicle analysis, highlighting the potential of advanced

deep learning techniques in agricultural monitoring and contributing valuable

benchmarks for future AI-driven research in quinoa cultivation.
KEYWORDS
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1 Introduction

Quinoa, indigenous to the Andean regions of South America, is gaining worldwide

recognition for its exceptional nutritional value. As a “nutrient-dense food”, it is an

outstanding choice for health-conscious consumers, rich in proteins, dietary fiber, and

essential vitamins and minerals (Pathan and Siddiqui, 2022). Notably, quinoa is gluten-free

and an excellent source of proteins, containing all nine essential amino acids, which are

classified as essential because mammals cannot synthesize them. Consequently, these

amino acids must be obtained through dietary sources to support various physiological

functions. Quinoa is therefore recommended for vegans, vegetarians, and gluten-intolerant

individuals (Pathan and Siddiqui, 2022).
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In addition to its impressive nutrient profile, quinoa is

remarkably resilient to various stressors, including drought and

salinity: some quinoa genotypes can tolerate soil salinity levels up to

approximately 32 dS/m, whereas wheat experiences salinity

tolerance at around 7.13 dS/m (Peterson and Murphy, 2015;

Chaganti and Ganjegunte, 2022; Hussin et al., 2023; Ehtaiwesh

et al., 2024; Gheisary et al., 2025), positioning quinoa as a promising

candidate for global cultivation (Cai and Gao, 2020). Its robustness,

coupled with its nutritional benefits, has positioned quinoa as a crop

with significant potential to address global food security challenges

(Jacobsen, 2003; Bazile et al., 2016b; Akhlaq et al., 2023). Although

not yet as widely cultivated as staple crops like wheat or rice, quinoa

has been introduced in over 100 countries 1 (Jacobsen et al., 2003;

Jacobsen, 2003) and promoted by the FAO as a strategic crop to

combat malnutrition and diversify diets. Its ability to grow in arid

and saline soils positions it as a valuable alternative for millions

(Adolf et al., 2013; Bazile et al., 2016a) living in regions unsuitable

for conventional crops.

Despite quinoa’s growing global importance, several key aspects

of its cultivation remain understudied, including pest tolerance,

nutritional composition, yield prediction, and farm management

strategies. Addressing these gaps is essential for optimizing quinoa

production and enhancing its resilience in diverse agricultural

settings. However, traditional farming practices still pose

challenges, often leading to suboptimal yields due to inefficient

crop management and limited mechanization. Additionally,

quinoa’s morphological complexity, particularly the dense

clustering and variability in panicle structure, makes manual

phenotyping labor-intensive and error-prone, further

complicating efforts to assess plant health and productivity

accurately (Pathan and Siddiqui, 2022).

The potential of Artificial Intelligence (AI) in managing crops

such as quinoa is vast. With advanced machine learning algorithms,

such as instance segmentation methods, AI has the power to

revolutionize crop management. By detecting panicles – flower-

bearing structures of quinoa that develop into seed clusters, they

vary in shape, size, and density across different genotypes and play a

crucial role in determining crop yield– and analyzing weather

patterns, soil conditions, and crop health, AI can accurately

predict crop yield, empowering farmers to make informed

decisions and increase productivity. Such predictions can

significantly aid farmers in making informed decisions about

irrigation, fertilization, and pest management (Mohr and Kühl,

2021). Furthermore, integrating AI into precision agriculture can

automate labor-intensive research tasks (Alreshidi, 2019), such as

counting the number of panicles, estimating their size, and even

detecting early-stage crop diseases. Moreover, AI plays an essential

role in improving breeding and phenotyping. These advancements

will increase the efficiency of farming practices in addition to

decisionmaking support for farmers and contribute to food

security by maximizing the yield of nutritionally dense crops like

quinoa (Sanders et al., 2021).
1 FAO (2013). International Year of Quinoa: A Future Sown Thousands of

Years Ago. Retrieved from http://www.fao.org/quinoa-2013/en/.
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The development of AI technology in computer vision has

opened up exciting new possibilities for practical applications.

Instance segmentation is a challenging technique in computer

vision that involves identifying and classifying individual objects

within an image. It assigns a unique label to each object and is useful

in applications such as autonomous driving. However, it is

challenging due to the variety of object shapes and sizes, complex

backgrounds, and partial occlusion (He et al., 2020). In agriculture,

instance segmentation plays a vital role in precision farming, where

it has been shown to improve farming practices through the use of

technology (Yang et al., 2020). One of the notable techniques in

instance segmentation is Mask R-CNN.

Mask R-CNN, a well-known Region-based Convolutional

Neural Networks (R-CNN) variant, performs well in instance

segmentation (He et al., 2018). Built on Faster R-CNN, a two-

stage object detection model, Mask R-CNN extends it by adding a

stage that generates pixel-level segmentation masks for each

detected object. It offers a powerful tool for complex tasks by

dividing images into regions of interest, classifying them, and

generating precise masks for each instance (He et al., 2020). In

agriculture, Mask R-CNN can be deployed to identify individual

panicles in crops, count them, and estimate their size. This

technology has the potential to help farmers predict yield with

higher precision, detect early-stage crop diseases, and manage their

farms more efficiently (Yang et al., 2020). For quinoa panicle

detection, this enhancement is crucial because panicles often

overlap, vary in shape, and are densely packed. Drawing a

bounding box (as in Faster R-CNN) would not provide the

necessary granularity for accurate panicle counting and

segmentation. Instead, Mask R-CNN allows us to separate

individual panicles even when they touch or overlap, making it

the best choice for our application.

While Mask R-CNN holds promise, systematic studies are

needed to explore the performance of different backbones within

this architecture, particularly in an agricultural context (Yan et al.,

2023a). As backbones play a crucial role in extracting image

features, this study addresses this gap by comprehensively

assessing various backbones within Mask R-CNN. The goal is to

detect and count the quinoa panicles. The main objectives of this

research paper are threefold:
• It seeks to evaluate the effectiveness of different backbones

of Mask R-CNN in instance segmentation for detecting

panicles in quinoa. The tested backbones were selected from

CNN-based architectures (ResNet50, ResNet101,

EfficientNet-B7) and transformer-based architectures

(Vision Transformer, Swin Transformer).

• It examines the accuracy of these models in matching the

detected panicles.

• It introduces a new methodology for detecting and

segmenting panicles, which could prove valuable in yield

estimation tasks in precision agriculture.
The results of this study will add to the current understanding

of instance segmentation in agriculture but also aid practitioners in
frontiersin.org
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selecting a backbone for Mask R-CNN when creating models for

panicle detection, thereby improving the efficacy of precision

agriculture applications.
2 Background overview

2.1 Quinoa

Over the past decade, quinoa (Chenopodium quinoa Willd) has

gained international recognition for its exceptional nutritional value

and adaptability to diverse environments (Mhada et al., 2020). Its

high protein content, rich amino acid profile, and resilience to

abiotic stresses make it a promising crop for enhancing food

security and reducing the environmental impact of agriculture

(Khaitov et al., 2021). Additionally, integrating quinoa into

cropping systems promotes agricultural diversification, offering a

strategic approach to stabilizing yields under varying climatic

conditions (Verma et al., 2017).

One of the key determinants of quinoa yield is the number of

panicles, the flowering structures that bear seeds. Traditionally,

panicle counting has been labor-intensive and time-consuming,

requiring manual evaluation for phenotyping, which involves

assessing observable plant traits influenced by genetic and

environmental interactions. Automating this process using

advanced computer vision techniques can significantly enhance

efficiency, reduce human error, and enable large-scale

phenotypic assessments.

Recent advancements in artificial intelligence (AI) and

computer vision have provided powerful tools for automated crop
Frontiers in Plant Science 03
monitoring and yield estimation. However, Quinoa panicle

identification remains particularly challenging due to its diverse

morphological characteristics. While quinoa panicles have been

broadly classified into three categories (Bioversity International et

al., 2013), many panicles exhibit intermediate or atypical structures

that do not fit neatly into these classifications, posing difficulties for

deep learning-based detection models.

Additionally, panicle density and color variation introduce

further complexities in in-field image analysis. Densely clustered

panicles can lead to occlusions, making it difficult to distinguish

individual panicles, while variations in panicle color across different

genotypes can cause misclassification or low segmentation accuracy.

Some quinoa genotypes also exhibit unusual structural or

pigmentation traits, which can confuse standard image processing

algorithms, resulting in either false positives or missed detections.

As illustrated in Figure 1, these idiosyncratic structures and colors

can blend into the background or intertwine with other panicles,

requiring advanced deep-learning techniques for accurate detection

and quantification.

Given the complex structure of quinoa panicles and the

limitations of conventional image-based detection methods,

instance segmentation emerges as the most effective approach for

precise identification and counting. Unlike traditional object

detection methods that rely solely on bounding boxes, instance

segmentation provides pixel-wise masks, allowing for precise

differentiation of overlapping and densely clustered panicles. In

quinoa, instance segmentation is essential for accurate panicle

detection and counting, allowing researchers and breeders to

analyze key yield-related traits such as panicle size, number,

and density.
FIGURE 1

Example of in-field image of quinoa from the experiment used in this study.
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2.2 Instance segmentation

Object detection in computer vision involves identifying objects

within an image by placing a bounding box around them to train

the model. However, overlapping objects can be challenging to

detect accurately with this method. To overcome this obstacle,

instance segmentation, which provides a more precise annotation

method, should be utilized.

Image segmentation is at the heart of many deep learning

applications, including medical image analysis, automated driving,

video surveillance, virtual and augmented reality, scene

understanding, and robot perception. Image segmentation is the

process of classifying each pixel in an image with the correct label so

that pixels with the same label have specific characteristics.

Instance segmentation is a computer vision task for detecting

and localizing an object in an image. Instance segmentation is a

natural sequence of semantic segmentation and is one of the biggest

challenges compared to other segmentation techniques. The goal of

instance segmentation is to view objects of the same class divided

into different instances. Its primary objective is to dissect digital

visuals into distinct segments or regions, each representing a unique

object or a specific segment of that object. Its dual capacity sets

instance segmentation apart from other analogous methods: it

classifies every pixel within a given image, pinpoints, and

dis t inguishes indiv idual object instances . Numerous

methodologies have been innovated to achieve this intricate

process, many of which harness the power of deep learning and

convolutional neural networks. Various techniques of instance

segmentation can be found in the literature, including Mask R-
Frontiers in Plant Science 04
CNN (Region-based Convolutional Neural Networks) (He et al.,

2018), YOLACT (You Only Look At CoefficienTs) (Bolya et al.,

2019), SOLOv2 (Segmenting Objects by Locations) (Wang et al.,

2020), and PointRend (Point-based Rendering) (Kirillov

et al., 2020).

Deep learning-based instance segmentation is an active area of

research, and new techniques continue to emerge as researchers strive

to improve the speed, accuracy, and efficiency of these models.

However, despite rapid development in this field, instance

segmentation remains a challenging task, particularly for complex

scenes with many overlapping objects, diverse object classes, and

objects with intricate shapes. Table 1 presents some research works

done on different crops using instance segmentation.
2.3 Mask R-CNN

Accurately detecting quinoa panicles is challenging due to their

variations in shape, dense clustering, and occlusions. Instance

segmentation methods address these challenges by distinguishing

individual panicles within an image. Among the primary

approaches, single-shot instance segmentation (e.g., YOLACT,

SOLOv2) offers speed but lacks precision in separating

overlapping panicles. Transformer-based methods (e.g., DETR,

MaskFormer) excel at contextual reasoning but require extensive

labeled datasets and high computational power, making them less

practical for our study.

Given these constraints, we selected Mask R-CNN as the most

suitable method because it generates pixel-level masks for each panicle,
TABLE 1 Summary of different studies using instance segmentation on various crops.

Study Method used Crop Key findings Limitations and gaps

Su et al (Su et al., 2020)
Mask R-CNN with ResNet-
101+FPN

Wheat

AP50 values: 56.69% (detection)
and 57.16% (segmentation) for
wheat spikes

Limited to controlled conditions; not
tested on quinoa

Shen et al (Shen et al., 2022) Improved Mask RCNN with
attention mechanism and Res-
Net50+FPN Grape

AP50 values: 85.60% (detection)
and 87.10% (segmentation) for
grape clusters

Focus on larger fruits; not applicable to
small panicles

Jia et al (Jia et al., 2020)
Optimized Mask R-CNN

Apple

Effective segmentation of
overlapped fruits with
92.3% accuracy

Focused on large fruits with distinct
boundaries; not suitable for dense
clusters like panicles

Kumar & Kukreja (Kumar and
Kukreja, 2022)

Mask R-CNN Wheat Detection of mosaic virus on
individual wheat leaves

Disease detection rather than yield
estimation; different application focus

Kukreja et al (Kukreja et al., 2022)
Mask Scoring R-CNN Wheat Recognition of wheat aphid disease Disease-specific application; not

addressing yield prediction

Kumar et al (Kumar et al., 2023) Mask R-CNN Soybean Leaf disease detection
and segmentation

Limited to leaf analysis, not
reproductive structures

Wang et al (Wang et al., 2021b) Swin Transformer Grape Robust grape bunch detection in
complex vineyard environments

Not evaluated on smaller, more complex
structures like quinoa panicles

Yan et al (Yan et al., 2023b) Transformer-based
instance segmentation Pumpkin

Grasping and cutting points
detection for harvesting

Focused on harvesting logistics rather
than yield estimation

Mache-fer et al (Machefer et al., 2020) Mask R-CNN Potato Plant counting and sizing from
UAV imagery

Aerial perspective limitations; not
addressing ground-level detailed
panicle detection
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ensuring precise segmentation even in complex field conditions.

Unlike single-shot methods, it effectively separates overlapping

panicles, and compared to transformer-based approaches, it offers a

balance of accuracy and computational efficiency.

Mask R-CNN is an advanced object detection and instance

segmentation model that builds upon the Faster R-CNN

architecture (He et al., 2018). Faster R-CNN is a two-stage object

detection model that utilizes a Region Proposal Network (RPN) to

generate high-quality region proposals, which are then used by the

Fast R-CNN network for object detection (Ren et al., 2017). The

RPN is a fully convolutional network that predicts object bounds

and objectness scores at each position (Ren et al., 2017). Mask R-

CNN extends this framework by adding a third stage, for instance,

segmentation, to generate pixel-level masks for each detected object

(He et al., 2020).

In agriculture, Mask R-CNN has been applied to various

applications. One such application is crop monitoring and yield

estimation. Mask R-CNN can detect and segment individual crops

in aerial or satellite images, accurately estimating crop yield and

health (Machefer et al., 2020). This information can be valuable for

farmers in optimizing their agricultural practices and resource

allocation. Another application is weed detection and

management. Mask R-CNN can be trained to identify and

segment weeds in agricultural fields, enabling targeted and precise

weed control measures. This can help reduce the use of herbicides

and minimize their environmental impact. Mask R-CNN has also

been very useful in disease detection in crops. Using computer

vision and especially instance segmentation to detect and recognize

diseases in various crops is extremely important to prevent potential

risks and losses. For example (Wen-Hao et al., 2020), evaluated

Mask R-CNN to detect Fusarium Head Blight in wheat images.
2.4 Backbone networks

Extracting features is a crucial step in data analysis. Statistical

algorithms and filters were initially used to extract features from

input data for subsequent processing. However, with the advent of

the machine and deep learning techniques, neural networks have

revolutionized the process by providing improved performance and

the ability to process larger volumes of data (Pietikäinen and Silven,

2022). With the development of convolutional neural networks

(CNNs), it has become possible to work with large-scale data sizes

and use them for feature extraction.

Choosing a CNN network for feature extraction or other parts

of a deep learning model is not random. It requires careful

consideration and analysis (Zhou et al., 2022). So, the

implementation of such a model can be related to the target task

as well as the complexity of it. These networks are used now for

feature extraction or at the beginning of any DL model and its

named backbones. A backbone is the recognized architecture or

network used for feature extraction which has been trained in many

other tasks previously with demonstrated effectiveness. This section

will cover the most commonly used backbones for feature

extraction suitable for the Mask R-CNN model.
Frontiers in Plant Science 05
2.4.1 Resnet backbones
The ResNet (Residual Network) family is a powerful deep-

learning architecture widely used in computer vision. Developed by

Kaiming He and colleagues in 2015 (He et al., 2016), ResNet

introduced a key innovation called “residual blocks,” which help

train very deep neural networks more effectively. Normally, when a

network becomes too deep, it struggles to learn properly due to a

problem called the vanishing gradient, where important

information fades as it moves through layers. ResNet solves this

by making the network focus on learning the difference (“residual”)

between the input and the expected output, rather than trying to

learn everything from scratch. This clever technique allows ResNet

models to train deeper networks without losing accuracy, making

them highly effective for image recognition and object

detection tasks.

These residual connections, also termed “skip connections,”

bypass one or more layers and add the output from the previous

layer to the output of subsequent layers. This approach enhances

gradient flow through the network, enabling the training of much

deeper networks than was previously feasible. The original ResNet

paper demonstrated architectures with depths of up to 152 layers,

shattering previous benchmarks on ImageNet and COCO datasets.

In ResNet models, all convolutional layers apply the same 3 × 3

convolutional window, and the number of filters increases with

network depth, from 64 to 512 (for ResNet-18 and ResNet-34),

from 64 to 2048 (for ResNet-50, ResNet-101, and ResNet-152). For

all models, there is only one max-pooling layer with a pooling size

of 3 × 3, and a stride of 2 is applied after the first layer. Therefore,

reducing the input’s resolution during training is severely limited.

At the end of all models, the average pooling layer is applied to

replace the fully connected layers. This replacement has several

advantages. First, this layer has no parameters to optimize, so it

helps reduce model complexity. Second, this layer is more native in

enforcing the correspondences between feature maps and

categories. In this study, ResNet50 and ResNet101 will be covered.

2.4.2 Transformers backbones
Transformers have become famous for backbone architectures

in various domains, including natural language processing and

computer vision. In natural language processing, the RoBERTa

model, proposed by (Liu et al., 2019), has demonstrated robust

performance by optimizing the BERT pretraining approach. The

authors conducted a replication study of BERT pretraining and

found that hyperparameter choices and training data size

significantly impact the final results.

In computer vision, transformers have also been utilized as

backbone architectures (Wang et al., 2022b). studied two families of

backbones for semantic segmentation: convolutional neural

networks (CNNs) and vision transformers. They used the original

ResNet-50 as a CNN backbone and compared it to the commonly

used inception stem (Qiang et al., 2023). introduced the SeaFormer

framework, a squeeze-enhanced axial transformer explicitly

designed for mobile semantic segmentation. They demonstrated

superior performance on datasets such as ADE20K and Cityscapes,

surpassing mobile-friendly rivals and transformer-based
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segmentation models. Furthermore, SeaFormer showed potential as

a versatile, mobile-friendly backbone for image classification.

In the context of dense prediction in computer vision (Ranftl

et al., 2021), proposed using vision transformers as the backbone in

an encoder-decoder structure . They showed how the

representations produced by the vision transformers can be

effectively transformed into dense predictions, leading to state-of-

the-art results in dense prediction tasks.

Transformers have emerged as a versatile and powerful choice

for backbone architectures in computer vision. Their ability to

capture long-range dependencies and learn complex patterns has

significantly advanced various tasks. This study selected two widely

used transformers in computer vision: ViT (VisionTransformer)

and Swin. The definition of these backbones is presented:

ViT (Vision Transformer):

The Vision Transformer (ViT) (Dosovitskiy et al., 2021)

represents a notable shift in the approach to visual recognition

tasks, moving away from the long-standing dominance of

convolutional neural networks (CNNs) toward the realm of

transformers, which have been immensely successful in natural

language processing. Instead of relying on convolutions to process

image data locally, the ViT backbone takes an image, splits it into a

sequence of fixed-size non-overlapping patches, linearly embeds

these patches into flat vectors, and then processes them in a

sequence just like words in a sentence. Positional embeddings are

added to the patch embeddings to provide positional information,

which is inherently absent when using transformers. The

transformer backbone then processes this sequence through self-

attention mechanisms and feed-forward networks, enabling it to

weigh the importance of different patches. The result is a model that

can capture an image’s local and global patterns.

Swin Transformer:

The Swin Transformer is an innovative vision transformer

model that utilizes a unique “shifted windows” method to process

images (Liu et al., 2021). Unlike traditional transformer models that

divide images into non-overlapping patches of fixed size, the Swin

Transformer divides images into overlapping patches that are

shifted by a certain amount. This technique enables the model to

capture local and global information in the image and handle large

objects that may span multiple patches. Furthermore, the Swin

Transformer employs a hierarchical architecture to process the

image at various scales, allowing it to capture fine-grained details

and high-level contextual information. As a result of these features,

the Swin Transformer has achieved state-of-the-art performance on

benchmark datasets such as ImageNet and COCO object detection.

The success of the Swin Transformer in image recognition tasks

demonstrates the potential for Transformer-based models to be

applied in the vision domain (Cao et al., 2021). It has been used as a

backbone in various applications, including medical image

segmentation (Cao et al., 2021), music classification (Zhao et al.,

2022), image denoising (Fan et al., 2022), grape bunch detection

(Wang et al., 2021a), lettuce browning prediction (Wang et al.,
Frontiers in Plant Science 06
2022a), optical chemical structure recognition (Xu et al., 2022), and

single image dehazing (Yang et al., 2022). These applications

highlight the versatility and effectiveness of the Swin Transformer

in different domains and tasks.

2.4.3 EfficientNet backbones
EfficientNet is a family of convolutional neural network (CNN)

models designed to balance accuracy and efficiency by scaling the

network dimensions of depth, width, and resolution (Tan and Le,

2019). The EfficientNet models have achieved state-of-the-art

performance on various computer vision tasks, including image

classification, object detection, and semantic segmentation (Tan

and Le, 2019; Marques et al., 2020).

The EfficientNet models are built on top of the MobileNetV2

architecture, which utilizes inverted residuals and linear bottlenecks

to improve the performance of mobile models (Sandler et al., 2018).

The MobileNetV2 architecture incorporates a novel framework

called SSDLite for object detection and a reduced form of

DeepLabv3 (Chen et al., 2018) called Mobile DeepLabv3 for

semantic segmentation (Sandler et al., 2018).

EfficientNet uses a technique called Compound Coefficients to

scale models in a simple but effective way (Tan and Le, 2019). With

compound scaling, each dimension is scaled uniformly by a fixed set

of scaling coefficients rather than randomly scaling width, depth, or

resolution. The Efficientnet authors developed seven models of

different dimensions that surpassed the state-of-the-art accuracy

of most convolutional neural networks with much better efficiency

using compound scaling and AutoML. Figure 2 shows the

composite scaling method.

The EfficientNet-B0 architecture was developed using a multi-

objective neural architecture search that optimizes accuracy and

floating-point operations. Taking B0 as a baseline model, the

authors (Tan and Le, 2019) developed an entire family of

EfficientNets from B1 to B7, which achieved state-of-the-art

accuracy on ImageNet while being very efficient to its

competitors. Based on the concept of the Compound Coefficients

mentioned earlier, depth, width, and resolution parameters can be

modified to scale up the baseline network to obtain EfficientNet-b1

to b7.

EfficientNet has been used as a backbone in various

applications, including firearms monitoring, litter detection,

remote sensing scene classification, and weed detection (Lasloum

et al., 2021; Cordova et al., 2022; Chatterjee et al., 2023; Jin et al.,

2023). The models have been shown to provide accurate and

efficient results in these domains.
3 Materials and methods

This research aimed to assess the ability of Mask R-CNN to

detect and segment quinoa panicles accurately and efficiently,
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utilizing various backbone architectures. The study investigated the

optimal backbone architecture for Mask R-CNN in detecting and

segmenting quinoa panicles under natural field conditions. The

main goal was to phenotype distinct quinoa genotypes. The

significant contributions of this research are outlined below:
Fron
• Building a highly and precisely annotated dataset of quinoa

images to train models.

• Studying the phenotyping aspects of quinoa through

detection and segmentation of panicles.

• Developing a model for automatic detection and counting

panicles despite quinoa’s challenging structure.
The following flowchart in Figure 3 comprehensively illustrates

the activities integral to the study. The following sections describe

the processes in detail.
3.1 Plant materials

The experiment was carried out at the Tassaout research station

belonging to INRA (National Institute of Agronomic Research,

Morocco, 31° 49’ 12.6768”N, 7° 26’ 32.4096”W) with the aim to

understand the behavior of each genotype under two different

irrigation protocols: Full Irrigation and Deficit Irrigation. Six

genotypes were sown on January 6th, 2022, under a Split-Split

Plot Design with a planting density of 2.5 kg/ha. Each plot was 2.5

meters wide and 3 meters high. Seeds were provided by NordGen

genebanks: Genotype 5 = Puno Variety 3706, and from IPK:
2 https://github.com/opencv/cvat
• Genotype 1= CHEN 144

• Genotype 2 = CHEN 522

• Genotype 3= CHEN 250

• Genotype 4= CHEN 158

• Genotype 6= CHEN 67
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3.2 Data collection

Throughout the growing season, several phenotyping

measurements were conducted. Once the quinoa had reached its

full height on 25th April 2022, ground-based images were captured

for field phenotyping. The imaging equipment consisted of a Sony

ILCE-5100, a 24.3-megapixel digital camera (6000 × 4000 pixels),

and a 35mm camera lens attached to a monopod. A viewing angle of

40°from the monopod head was selected to capture the entire plot

area with minimal overlap. In addition, the field imagery was

captured under natural lighting conditions using a color checker

for accuracy. The camera sensor was placed 2.5m above the ground

and 1m from the plot’s border. The camera settings were as follows:

Focal length: 18 mm, Aperture: f/10.0, ISO: 400, and Exposure time:

1/500 s. The ground resolution of images was approximately

between 0.036 and 0.04 cm per pixel.
3.3 Data preparation

A total of 288 plots were analyzed (144 per irrigation

treatment). On average, three images were captured for each plot,

resulting in more than 800 images. Using the Computer Vision

Annotation Tool (CVAT) 2 and polygon annotation, over 12,500

panicles were manually annotated and saved in COCO format.

Figure 4 presents an example of annotation. The dataset was divided

into 8,543 panicles for training, 2,664 for validation, and 1,330 for

testing. Another 288 images were selected, different from the

training dataset and uniquely presenting each plot, to evaluate the

performance of our model against the visual counting of panicles.
FIGURE 2

Model scaling (Tan and Le, 2019). (a) is a baseline network example; (b–d) are conventional scaling, increasing only one network width, depth, or
resolution dimension. (e) is the compound scaling method, which scales all three dimensions at a fixed ratio in a uniform manner.
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3.4 Model architecture

We used Mask R-CNN to detect and segment quinoa panicles.

We adopted diverse backbones mentioned in section 2.4 and

compared the results with actual counting. Finally, our proposal

involves enhancing the Mask R-CNN structure by replacing the
Frontiers in Plant Science 08
feature extractor with a combined FPN (Feature Pyramid Network)

and an upgraded version of the EfficientNet-B7 backbone. FPN,

feature pyramid network (FPN), is a neural network used in

computer vision for object detection (Lin et al., 2017). Combining

features frommultiple levels of a convolutional network is necessary

to detect objects of varying sizes to achieve optimal object detection.
FIGURE 3

Overall process flowchart of quinoa panicles detection and segmentation.
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FPN is a powerful tool that generates high-quality, multi-scale

feature maps. It is composed of both a bottom-up and a top-

down pathway.

While EfficientNet-B7 can be paired with various activation

functions, one of its default choices has been the Swish activation

function, which often outperforms traditional activations like ReLU

in deeper models by introducing a smoother and adaptive non-

linearity. The activation function is crucial in calculating the

weighted sum of inputs and biases in deep CNN. It also helps in

minimizing errors between the output and the expected value.

However, the emergence of the Mish activation function has

opened new avenues for enhancing the performance of models

like EfficientNet-B7 even further. Mish (Misra, 2020), a novel self-

regularized non-monotonic activation function, has demonstrated

superior potential to capture a broader spectrum of features and

reduce the risk of vanishing gradients, especially in deeper

networks. Mish function can be defined as:

f (x) = x ∗ tanh(softplus(x))

where

softplus(x) = ln(1 + ex)

Knowing the challenging features of panicles, we propose

integrating the Mish activation function into the EfficientNet-B7

network. This combination has the potential to enable the network

to learn more elaborate representations and better adapt to complex

visual scenarios. As a result, it can refine the object detection

process to a previously unattainable level.

The backbone network produces hierarchical feature maps.

These feature maps are fed into the Region Proposal Network

(RPN). The RPN systematically slides over these maps, generating a

series of region proposals. These proposals highlight potential
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bounding boxes that could contain objects. For each of these

proposed regions, the RPN also predicts the likelihood of an

object’s presence, ensuring that regions with higher probabilities

are forwarded for detailed processing. After the RPN, the proposals

are passed to a Region of Interest (RoI) Align module. This module

warps each proposal to a fixed size, making it feasible for further

processing by standard layers. Following the RoI Align, a set of fully

connected layers predict class labels and adjust bounding box

coordinates for these proposals, refining their positions and sizes.

Parallel to this bounding box regression and classification, Mask

R-CNN introduces another branch for mask prediction. Unlike the

bounding box prediction, which provides a rectangular region of

the object, this mask branch uses a small Fully Convolutional

Network (FCN) to produce a binary mask for every class label.

The mask corresponds to the precise shape of the object within the

bounding box. In this context, for the panicle, the FCN’s role is to

delineate the exact contours of the panicle, allowing for its accurate

segmentation from the background or other entities in the image.

Figure 5 displays the model’s architecture.
3.5 Model training and evaluation

This study was implemented using Python 3.9 and Pytorch 2.0

framework. All the models were trained in Google Colab A100-

SXM4-40GB GPU. The Mask R-CNN model is implemented using

detectron2, a powerful software system developed by Facebook AI

Research (FAIR) (Wu et al., 2019). Detectron2 is an upgraded

version of Detectron, coded in PyTorch with a more modular

design. It can implement advanced algorithms such as Faster R-

CNN, Mask R-CNN, RetinaNet, and DensePose. Its heightened

flexibility and extensibility have made it FAIR’s most popular open-
FIGURE 4

Example of annotation using points to draw polygons on each quinoa panicle.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1472688
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


El Akrouchi et al. 10.3389/fpls.2025.1472688
source project. After some tests, the model was trained to

4000 iterations.

Due to the limited availability of datasets, transfer learning has

become a popular approach to train deep learning models more

efficiently and stably (Szegedy et al., 2015). By leveraging pre-

trained CNN features from ImageNet, which consists of 1000

object categories and 1.2 million images, state-of-the-art results

have been achieved in various image processing tasks, ranging from

image classification to image captioning. To our knowledge, it is

highly improbable that images of quinoa panicles are in the

ImageNet dataset or other public datasets, given that quinoa is

not a widely researched crop. To address this, fine-tuning the pre-

trained model’s layers with our labeled panicle image is necessary.

Data augmentation is necessary to improve the dataset for

training, as it increases the number of images while maintaining

quality (Perez and Wang, 2017). We applied data augmentation

using the defined functions:
Fron
• RandomApply: Randomly apply an augmentation with a

given probability.

• RandomFlip: Flip the image horizontally or vertically with

the given probability.

• ResizeShortestEdge: Resize the image while keeping the

aspect ratio unchanged.

• RandomCrop: Randomly crop a rectangle region out of

an image.
Hyperparameters play a pivotal role in the training and

performance of deep learning models, and Mask R-CNN is no

exception. In Mask R-CNN, hyperparameters, such as learning rate,

batch size, weight decay, and anchor scales, significantly influence

the network’s convergence rate, its adaptability to the dataset, and

its detection and segmentation accuracy. Several hyperparameters
tiers in Plant Science 10
were fine-tuned in the experiments to better align with our

dataset characteristics.

Since we have a limited-size dataset, we set the normalization for

the conv layers in Box Head and Mask Head to “GN” (Group

Normalization) (Wu and He, 2018). We did the same for FPN and

chose the Group Normalization instead of Layer Normalization. The

learning rate was set to 4e-05, with a weight decay of 0.05 and AdamW

(Loshchilov and Hutter, 2019) as the optimization method.

Mask R-CNN introduces a novel loss function for the mask

branch, the binary cross-entropy loss. This is incorporated

alongside the existing losses - the softmax loss for class labels and

the smooth L1 loss for bounding box coordinates. These individual

losses are summed up to obtain the final loss function (L) of the

Mask R-CNN model, represented mathematically as follows (He

et al., 2017):

L = Lcls + Lbox + Lmask

Where Lcls is the log loss over two classes (object vs. not object),

Lbox is the smooth L1 loss for the bounding box regression, and

Lmask is the average binary cross-entropy loss.

We analyzed the predicted segmentation masks in the

output images obtained from the trained Mask R-CNN. The

aim was to evaluate the effect of the different backbone parts in

the Mask R-CNN mask. This analysis used two metrics: average

precision (AP) and IoU. IoU is a crucial metric used to assess

segmentation models (Zhou et al., 2019), commonly referred to

as Jaccard’s Index. This metric quantifies how effectively the

model can distinguish objects from their backgrounds in an

image. IoU is widely used in several computer vision

applications, including autonomous vehicles, security systems,

and medical imaging.

The IoU between the ground-truth panicle region, Agt , and the

predicted panicle region, Ap, was calculated as follows:
FIGURE 5

Mask R-CNN based Mish-EfficientNet-B7 and FPN model for panicle instance segmentation.
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IoU(Agt,Ap) =
Agt ∩ Ap

Agt ∪ Ap

In order to assess the performance of our models, we will

employ the official COCO evaluation metrics in Python, including

AP50 defined as AP at IoU = 0.5 (AP50). This version of the AP

metric evaluates average precision when the Intersection over

Union (IoU) threshold is set at 0.5. A higher IoU threshold

means stricter evaluation criteria and an IoU of 0.5 is commonly

used for many detection tasks.

These metrics offer a thorough evaluation of bounding box and

mask annotations. However, when evaluating quinoa, we must

consider the possibility of additional panicles from lateral

branches that do not contribute to the yield (Stanschewski et al.,

2021). To guarantee the accuracy of our predicted count, we cross-

referenced it with the count determined by an expert. The models

may then be assessed more accurately by utilizing both approaches.
4 Results

4.1 Model training results

The total loss and training accuracy were considered in

assessing the Mask R-CNN model’s training. Figures 6A, B depict

the Mask R-CNN training accuracy and total loss with the number

of iterations, respectively. At the completion of 4,000 iterations, the

training accuracy was determined to be 86.3%, and the Total Loss

was 1.42. Throughout the training, the predicted masks over objects

were compared to the ground truth data after a specified number of

iterations, enabling the calculation of training accuracy for the Mask

R-CNN model.

Upon completion of model training, we evaluated the models

using the test dataset, and CSV files were produced to showcase the

location of each panicle in the image and their respective mask sizes.

Our predictors operate under two defined thresholds: 0.5 and 0.7.

The image depicted in Figure 7 exemplifies the prediction abilities

of the MishEfficientNet-based Mask R-CNN model under the 0.5
A

FIGURE 6

Plot of Mask R CNN training accuracy and Total Loss during training with ite
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threshold. For an IOU of 0.5, the model achieves an AP of 50.632

for bounding box annotation and 50.773 for mask annotation. At a

higher IOU threshold of 0.7, the model’s performance decreases,

recording an AP of 44.391 for bounding box annotation and 44.588

for mask annotation. This indicates that while the model performs

reasonably well at a lower IOU threshold, its performance declines

as the threshold increases, reflecting the challenges in precise object

detection and segmentation of panicles.
4.2 Comparison of backbones

To ensure a thorough analysis of our proposed model’s

performance, we utilized the Mask R-CNN architecture with

diverse backbones. While the ResNet backbone is the standard in

the original Mask RCNN, we conducted an in-depth comparison by

incorporating other top-performing backbones mentioned in

section 2.4 to evaluate how various feature extraction methods

impact instance segmentation and object detection tasks. To ensure

unbiased evaluations, we attempted to train all versions of the

models using the same dataset and conditions. However, due to

differences in backbone structures, we adjusted the learning rate

accordingly to maintain the integrity of our comparisons.

To further evaluate the effectiveness of the Mish activation

function, we compared our proposed methodology with the original

EfficientNet-B7 network that uses the Swish activation function.

When using the Mish activation function, the model achieves

an AP of 50.632 for bounding box annotation and 50.773 for mask

annotation. On the other hand, the Swish activation function yields

an AP of 48.928 for bounding box annotation and 49.581 for mask

annotation. These results indicate that the Mish-EfficientNet-B7

backbone performs better than the Swish-EfficientNet-B7 backbone

in terms of both object detection and segmentation at an IOU

threshold of 0.5, highlighting the effectiveness of the Mish activation

function in improving model accuracy. It is clear from the results

presented in Figure 8A that there are some repetitions in detection

(from the mask color), compared to our proposed model’s results in

Figure 8B, proving the higher performance of the Mish function.
B

rations steps. (A) Training Accuracy; (B) Total Loss.
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Finally, we compared the results of the rest of the backbones

mentioned in section 2.4 with our proposed model. The Table 2

summarizes the comparative analysis of the different backbones

evaluated with the test dataset using two thresholds of detection

probabilities 50% and 70%.

The quinoa panicles prediction results of the different

backbones used in the comparative study with a 50% threshold

are presented in Figure 9.
4.3 Counting analysis

In this research study, the assessment of methods involved the

solicitation of expert knowledge in the counting of primary quinoa

panicles that contribute to the overall yield. Subsequently, the

predicted counts were compared to the actual counts for each

image, in order to evaluate the accuracy of the counting method.

Figures 10A, B present the relationship between the ground truth

number of panicles and the estimated number of panicles across all

genotypes for full and deficit irrigation, respectively. The regression

statistics for the predicted versus actual values of panicle counts

offer valuable insights into the model’s performance. Table 3

summarizes the regression statistics in full and deficit irrigation,

where Multiple R represents the multiple correlation coefficient

between actual and predicted count.

For further analysis, we used the Bland-Altman plot as

presented in Figure 11. The Bland-Altman plot is a pivotal

analytical tool in evaluating the performance of our model

designed to count panicles, facilitating a deep understanding of

the discrepancies between predicted and actual counts. It

graphically represents the agreement between two quantitative

measurements by plotting the difference against their average.

Our model enables a meticulous inspection of the systemic
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differences (biases) and random errors inherent in the model’s

predictions compared to the actual panicle counts, providing

insights that can drive model refinements and optimizations.

Figures 11A, B show the Bland-Altman plot for full and deficit

irrigation, respectively.

To understand the variability in the results, we made regression

analyses on each genotype. Tables 4, 5 present a summary of

analyses for each genotype in full and deficit irrigation, respectively.
5 Discussion

5.1 Algorithmic level

It has been demonstrated by this study that deep learning

techniques can be used to detect quinoa panicles of six different

genotypes despite the complexity of the selected trait and the

variability of the panicle (type, size, color, and density).

The backbone architecture heavily influences the performance of

Mask R-CNN models. We comprehensively evaluated various

backbones, including ResNet50, ResNet101, ViTDet, Swin, and Mish-

based EfficientNet B7, with LN as the default normalization layer in FPN.

The proposed method, which utilizes Mish-based EfficientNet B7 with

GN instead of LN, produced the best results, as shown in Figure 9. This

outcome points to the unique architectural design and training strategy

as the key factors in the model’s performance.

Although ResNet50 and ResNet101 have proven effective in

multiple applications, their limited receptive field and lack of

attention mechanisms may impede their performance. ViTDet, on

the other hand, employs a transformer-based architecture that can

more efficiently capture long-range dependencies by processing

input images as a sequence of patches. However, its computation

costs may surpass those of other backbones due to the self-attention
FIGURE 7

Predicted masks on detected panicles using our proposed model.
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mechanism. Additionally, accurately extracting features from the

shape and structure of panicles has posed a challenge.

In the expansive realm of agricultural research and technology, it is

surprising to note that there is a significant gap in the literature about

the instance segmentation and counting of quinoa panicles. Mask R-

CNN has been, however, has been used extensively in other crops like

wheat. In (Su et al., 2020), for instance, the authors used Mask R-CNN

with ResNet-101+FPN backbone, and the AP50 values for detection

and segmentation of wheat spikes were 56.69% and 57.16%,

respectively. An improved version of Mask R-CNN was used to

detect and segment grape clusters in the field based on the attention

mechanism and ResNet50 + FPN backbone in the study of (Shen et al.,
Frontiers in Plant Science 13
2022). They achieved high AP50 values, with 85.60% and 87.10%,

respectively, in detection and segmentation.

Among the tested backbones, EfficientNet-B7 with Mish

activation and Group Normalization demonstrated the highest

segmentation accuracy and robustness, making it the most suitable

choice for quinoa panicle detection in challenging field conditions.
5.2 Experimental level

During the evaluation, our model demonstrated high

performance with exceptional AP values. Nevertheless, we
A

B

FIGURE 8

Comparison between predicted masks of the two activation functions: Swish and Mish. (A) Swish-EfficientNet-B7, (B) Proposed Model’s Predictions.
TABLE 2 Results of the AP50 metric in the comparative study using the thresholds 0.5 and 0.7.

Backbone
Threshold 0.5 Threshold 0.7

Bbox % Mask % Bbox % Mask %

ResNet50 45.299 44.456 38.254 38.209

ResNet101 44.034 46.073 38.852 41.490

ViTDet_b 46.097 46.846 37.330 37.207

Swin_b 27.106 26.934 15.161 15.078

Mish-based EfficientNet_B7 + FPN(LN) 46.186 47.405 41.687 42.138

Mish-based EfficientNet_B7 + FPN(GN) 50.632 50.773 44.391 44.588
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observed a discrepancy between the actual and predicted count. The

regression results offer an intriguing perspective on the predictive

capability of our model for panicle counts. Given that these insights

are derived from 288 observations, the dataset’s size provides

reasonable confidence in the results. Table 4 shows that the

application of the model on Genotype 4 seems to be the most

effective in terms of fit and predictive power, followed by Genotype

5. The other genotypes, especially Genotypes 2, 3, and 6,

demonstrate weaker predictive capabilities based on the

presented metrics.

The variation in R2 values among the six quinoa genotypes is

attributed to a combination of genetic, environmental, or

experimental factors. Upon closer examination, we found that

this correlation was influenced by the type of the panicle for each

genotype. For example, for Genotype 5 (Variety Puno), the R square

did not change in full and deficit irrigation, which means that this
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genotype was not statistically influenced by the stress level we

applied. This result is in concordance with the provided

information on the Puno variety, which has been registered as a

new quinoa variety in Europe, bred from Chilean and Peruvian

landraces and selected for earliness, lower height at harvest and

adaptation to Mediterranean conditions (Lavini et al., 2014).

For Genotype 4, the significant drop in R square value from 0.74

under full irrigation to 0.37 during deficit irrigation highlights the

considerable impact of water availability on its panicle structure,

particularly in terms of density. The changes made to the panicle

structure caused the model to struggle with detection and

segmentation, leading to a decrease in the R square. Originating

from Bolivia, this genotype, cataloged at the IPK with the accession

code N°CHEN 158, exhibits a unique sensitivity to water stress. This

characteristic is intrinsically linked to its genetic and geographical

origins. The genotype’s native environment in Bolivia, known for its
A

B

C

D

E

F

FIGURE 9

Comparison between resulted masks in different methods. (A) ResNet50, (B) ResNet101, (C) ViTDet, (D) Swin, (E) MishEfficientNet-B7 + FPN(LN),
(F) MishEfficientNet-B7 + FPN(GN).
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varied climatic conditions, has likely influenced the development of

specific traits in this plant. Under water stress conditions, it exhibits

a marked panicle size and density reduction.

This study’s main finding is the genotypes’ sensitivity to water

availability, particularly for Genotypes 3, 4, and 6, demonstrating a

pronounced variation in panicle structure and density in response to

irrigation levels, underscoring the significance of understanding

genotype-specific responses in agricultural practices. Understanding

these links is crucial for developing effective irrigation strategies and
Frontiers in Plant Science 15
selecting genotypes best suited for cultivation in water-

limited environments.

Many authors described that some quinoa genotypes might

exhibit higher phenotypic plasticity, which is the ability of an

organism to change its phenotype in response to environmental

conditions (Mhada et al., 2014; Becker et al., 2017; del Pozo et al.,

2023). Genotypes with higher plasticity may have more consistent

responses across various conditions, leading to higher R² values.

The other genotypes exhibited an increase in R square in deficit

irrigation compared to full irrigation. This can be explained by the

fact that when sown in arid lands, their panicles get denser but

smaller, helping in better detection using the model. The observed

reduction in panicle size is similar to what was found when quinoa

was grown under drought or saline conditions (Maliro et al., 2017).
5.3 Limitations and future perspectives

It has been observed that Mask R-CNN is a widely used

method for detecting and segmenting crops. However, the

accuracy of the model depends mainly on the quality of the
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FIGURE 10

Correlation between predicted and actual count in full and deficit irrigations. (A) Full Irrigation, (B) Deficit Irrigation.
TABLE 3 Summary output of regression statistics in full and
deficit irrigation.

Regression
Performance
Metrics

Full Irrigation Deficit Irrigation

Multiple R 0.586 0.727

R Square 0.344 0.529

Adjusted R Square 0.339 0.526

Standard Error 13.756 15.477
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TABLE 5 Summary output of regression statistics in Deficit Irrigation for all genotypes.

Regression
Performance
Metrics

Genotype 1 Genotype 2 Genotype 3 Genotype 4 Genotype 5 Genotype 6

Multiple R 0.796 0.520 0.797 0.614 0.725 0.796

R Square 0.634 0.270 0.636 0.378 0.526 0.635

Adjusted R Square 0.617 0.237 0.620 0.349 0.505 0.618

Standard Error 17.238 17.479 13.001 18.030 16.546 11.598
F
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FIGURE 11

Bland-Altman plot in full and deficit irrigations. (A) Full Irrigation, (B) Deficit Irrigation.
TABLE 4 Summary output of regression statistics in Full Irrigation for all genotypes.

Regression
Performance
Metrics

Genotype 1 Genotype 2 Genotype 3 Genotype 4 Genotype 5 Genotype 6

Multiple R 0.603 0.331 0.343 0.863 0.767 0.352

R Square 0.364 0.110 0.117 0.744 0.588 0.124

Adjusted R Square 0.335 0.069 0.077 0.733 0.569 0.084

Standard Error 17.081 20.508 23.108 14.846 15.960 20.005
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data, such as the size of the dataset, image-taking protocols,

resolution, etc. Although the current model can predict panicle

count to some extent, there is still much scope for improvement to

enhance its predictive abilities. Moreover, acquiring a large image

library of quinoa is challenging, as it is an understudied crop with

a shortage of available datasets. Our study’s dataset was relatively

small compared to the datasets available in the literature for other

crops, such as wheat.

Quinoa’s unique morphology presents a challenge when

utilizing deep learning models. Phenotyping quinoa requires a

precise image capture and model selection protocol, as each

genotype behaves differently. The differences between genotypes

regarding their phenological stages can significantly impact the

model’s accuracy, as their responses at specific observational times

may vary. This should be taken into account when taking pictures

for panicle counting. Additionally, standardizing image capture

through consistent camera angles, controlled lighting, and

calibration tools can enhance data uniformity and improve

model generalization.

Finally, with the rapid and exponential evolution of computer

vision technologies, there is an undeniable potential for

groundbreaking advancements in panicle detection. As these

models continue to mature, harnessing the capabilities of the

latest cutting-edge algorithms can significantly enhance the

accuracy, efficiency, and speed of panicle detection processes.

Such advancements could revolutionize how researchers approach

crop management, leading to optimized yields and more sustainable

agricultural practices.

Future research should consider integrating this instance

segmentation approach with unmanned aerial vehicles (UAVs)

for large-scale field monitoring, as well as with IoT-based

environmental sensors for real-time crop condition tracking. By

combining these tools into a cohesive decision-support system, we

could greatly enhance the precision and scalability of advanced

farming practices for quinoa and other emerging crops.
6 Conclusion

In modern agricultural research, instance segmentation is an

indispensable tool for enhancing the accuracy and precision of crop

analysis. Its role in the study of quinoa, a crop with substantial

nutritional value, is particularly significant. By providing nuanced

information about each quinoa panicle, instance segmentation

enables researchers to distinguish it from the intricate background

and other overlapping entities. This level of detail is invaluable in

evaluating factors such as health, growth, and yield estimations.

The Mask R-CNN algorithm is a highly effective tool for

performing instance segmentation. For quinoa specifically, Mask

R-CNN offers impressive accuracy by identifying panicles and

generating precise masks ideal for more in-depth analysis. This

feature can be especially valuable for conducting phenotype

analyses and detecting anomalies or illnesses.

The backbone networks in Mask R-CNN, essentially the

convolutional base layers, play a crucial role in feature extraction.
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Their significance cannot be overstated. They dictate the quality of

features extracted from the image before the region proposal and

segmentation processes commence. The backbone choice often

impacts the Mask R-CNN’s precision, speed, and overall

performance. Given quinoa’s unique structure and texture, an

appropriate backbone can optimize segmentation accuracy.

The intricate composition of quinoa presents a noteworthy

hurdle when utilizing Mask R-CNN. The panicles of quinoa

showcase a range of differences regarding their dimensions,

contours, and tones, with some discrepancies barely noticeable.

Moreover, the tightly clustered configuration of the panicles,

coupled with potential overlap, can obstruct Mask R-CNN’s

ability to segment each occurrence precisely. These obstacles

underscore the importance of refining the model or introducing

supplementary pre-processing measures to augment the

detection’s durability.

Our research sought to assess different frameworks for Mask R-

CNN and introduce a novel approach employing an upgraded

EfficientNet version. Our foremost goal is to boost the precision

of feature extraction to gain deeper insights into quinoa panicles.

This will facilitate the examination of several phenotyping factors,

such as yield estimation. Our proposed methodology involves

applying EfficientNetB7 with Mish activation function and

combined with FPN and Group Normalization. Our methodology

successfully outperformed the other backbones in this study.

In conclusion, Mask R-CNN is widely used in segmentation but

still faces challenges when used in field images, especially for crops

such as quinoa. In addition, while instance segmentation and Mask

R-CNN specifically hold promise for transforming quinoa analysis,

addressing the accompanying obstacles and constraints is imperative.

Such efforts will facilitate the creation of more sophisticated models

that can better account for the intricacies of quinoa.

This work contributes directly to Sustainable Development

Goal 2: Zero Hunger by promoting the use of AI in agriculture.

AI’s potential in enhancing crop monitoring, precision breeding,

and productivity under challenging conditions is immense. Our

approach, which enables automated, high-precision phenotyping of

stress-resilient crops like quinoa, is a powerful tool in addressing

food insecurity in saline and arid regions.
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