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Sowing uniformity is an important evaluation indicator of mechanical sowing

quality. In order to achieve accurate evaluation of sowing uniformity in hybrid rice

mechanical sowing, this study takes the seeds in a seedling tray of hybrid rice

blanket-seedling nursing as the research object and proposes a method for

evaluating sowing uniformity by combining image processing methods and the

ODConv_C2f-ECA-WIoU-YOLOv8n (OEW-YOLOv8n) network. Firstly, image

processing methods are used to segment seed image and obtain seed grids.

Next, an improved model named OEW-YOLOv8n based on YOLOv8n is

proposed to identify the number of seeds in a unit seed grid. The improved

strategies include the following: (1) Replacing the Conv module in the Bottleneck

of C2f modules with the Omni-Dimensional Dynamic Convolution (ODConv)

module, where C2f modules are located at the connection between the

Backbone and Neck. This improvement can enhance the feature extraction

ability of the Backbone network, as the new modules can fully utilize the

information of all dimensions of the convolutional kernel. (2) An Efficient

Channel Attention (ECA) module is added to the Neck for improving the

network’s capability to extract deep semantic feature information of the

detection target. (3) In the Bbox module of the prediction head, the Complete

Intersection over Union (CIoU) loss function is replaced by the Weighted

Intersection over Union version 3 (WIoUv3) loss function to improve the

convergence speed of the bounding box loss function and reduce the

convergence value of the loss function. The results show that the mean

average precision (mAP) of the OEW-YOLOv8n network reaches 98.6%.

Compared to the original model, the mAP improved by 2.5%. Compared to the

advanced object detection algorithms such as Faster-RCNN, SSD, YOLOv4,

YOLOv5s YOLOv7-tiny, and YOLOv10s, the mAP of the new network increased

by 5.2%, 7.8%, 4.9%, 2.8% 2.9%, and 3.3%, respectively. Finally, the actual
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evaluation experiment showed that the test error is from −2.43% to 2.92%,

indicating that the improved network demonstrates excellent estimation

accuracy. The research results can provide support for the mechanized sowing

quality detection of hybrid rice and the intelligent research of rice seeder.
KEYWORDS

mechanical sowing, uniformity evaluation, deep learning, object detection, rice seeder
1 Introduction

Hybrid rice is an important food crop, accounting for over 50% of

China’s rice planting area. It has been planted in over 70 countries

worldwide, with a cumulative planting area exceeding 600 million ha,

making significant contributions to global food security (Ma and

Yuan, 2015; Yuan, 2018). However, the quality of mechanical sowing

of hybrid rice is one of the important factors restricting the

development of hybrid rice production (Chen et al., 2015; Li et al.,

2018; Ma et al., 2023) where sowing uniformity is an important

evaluation indicator of the quality of mechanized sowing (Alekseev

et al., 2018). Currently, the evaluation of the sowing uniformity in

hybrid rice mainly relies on manual visual inspection, which is highly

subjective. In order to achieve an objective evaluation of sowing

uniformity, provide timely feedback on the sowing quality

information to the performance control system of the seeders, and

effectively improve sowing quality, this paper combines image

processing methods and deep learning algorithms to study a

method for evaluating the sowing uniformity of hybrid rice

blanket-seedling nursing.

In the mechanized seedling nursing of hybrid rice, according to the

different types of seedling trays, seedling nursing methods are divided

into pot-seedling nursing and blanket-seedling nursing, where pot trays

and blanket trays are used, respectively. The pot tray is a type of plastic

tray. It is usually composed of 406 (29 rows×14 columns) or 448 (32

rows×14 columns) pots arranged uniformly. The blanket tray is also a

type of plastic tray, which is essentially an uncovered cuboid with a

typical inner cavity size of 25 mm × 280 mm × 580 mm. When a pot

tray is used for sowing, the seeds in the tray are separated into relatively

separate seed groups by pots, while when a blanket tray is used for

sowing, the seeds in the tray are relatively uniformly arranged, but there

is still a certain degree of randomness in the direction and position of

the seeds. This indicates that compared to blanket-seedling nursing, the

target area of sowing quality inspection for pot-seedling nursing is

relatively easy to be determined. Therefore, both domestically and

internationally, research on the sowing quality detection of hybrid rice

mechanized sowing has mainly focused on pot-seedling nursing (Qi

et al., 2009; Zhou et al., 2012; Zhao et al., 2014; Wang et al., 2015; Chen

et al., 2017; Wang et al., 2018), in which the combination of image

processing and machine vision technology is mainly used. There are

relatively fewer reports on the sowing quality detection of blanket-
02
seedling nursing, and only articles published by Tan et al. (2014) and

Dong et al. (2020) have been found. Among them, Tan et al. (2014)

established a BP neural network model for detecting the sowing

quantity of super hybrid rice pot-seedling nursing by extracting

shape features such as area, perimeter, and shape factor of the seed-

connected region. The average accuracy of detection has reached

94.4%. Dong et al. (2020) designed a sowing quantity detection and

control device for hybrid rice based on embedded machine vision,

where the algorithm for detecting the sowing quantity is similar to the

algorithm in Tan et al. (2014).

In recent years, deep learning has demonstrated excellent

performance in complex scene object detection and has been

widely applied in agricultural production (Johansen et al., 2019a,

b, 2020; Jiang et al., 2022; Yun et al., 2024). Although no studies

using deep learning methods to investigate the sowing uniformity of

hybrid rice blanket-seedling nursing have been found, deep learning

methods have been applied for uniformity detection in other crop

production, including tasks such as corn seedling emergence

uniformity detection. For instance, Nee et al. (2022) utilized UAV

imagery and deep learning model ResNet18 to estimate and map

corn emergence uniformity. Corn emergence uniformity was

quantified with plant density, plant spacing standard deviation,

and mean days to imaging after emergence.

You Only Look Once (YOLO) is a typical representative of one-

stage networks in deep learning, characterized by high detection

accuracy and fast speed, and has been widely used in non-contact

object detection. For example, Wang et al. (2023) proposed an

improved YOLOv5 model named CM-YOLOv5s-CSVPoVnet

model for yellow peach detection by adding model clipping,

Omni-Dimensional Dynamic Convolution (ODConv), Global

Context Networks, and ELAN methods. The results showed that

the mean average precision (mAP) reached 96%, and the model size

was 3.54 MB. Zhang et al. (2023) enhanced the YOLOv5s model by

incorporating the Efficient Channel Attention (ECA)-Net attention

mechanism module and Adaptively Spatial Feature Fusion (ASFF)

into the feature pyramid structure of YOLO, thus creating the

YOLOv5-ECA-ASFF model. This model was utilized for detecting

wheat scab fungus spores, and the results demonstrated that the

average recognition accuracy reached 98.57%. The YOLO series has

algorithms such as YOLOv1 to YOLOv10, with the characteristic

that newer versions are more advanced. YOLO has demonstrated
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excellent detection performance in the above studies, being able to

quickly count the number of targets, which is very enlightening for

detecting the sowing uniformity of hybrid rice.

In this paper, according to the characteristics of sowing quality

detection of hybrid rice blanket-seedling nursing, an improved

algorithm named ODConv_C2f-ECA-WIoU-YOLOv8n (OEW-

YOLOv8n) network is proposed based on the YOLOv8n algorithm

for identifying the number of seeds in a unit seed grid. Then,

combining image processing methods with the OEW-YOLOv8n

network, a method for evaluating sowing uniformity of hybrid rice

blanket-seedling nursing is promoted. The sowing uniformity of

detection in seed image has been implemented on computer

devices. The relevant results can provide support for detecting the

sowing quality of hybrid rice.
2 Materials and methods

2.1 Mechanical sowing and
image acquisition

The mechanical sowing experiment was conducted on 1 July

2023 at the Soil Trough Laboratory of College of Engineering, South

China Agricultural University, Guangdong Province (latitude 23°

16′, longitude 113°35′). The time for mechanical sowing is from

9:00 a.m. to 10:00 a.m., and the time for image acquisition is from

10:00 a.m. to 12:00 p.m. The used seeder is the 2ZSB-500 intelligent

rice tray seedling precise seeding production line developed by

South China Agricultural University. The experimental variety is

hybrid rice taifengyou 208. Before mechanical sowing, the seeds are

carefully selected and germinated. The seedling trays are standard
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hard blanket-seedling trays with specifications of 25 mm × 280 mm

× 580 mm. The mechanical sowing process mainly includes laying

tray, laying bottom soil, and sowing. After sowing, the seeds are not

covered by topsoil for capturing seed images. The seedling trays

with seeds are placed on a flat ground. Under natural light

conditions (during the experiment, the strength of illumination

was between 10,000 and 30,000 lux), the seed images of the entire

seedling tray were acquired by a smartphone fixed on a simple

camera perch. The smartphone is an Apple iPhone 12, with a

resolution of 2,268 × 4,032 pixels. In order to improve the

generalization ability of the model by increasing the diversity of

target data, the sowing methods include broadcast sowing, ditching

strip sowing, and no-ditching strip sowing, and the sowing density

consists of three levels: 50 g/tray, 60 g/tray, and 70 g/tray. Thus,

there are nine kinds of sowing modes. For each sowing mode, 5

trays were sown, resulting in a total of 45 trays having been sown.

For each tray, five photographs with different shooting effects were

selected. Finally, we obtained 225 valid photographs. Among them,

18 photographs were used as training samples, consisting of 2

photographs of trays from 9 sowing modes. The remaining 207

photographs were used as application samples to evaluate sowing

uniformity. The representative seed images and mechanical sowing

process are shown in Figure 1.
2.2 The main process of evaluating
sowing uniformity

The evaluation of sowing uniformity mainly includes three parts:

image preprocessing, model training, and uniformity evaluation, as

shown in Figure 2. Image preprocessing is shown in Figure 3.
FIGURE 1

Representative seed images and mechanical sowing process. (A) demonstrates the mechanical sowing process, where a-i sequentially represents the
seedling tray, automatic laying tray, laying bottom soil, precision sowing, laying topsoil, cleaning topsoil, automatic stacking tray, and precision
sowing. In (B), the seed images are shown, where i, ii, and iii represent broadcast sowing with 50 g/tray, ditching strip sowing with 60 g/tray, and no-
ditching strip sowing with 70 g/tray, respectively.
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The image preprocessing process is as follows: (1) Inputting

seed images and obtaining binary images by using binarization. (2)

Using Canny operator to perform edge detection on binary images

and obtain edge contour images. (3) Using contour filtering to

obtain the edge frame of seedling tray images. (4) Correcting the

graphics through affine transformation to obtain seedling tray

images, which includes detection area and the borders of seedling
Frontiers in Plant Science 04
tray. (5) Locating the detection area through the vertical projection

method (see Section 2.3.1). (6) Setting the number of grids, use the

Sliding Window method to segment the detection area and obtain

unit seed grid images (see Section 2.3.2).

The model training mainly includes (1) dividing the unit seed

grid images into training samples and application samples, (2) using

the LabelImg software to label the seeds in training samples,
FIGURE 2

The main process of evaluating sowing uniformity. (i) image preprocessing (ii) labeling (iii) data augmentation (iv) model training and testing (v) detect
unit seed grid images (vi) evaluate uniformity Modification of problem.
FIGURE 3

Image preprocessing.
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(3) using image augmentation methods to expand the training set,

and (4) inputting the dataset into the OEW-YOLOv8n model for

training and testing.

The uniformity evaluation part mainly includes the following:

The seed images of the application samples are treated undergoing

the image preprocessing process, and the seed grid images of the

application samples will be obtained. Then, input the seed grid

images of the application samples into the OEW-YOLOv8n model

for detection, and the number of seeds per grid will be obtained.

Finally, calculate the qualification rates of grids of one to three seeds

per grid to evaluate the sowing uniformity.
2.3 Methods for detection area localization
and seed grid segmentation based on
image processing

2.3.1 Detection area localization algorithm
Because the seedling tray image includes some non-detection

areas such as the border of the seedling tray, it is necessary to locate

the detection area. The vertical projection method (Chen et al.,

2021) is used to solve this problem in this paper.

The vertical projection method is as follows: In the binary

seedling tray image (Figure 4), white oval dots represent seeds with

a grayscale value of 0, while black areas represent non-seed parts

such as seedling soil or the border of the seedling tray, with a

grayscale value of 1. The cumulative grayscale values for each row

and each column are computed in pixel units, following the

methods described in Equations 1 and 2.

w(i) = o
H−1

j=0
p(i, j), i = 0, 1,…,W − 1 (1)

h(j) = o
W−1

i=0
p(i, j), j = 0, 1,…,H − 1 (2)

where W and H represent the number of rows and columns,

respectively. In this paper,W = 4,032 andH = 2,268. w(i) represents

the cumulative grayscale value of the ith row, h(j) represents the

cumulative grayscale value of the jth column, and p(i,j) represents

the grayscale value of the corresponding pixel at the ith row and

jth column.

Based on the grayscale values of the binary image, a vertical

projection curve (Figure 5A) was plotted with the number of

horizontal pixels as abscissa and the cumulative grayscale value of

each column as ordinate. Similarly, a horizontal projection curve

(Figure 5B) was plotted with the number of vertical pixels as

abscissa and the cumulative grayscale value of each row as

ordinate. As shown in Figure 5, there are four abrupt segments

on both sides of the images of the vertical projection curve and the

horizontal projection, namely, A1B1, C1D1, or A2B2, C2D2. In

segments A1B1 and A2B2, the cumulative grayscale value suddenly

increases from 0 to a larger value, owing to the appearance of the

border of the seedling tray in the image, in which A1 and A2

represent the outer side of the seedling tray border, while B1 and B2
represent the inner side of the seedling tray border. Conversely, in
Frontiers in Plant Science 05
segments C1D1 and C2D2, the cumulative grayscale value suddenly

drops from a larger value to 0. The reason for this is that the border

of the seedling tray in the image disappears. At this point, C1 and C2

represent the inside of the seedling tray border, while D1 and D2

represent the outside of the seedling tray border. This indicates that

A1B1, C1D1, A2B2, and C2D2 respectively represent the positions of

the four borders of the seedling tray. Taking the positions of the

pixel numbers corresponding to B1, C1, B2, and C2 as the positions

of the four edge lines of the detection area, then the detection area

is located.

2.3.2 Seed grid segmentation method
In general, in order to distinguish the description of pots in a

pot tray, it is customary to refer to the unit area of blanket tray as

the seed grid. A seed grid in a blanket tray is equivalent to one pot in

the pot tray. In order to evaluate the sowing uniformity of blanket-
FIGURE 4

Binary seedling tray image.
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seedling nursing, it is necessary to manually divide seed grids and

mark them in seed images.

Without considering the deformation of seedling blocks, one seed

grid is equal to the unit seedling-taken area during mechanical

transplanting. A unit seedling-taken area of mechanical

transplanting = horizontal seedling cutting quantity × longitudinal

seedling cutting quantity. Therefore, the key to dividing seed grids is

to determine the horizontal seedling cutting quantity and the

longitudinal seedling cutting quantity. In theory, the number of

seeds in the seed grid is the basis for estimating the number of

seedlings per hill in the field during mechanical transplanting.

Practical experience shows that the actual germination rate of

hybrid rice seeds is from 75% to 85% (Li et al., 2019). To achieve

high-yield cultivation of hybrid rice, theoretically, the number of

seeds in one seed grid is relatively suitable at 2.7–2.9. At this time, the

average number of seedlings per hill is 2–2.5. Therefore, the method

for dividing seed grids in seed images is as follows:

In hybrid rice blanket-seedling nursing with strip sowing, an

18-row seeder is usually used for sowing. After sowing, the seeds in

the seedling tray appear as 18 seed strips. Therefore, the seed image

is evenly divided into 18 parts horizontally. At this time, the number

of cutting times of horizontal seedling by seedling claw of the rice

transplanter is 18, and the horizontal seedling cutting quantity is

15.6 mm (208 mm ÷ 18 = 15.6 mm). The number of cutting times of

longitudinal seedling by seedling claw of the rice transplanter is

determined by the longitudinal seedling cutting quantity. The

longitudinal seedling cutting quantity is set by the longitudinal

seedling feeding mechanism of the transplanter. Usually, the

adjustment range for the longitudinal seedling feeding mechanism

is from 8 to 18 mm. There are 11 gears available, with a 1-mm

interval between each gear.

In order to achieve the target of precise transplanting of one to

three seedlings per hill, the number of seed grids per tray is related

to the sowing density. The higher the sowing density, the more the

seed grids there will be. According to the thousand-grain weight

and sowing density of hybrid rice seeds, the number and the

division method of seed grids under different sowing densities are

calculated as shown in Table 1.
Frontiers in Plant Science 06
In Table 1, the thousand-grain weight of hybrid rice taifengyou 208

is 24.75 g. When the sowing density is 50 g/tray, theoretically, there are

approximately 2,020 seeds per tray. If the number of seed grids per tray

is set to 738 grids (18 rows × 41 columns = 738 grids), then the average

number of seeds per grid is 2.74, which meets the agronomic

requirements. Similarly, when the sowing density is 60 g/tray and 70

g/tray, the seed grids per tray is 864 grids (18 rows × 48 columns) and

1,044 grids (18 rows × 58 columns), respectively. Theoretically, the

number of seeds per grid is approximately 2.81 and 2.71, respectively.
2.4 Dataset creation

After localizing the detection areas of the training samples for

the model, we get 18 seed images only containing detection areas.

According to the seed grid division methods of seedling tray under

different sowing densities in Table 1, using the Sliding Window

method to divide the seed images, we obtained 15,876 unit seed grid

images [(738 + 864 + 1,044) × 3 × 2 = 15,876].

This paper uses the LabelImg tool to label seeds in seed grid

images, naming the labels “seed” and generating corresponding txt

label files. Expand the training sample dataset using data

augmentation methods, which mainly include cropping, adding
TABLE 1 Number of seed grids in a seedling tray and division method
under different sowing densities.

Sowing density/(g·tray−1) 50 60 70

The number of cutting times of horizontal seedling by
seedling claw of the rice transplanter/times

18 18 18

Longitudinal seedling cutting quantity/mm 14 12 10

The number of cutting times of longitudinal seedling
by seedling claw of the rice transplanter/times

41 48 58

Theoretically, the number of seed grids per tray/grid 738 864 1,044

Theoretically, the number of seeds per tray/grain 2,020 2,424 2,828

Theoretically, the number of seeds per grid/grain 2.74 2.81 2.71
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FIGURE 5
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Gaussian noise, horizontal flipping, vertical flipping, color

transformation, contrast transformation, and randomly scaling

the width and height of seed grid images within a reasonable

range. The expanded training dataset includes 23,814 images with

a total of 82,196 seed labels. The expanded images and their

corresponding text label files are randomly divided into a training

set and a testing set in a 7:2:1 ratio (as shown in Table 2).
2.5 OEW-YOLOv8n model

YOLOv8 is an updated version of YOLOv5 developed by

Ultralytics company. Compared to the previous-generation

YOLOv5, the main improvements in YOLOv8 include the

following: (1) In the Backbone network, the C3 module has been

replaced by the C2f module, achieving further lightweight; (2) in the

Neck, the Path Aggregation Network–Feature Pyramid Network

(PA-FPN) concept has been adopted, removing the convolution

operations during the upsampling process; (3) the Decoupled-Head

structure is adopted in the Head, separating the classification and

detection tasks, further reducing the complexity of the model; and (4)

in the loss function, binary cross-entropy loss (BCE Loss) is used for

classification, and distribution focal loss (DF Loss) along with

Complete Intersection over Union (CIoU) Loss is used for

regression. These improvements allow YOLOv8 to retain the

advantages of the YOLOv5 network structure while making more

refined adjustments and optimizations, enhancing the model’s

performance in various scenarios. YOLOv8 is a family of models,

ranging from smaller to larger versions, including YOLOv8n,

YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. The key in

evaluating sowing uniformity in hybrid rice blanket-seedling

nursing is identifying the number of seeds in a unit seed grid. To

ensure the model is lightweight, this study constructs the model based

on YOLOv8n, which has the minimum number of model parameters.

The YOLOv8n network mainly consists of four parts: Input,

Backbone, Neck, and Head. The Input terminal enhances the unit

seed grid image through Mosaic augmentation before feeding it into

the network. The Backbone network replaces the C3 module with the

C2f module and uses the CSPDarkNet53 network to extract features

from top to bottom. Additionally, it includes five Conv modules and

one SPPF module. The C2f module contains two Conv modules, one

split module, n Bottleneck modules, and one Concat operation. The

C2f module captures rich gradient information from the feature map.

The SPPF module uses convolutional kernels of different sizes to pool

the feature map, obtaining multi-scale features. It then utilizes the

Concat operation to achieve multi-scale feature fusion. The Neck
Frontiers in Plant Science 07
network mainly consists of the PAN. PAN consists of the Feature

Pyramid Network (FPN) and a bottom-up PAN. FPN passes rich

semantic information from the top to the bottom, enhancing the

semantic information of shallow feature maps, while the bottom-up

PAN propagates strong localization feature information from the

bottom up. The dual-pyramid structure of the Neck network further

enhances the representation capability of multi-scale features. The

prediction head outputs the classification and coordinate information

of detected targets in three different size branches. The classification

loss function uses BCE Loss, and the object detection regression loss

functions use DF Loss and CIoU Loss.

The aim of this study is to identify the number of seeds in a unit

seed grid. Hybrid rice seed images have the following

characteristics: (1) Each image contains a large number of seeds,

with individual seeds occupying relatively few pixels, which falls

under the category of small object detection. (2) Because of seed

grid division, some seeds are artificially cut, so some seeds are

incomplete in a unit seed grid, resulting in diversity of the targets.

(3) Some seeds exhibit crossing, overlapping, or occlusion in the

images. (4) The background of seed images is relatively complex for

the nursery soil and consists of different components with different

colors and shapes. Based on the above characteristics, this paper

proposes the following improvements to YOLOv8n: (1) Adjust the

C2f module connected to Neck in the Backbone structure and

replace the Conv module in the Bottleneck structure with the

ODConv module (Li et al., 2022), so that this module fully

utilizes the information of all dimensions of the convolutional

kernels, enhancing the feature extraction capability of the model’s

Backbone network and improving the accuracy of small object

detection. (2) Add an ECA attention mechanism module (Wang

et al., 2020) to the Neck structure to enhance the model’s ability to

extract deep semantic feature information of detection targets and

improve the accuracy of detecting incomplete targets. (3) In the

Bbox-Loss module of Head, the WIoUv3 loss function (Tong et al.,

2023) is used instead of the CIoU loss function (Zheng et al., 2020)

to improve the convergence speed of the bounding box loss function

and reduce the convergence value of the loss function. The network

structure is shown in Figure 6, and this algorithm is named

ODConv_C2f-ECA-WIoU-YOLOv8n, abbreviated as the OEW-

YOLOv8n model.

2.5.1 ODConv dynamic convolution module
The full name of ODConv is Omni Dimensional Dynamic

Convolution, also known as Full Dimensional Dynamic

Convolution. This method was first introduced in the article by Li

et al. (2022). The motivation for introducing this module in this

article is as follows:

In YOLOv8n, the standard Conv is adopted by the C2f module,

which essentially uses the same static convolution kernel to learn

from the input samples in each convolution layer. At this point, the

extraction of sample feature information is insufficient. To address

this, researchers have studied dynamic convolutions, such as

DyConv (Chen et al., 2020) and CondConv (Yang et al., 2019).

The essence of dynamic convolution is to introduce an attention
TABLE 2 Distribution of seed grid images for training sample.

Categories Number of images Number of labels

Training set 16,669 57,535

Validation set 4,763 16,441

Test set 2,382 8,220
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mechanism that learns a linear combination of n convolutional

kernels with attention as weights. For example, the DyConv is

defined as:

y = (aw1W1 +… + awnWn)*x (3)

where x ∈ Rh�w�cin and y ∈ Rh�w�cout represent the input

feature and output feature respectively. h and w represent the

height and width of the channels, respectively. cin and cout
represent the number of input channels and output channels,

respectively. Wi represents the ith convolutional kernel. awi is an

attention scalar that weights Wi, where i = 1,…, n, and * represents

the convolution operation. Research has shown that dynamic

convolution can effectively improve the accuracy of lightweight

convolutional neural networks while ensuring efficient inference

(Yang et al., 2019; Chen et al., 2020; Li et al., 2022).

However, dynamic convolution only improves the convolution

operation in terms of the number of convolutional kernels,

neglecting the spatial kernel size dimension, input channel

dimension, and output channel dimension. This reduces the

ability of the convolution operation to extract information about

sample characteristics. To address this limitation, Li et al. (2022)

proposed ODConv based on multi-dimensional attention

mechanisms and parallel strategies, defined as:

y = (aw1 ⨀af 1 ⨀ac1 ⨀as1 ⨀W1 +…

+ awn ⨀afn ⨀acn ⨀asn ⨀Wn)*x (4)
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x represents the input features, while y represents the output

features.Wi represents the ith convolutional kernel. awi, afi, aci, and

asi are four attention scalars, respectively, representing the weights

of the convolutional kernel Wi (i = 1, …, n) in the dimensions of

kernel quantity, output channels, input channels, and spatial kernel

size. The structure is shown in Figure 7, where ⨀ represents the

multiplication operator across different dimensions in the kernel

space, and * represents the convolution operation.

In brief, in ODConv, asi assigns different attention to the filters

(convolution parameters) at each spatial location (k × k in total, where

k is the kernel size). aci assigns different attention to each input channel

(Cin). afi assigns different attention to each output channel (Cout). awi

assigns different attention to each convolutional kernel. These four

types of attention are complementary and are multiplied with the

convolutional kernel Wi in a sequential order of position, channel,

filter, and kernel. This provides performance guarantees for capturing

rich temporal and spatial cues. In summary, compared to mainstream

dynamic convolutions like DyConv and CondConv, ODConv

enhances feature learning capabilities and improves the accuracy of

convolutional neural networks by obtaining complementary attention

for the convolutional kernels along all dimensions of the kernel

space in each convolutional layer. Additionally, ODConv

outperforms other attention modules in adjusting output features or

convolutional weights.

Considering that the Backbone network and Neck network of

the YOLOv8n model mainly rely on the C2f module for connection,
FIGURE 6

The architecture of OEW-YOLOv8n. The improved modules are highlighted in red, green, or blue colors, while the white boxes represent the
original network structure modules. The improved Bottleneck module is named ODC_Bottleneck, and the improved C2f module is
named ODC_C2f.
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the main function of the C2f module is to input the multi-scale

feature maps extracted by the Backbone network into the Neck

network. To this end, the ODConv module is introduced into the

C2f module that connects to the Neck network, which will fully

exploit the target feature information across different dimensions.

This allows richer image features to be transferred from the

Backbone network to the Neck network, thereby enhancing the

model’s ability to recognize small and partially occluded targets.

Subsequent experiments will show that not only is the model’s

performance significantly improved, but also the computational

complexity is reduced during the training process.

2.5.2 ECA attention mechanism
The seedling soil used for hybrid rice seedling nursing is usually

a mixture of peat, vermiculite, coconut coir, clay, specialized

fertilizer, and yellow soil. Owing to the different colors and

shapes of the components in the seedling soil, a complex

background is formed in the seed images of hybrid rice, which

interferes with the identification of the number of seeds in a unit

seed grid image. In addition, the unit seed grid image is generated

by cutting the seed image, and some seeds are cut into incomplete

seeds, which also poses some difficulties for accurate seed counting.

To improve the model’s focus on seeds, this paper introduces the

ECA attention mechanism (Wang et al., 2020) into the Neck

network of the model (the introduced location is shown in

Figure 6). This mechanism enables the network to prioritize the

semantic information in the feature map, thereby enhancing the

network’s ability to extract deep semantic feature information of

detection targets. Thus, the model can better obtain the feature

information of seed images while suppressing background

information such as seedling soil.

In neural networks, attention mechanisms are typically classified

into spatial attention mechanisms and channel attention mechanisms.

The channel attention mechanism assigns different weights to the

channels of feature maps, allowing the model to have different degrees

of attention to different channels of the feature map, thereby capturing

local important feature information, suppressing interference feature

information, and improving recognition accuracy. ECA is a type of

channel attention mechanism that has been improved from the
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traditional Squeeze and Excitation Networks (SE) attention

mechanism. The main improvements include (1) removing the fully

connected layers in the SE attention mechanism module; (2) using a

one-dimensional convolution to learn features after global average

pooling (GAP); and (3) proposing a non-dimensional reduction local

cross-channel interaction strategy, effectively avoiding the impact of

dimensionality reduction on the learning effect of channel attention. Its

module structure is shown in Figure 8.

In Figure 8, x represents the input features with dimensions

H×W ×C. After global average pooling (GAP), x is compressed into

a feature vector of size 1×1×C. A one-dimensional convolution

operation is performed on the feature vector, where the kernel size k

is adaptively determined. The weights of each channel are

computed through a Sigmoid activation function, denoted as s in

Figure 8. Multiply the weighted feature vector with the input

features x to get the output features ex, and in Figure 8, ⊗
denotes the multiplication.

2.5.3 WIoU loss function
YOLOv8n’s loss function consists of two parts: classification

loss and regression loss. The classification loss is computed using

BCE Loss, while the regression loss is computed using CIoU Loss.

The formula for calculating CIoU Loss is as follows:

LCloU = LIoU +
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )
+ av (5)

a =
v

LIoU + v
(6)

v =
4
p2 arctan

w
h
− arctan

wgt

hgt

 !2

(7)

LIoU =
WiHi

wh + wgthgt −WiHi
(8)

where w, h, and (x, y) represent the width, height, and center

coordinates of the predicted bounding box, respectively; wgt, hgt,

and (xgt, ygt) represent the width, height, and center coordinates of
FIGURE 7

ODConv structure.
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the ground truth bounding box, respectively; Wg and Hg represent

the width and height of the smallest enclosing rectangle that

contains both the ground truth and predicted bounding boxes; Wi

andHi denote the width and height of the intersection area between

the ground truth and predicted bounding boxes. a is a weighting

function used to balance the parameters, and v is a parameter used

to measure the consistency of the length–width ratio, as shown

in Figure 9.

Although the CIoU loss function considers overlapping area,

distance, and aspect ratio, CIoU employs a monotonic focusing

mechanism. This means that the bounding box regression loss uses

fixed weights to balance the losses of position and scale. Because of

the influence of geometric factors such as distance and aspect ratio,

this can increase the penalty on low-quality samples and reduce the

generalization performance of the YOLOv8n model. Specifically,

when the aspect ratio of the predicted box and the ground truth box

are linearly related, the penalty term of CIoU degrades to zero. In

this case, whether the anchor boxes are of high quality or low

quality, it can be detrimental to the regression loss (Tong

et al., 2023).
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Owing to the artificial cutting of some seeds in the unit seed grid

image, there are some low-quality anchor boxes. Therefore, this

paper chooses the dynamic non-monotonic focusing mechanism of

the WIoU loss function to replace the original CIoU loss function.

Essentially, theWIoU loss function adaptively adjusts the weights of

regression loss based on the importance of the targets by

introducing an attention mechanism. This helps to better balance

the losses of position and scale, thereby balancing low-quality and

high-quality samples to improve the accuracy of object detection.

There are currently three versions of WIoU:WIoUv1, WIoUv2, and

WIoUv3, among which WIoUv2 and WIoUv3 are enhanced

versions of WIoUv1 (Tong et al., 2023). WIoUv3 is used in this

paper, which is defined as follows:

LWIoUv3 = rLWIoUv1, r =
b

dab−d (9)

b =
eLIoU
LIoU

∈ ½0, +∞) (10)

LWIoUv1 = RWIoULIoU (11)

RWIoU = exp
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )*

 !
(12)

where r represents the non-monotonic focusing coefficient, b
represents the outlier degree, and a and d represent hyperparameters,

which are set to 1.9 and 3, respectively. LIoU denotes the moving

average, and eLIoU indicates an operation that separates from the

computation graph, making it a constant without gradients. When

RWIoU ∈ ½1, e), it increases the LIoU of medium-quality anchor boxes,

and when LIoU ∈ ½0, 1�, it reduces the RWIoU of high-quality

anchor boxes.

WIoUv3 uses the outlier degree b instead of the overlap area

IoU to evaluate the quality of the anchor box. Since the moving

average is dynamic, the standard for classifying anchor box quality

is also dynamic. The non-monotonic focusing coefficient r is

constructed from the outlier degree and hyperparameters. It can

reduce the gradient gain of the loss function on high-quality

samples and decrease the harmful gradients generated by low-

quality anchor boxes, allowing WIoUv3 to focus on medium-

quality anchor boxes.
FIGURE 9

Illustration of ground truth boxes, predicted boxes, and their
intersection over union.
FIGURE 8

ECA module.
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2.6 Evaluation methods for
sowing uniformity

2.6.1 Determination of which seed grid the seed
belongs to

After dividing the seed images into unit seed grid images, the

seeds located on the boundaries of the seed grids may encounter the

problem of misjudging the ownership of the seed grid.

Overall, there are four situations regarding the positional

relationship between seeds and seed grids (as shown in Figure 10):

(a) Seeds do not intersect with the boundaries of seed grids, and seeds

completely fall within a certain seed grid; (b) the seed intersects with

one seed grid boundary and falls into two adjacent seed grids; (c) the

seeds intersect with the boundaries of two seed grids, and the seeds

fall into three adjacent seed grids; (d) the seeds intersect with the

boundaries of the four seed grids, and the seeds fall within the

adjacent four seed grids.

At present, there is no good way to determine which seed grid a

seed belongs to when there is a cross between the seed and the seed

grid. In this paper, an area-based approach is employed to

determine the ownership of seeds within seed grids. Specifically,

the seed grid with the largest proportion of the area of the seed in

the adjacent four seed grids is considered as the seed’s belonging

grid. The specific method is as follows: According to the OEW-

YOLOv8n model provided in the following text, the seed

recognition box covers the area size within four adjacent seed

grids for discrimination, and the seed grid with the largest

coverage area is the seed grid where the seed belongs.

2.6.2 Evaluation methods for uniformity
The key to evaluating the uniformity of seed images using

uniform qualification rate is to calculate the number of qualified

seed grid images for each seed image. According to the national

standard of the People’s Republic of China “Rice Transplanter-Test

Method” (GB/T 6243-2017), the uniformity qualification rate is

calculated as follows: the uniformity qualification rate = (number of

qualified small seedling blocks/total number of seedling blocks

tested) × 100%. Because of the agronomic requirement of

planting one to three seedlings per hill in hybrid rice cultivation,

this article uses the qualification rate of one to three seeds per grid

as the evaluation indicator of sowing uniformity. The qualification
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rate of one to three seeds per grid is calculated as: The qualification

rate of one to three seeds per grid = (number of grids with one to

three seeds per grid ÷ total number of seed grids per tray) × 100%.
3 Results

3.1 Training environment and methods

Using the above method, we trained unit seed grid images. The

dataset comprises a total of 23,814 images. Models such as OEW-

YOLOv8n were used, with the input image resolution adjusted to

640 × 640 pixels. In order to adapt to the convergence effect of the

model and the complexity of the dataset, The optimizer employed

for training was Stochastic Gradient Descent (SGD). The number of

workers was set to 2, and the batch size was set to 32. The initial

learning rate was 0.01, and the training lasted for 200 epochs. The

model training and testing environment included a 64-bit Windows

10 Professional operating system, a 13th-generation Intel(R) Core

(TM) i5-13600KF CPU running at 3.5 GHz, 32 GB of RAM, an

NVIDIA GeForce RTX 2070 SUPER GPU with 8 GB of VRAM,

CUDA version 11.7, the deep learning framework PyTorch1.12, and

Python version 3.8.
3.2 Evaluating indicator

In this research, Params, floating point operations (FLOPs), and

model size are used to reflect the complexity of a model, where

FLOPs are used to measure computational amount. Precision (P),

recall (R), and mAP [as described in Equations 13–16] are used to

evaluate the detection performance of a model. Root mean square

error (RMSE) is used to quantify the deviation between the model’s

estimated value and true value, with a lower score indicating less

error and better model performance.

P =
TP

TP + Fp
� 100% (13)

R =
TP

TP + FN
� 100% (14)
FIGURE 10

The positional relationship between seeds and seed grids. (A) the first state, (B) the second state, (C) the third state, and (D) the fourth state.
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AP =
Z 1

0
PdR� 100% (15)

mAP =
1
No

N

i=1
AP(i) (16)

In Equations 13–16, Tp and Fp represent true-positive and false-

positive instances, respectively. Fn represents false-negative

instances. AP(i) denotes the average precision for the ith class,

and N represents the total number of classes. In this paper, N equals

1, as there is only one class, which is the seed class.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
MoM

i=1(y
pred
i − ygti )

2

r
(17)

where ypredi represents the estimated value, ygti represents the

true value, and M represents the number of samples.
3.3 The detection results of seed grid and
seed count based on the OEW-
YOLOv8n model

3.3.1 Ablation experiments
The results of the ablation experiment are shown in Table 3.

Based on Table 3, it is evident that after replacing the Conv module

in the YOLOv8n network with the ODConv module in Experiment 1,

the Params andmodel size slightly increased, but the FLOPs decreased.

The precision (P), recall (R), and mAP of the model increased by 2.8%,

3.1%, and 1.3%, respectively. The RMSE decreased by 12%.

Experiments 2 and 3 showed that adding ECA attention mechanism

or replacing CIoU loss function with theWIoUv3 loss function did not

significantly change the Parms, FLOPs, and model size. The precision

of the model increased by 1.9% and 1.5%, the recall increased by 2%

and 2.2%, and the mAP increased by 0.6% and 0.4%, respectively. The

RMSE decreased by 4% and 2%. These experiments demonstrate that

both the ECA attention mechanism and theWIoUv3 loss function can

enhance themodel’s detection accuracy. Experiment 4 is an experiment

adding the ECA attention mechanism on Experiment 1. The Params

and FLOPs remained nearly unchanged, while the model size slightly

increased. The precision, recall, and mAP further improved, with the
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mAP increasing from 97.4% to 98.1%, an increment of 0.7%. The

RMSE decreased by 23.7%. Experiment 5: Building on Experiment 1 by

replacing the CIoU loss function with the WIoUv3 loss function, there

was no significant change in the Params, FLOPs, and model size.

However, precision, recall, and mAP improved by 0.1%, 0.9%, and

0.3%, respectively. The RMSE decreased by 7%. Experiment 6: Building

on Experiment 2 by replacing the CIoU loss function with theWIoUv3

loss function, the Params, FLOPs, and model size remained largely

unchanged, with improvements observed in precision, recall, andmAP.

The RMSE decreased by 2%. Experiment 7: Building on Experiment 4

by replacing the CIoU loss function with theWIoUv3 loss function, the

Params, FLOPs, and model size remained largely unchanged.

Precision, recall, and mAP improved by 0.6%, 0.4%, and 0.5%,

respectively. The RMSE decreased by 10%.

In summary, using the ODConv module to replace the original

Conv module slightly increases the Params andmodel size, but reduces

the FLOPs by 0.2 G and improves the mAP by 1.3%. Adding the ECA

attention mechanism does not significantly change the model’s

complexity, yet it raises the model’s mAP by approximately 0.6%.

Replacing the CIoU loss function with the WIoUv3 loss function also

does not alter the model’s complexity, but the precision improves by

0.4%. Implementing all three strategies simultaneously results in an

increase of 0.34 M in Params, 0.71 MB in model size, a reduction of 0.2

G in FLOPs, and improvements in precision, recall, and mAP by 4.5%,

4.8%, and 2.5%, respectively. This indicates that all three improvement

strategies enhance the model’s detection accuracy and have a

cumulative effect, with the ODConv having the most significant

impact. The slight increase in Params and model size is primarily

due to the introduction of the ODConv module.

To examine the impact of different strategies on the

convergence speed of the model, Figure 11 shows the curve of

mAP of different models in the ablation experiment as the number

of model iterations changes.

From Figure 11, it can be found that after approximately 25

iterations, the fluctuations in the mAP curve begin to diminish, and

after approximately 150 iterations, the mAP curve tends to stabilize.

This indicates that all models exhibit good convergence speed.

Among them, Experiment 7 performs the best, while Experiment 0

performs the worst. This demonstrates that all three improvement

strategies enhance convergence speed, and employing all three
TABLE 3 Ablation experiment results.

Number ODConv ECA WIoU Params (M) FLOPs (G) Model size (MB) P (%) R (%) mAP@0.5 (%) RMSE

0 × × × 3.01 8.2 6.13 92.3 90.5 96.1 0.445

1 √ × × 3.35 8.0 6.83 95.1 93.6 97.4 0.392

2 × √ × 3.01 8.2 6.14 94.2 93.1 96.7 0.426

3 × × √ 3.01 8.2 6.13 93.8 92.7 96.5 0.435

4 √ √ × 3.35 8.0 6.84 96.2 94.9 98.1 0.299

5 √ × √ 3.35 8.0 6.83 95.2 94.5 97.7 0.365

6 × √ √ 3.01 8.2 6.14 94.3 93.2 97.2 0.417

7 √ √ √ 3.35 8.0 6.84 96.8 95.3 98.6 0.269
fro
“√” indicates that the corresponding policy is used, and “×” indicates that the corresponding policy is not used.
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strategies simultaneously can achieve relatively faster convergence

speeds and higher convergence values.

3.3.2 Comparisons of OEW-YOLOv8n
performance under different loss functions

In this study, the bounding box regression loss function has a

significant impact on the accurate identification of the number of

seeds in a unit seed grid. In existing deep learning models, common

regression loss functions include CIoU, EIoU, SIoU, and WIoU.

The loss function of the YOLOv8n model is CIoU. In order to

investigate the influence of different regression loss functions on the

performance of the OEW-YOLOv8n model, the convergence of

OEW-YOLOv8n under different loss functions was compared and

analyzed. The experimental results are illustrated in Figure 12.

As shown in Figure 12, when the bounding box regression loss

function adopts EIoU, the convergence speed of the model is the

slowest, and the final loss value after convergence is the highest. When

using the CIoU loss function, its convergence speed and final loss value

are almost equivalent to EIoU (shown in the graph as the red and gray

lines overlapping). The convergence speed of using SIoU is slightly

higher than that of EIoU and CIoU, and the final loss value after

convergence is slightly lower than EIoU and CIoU. When WIoU is

adopted, the convergence speed of the model is the fastest, converging

approximately after 25 iterations. Although there are some fluctuations

in the final loss value after convergence, whichmay be related to the use

of non-monotonic focusing mechanism, the final loss value after

convergence is significantly lower than those of the other three loss

functions. The ablation experiment in Section 3.3.1 also showed that

the use of WIoU resulted in some improvement in mAP. Therefore,

this paper adopts WIoU to replace the CIoU loss function.

3.3.3 Model comparison
To evaluate the performance of the OEW-YOLOv8n model,

comparative experiments were conducted with advanced object

detection networks such as Faster-RCNN, SSD, YOLOv4,

YOLOv5s, YOLOv7-tiny, and YOLOv10s. The dataset used in
Frontiers in Plant Science 13
these experiments is the seed grid images used in this study. The

experimental results are shown in Table 4.

According to Table 4, the Params, FLOPs, model size, and

RMSE of the OEW-YOLOv8n model are all smaller than those of

the other five models. Compared to Faster-RCNN, SSD, YOLOv4,

YOLOv5s, YOLOv7-tiny, and YOLOv10s, the Params of the OEW-

YOLOv8n model is reduced by 133.33 M, 20.26 M, 60.59 M, 3.48 M,

2.67 M, and 3.84 M, respectively. The FLOPs are reduced by 191.3

G, 265.2 G, 51.9 G, 7.9 G, 5.2 G, and 13.6 G, respectively, and the

model size is reduced by 103.92 MB, 85.94 MB, 243.41 MB, 6.89

MB, 5.19 MB, and 7.85 MB, respectively. These indicate that the

complexity of the model has significantly decreased. Conversely, the

mAP of the OEW-YOLOv8n model is higher than that of the other

five models, with improvements of 5.2%, 7.8%, 4.9%, 2.8%, 2.9%,

and 3.3% over Faster-RCNN, SSD, YOLOv4, YOLOv5s, YOLOv7-

tiny, and YOLOv10s, respectively. The RMSE is reduced by 0.331,

0.464, 0.321, 0.245, 0.275, and 0.298, respectively. Overall, the

two-stage network model Faster-RCNN has high model

complexity and low recognition accuracy. The one-stage network

models such as SSD, YOLOv4, YOLOv5s, YOLOv7-tiny, and

YOLOv10s have a relatively lower model complexity and a higher

recognition accuracy.

To analyze the reasons for the differences in detection

performance among different object detection models, Figure 13

shows the detection results of a representative seed grid under

different sowing densities and sowing methods. In the experiment,

to increase the number of seeds and reduce the segmentation of

seeds during seed grid division and test the generalization ability of

the model, a seed image was divided into 144 seed grids according

to a specification of 9 times by 16 times in the experiment.

From Figure 13, it can be seen that the SSD model performs the

worst, with a large number of missed detections. For example, in cell

B3, there are 13 seeds in the image (with 11 actual effective seeds),

but the SSD model only identifies 8 seeds, missing 5 seeds, resulting

in a 38.46% miss rate. In the SSD model, the missed seeds are

mainly defective seeds at the edges of the image or seeds that are

obscured. While Faster-RCNN, YOLOv4, YOLOv5s, YOLOv7-tiny,
FIGURE 12

Bounding box loss.
FIGURE 11

The curve of mAP.
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TABLE 4 Comparison of seed number detection results of different models.

Models mAP@0.5 (%) Params (M) FLOPs (G) Model size (MB) RMSE

Faster-RCNN 93.4 136.68 199.3 110.76 0.600

SSD 90.8 23.61 273.2 92.78 0.733

YOLOv4 93.7 63.94 59.9 250.25 0.590

YOLOv5s 95.8 6.83 15.9 14.73 0.514

YOLOv7-tiny 95.7 6.02 13.2 12.32 0.544

YOLOv10s 95.3 7.19 21.6 14.69 0.567

OEW-YOLOv8n 98.6 3.35 8.0 6.84 0.269
F
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FIGURE 13

Comparison of detection performance of different object detection models. S1–S7 represent the SSD, Faster-RCNN, YOLOv4, YOLOv5s, YOLOv7-
tiny, YOLOv10s, and OEW-YOLOv8 algorithms, respectively, while B1–B9 represent broadcast sowing with 50 g/tray, no-ditching drill sowing with
50 g/tray, ditching drill sowing with 50 g/tray, broadcast sowing with 60 g/tray, no-ditching drill sowing with 60 g/tray, ditching drill sowing with 60
g/tray, broadcast sowing with 70 g/tray, no-ditching drill sowing with 70 g/tray, and ditching drill sowing with 70 g/tray, respectively.
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and YOLOv10s can identify defective seeds at the image edges, they

also exhibit missed detections and have poor recognition accuracy

for seeds obscured by seedling soil. The OEW-YOLOv8n model

performs very well overall, capable of identifying both defective

seeds at the image edges and obscured seeds, with almost no

missed detections.

In summary, compared to the existing advanced networks, the

improved OEW-YOLOv8n model performs better in detecting the

number of seeds per unit seed grid.
3.4 Evaluation experiment of sowing
uniformity in hybrid rice blanket-
seedling nursing

To investigate the practical application effect of the algorithm

on the evaluation of sowing uniformity, a comparative experiment

was conducted between the evaluation of sowing uniformity

algorithm and manual evaluation, with uniform qualification rate

and empty grid rate as evaluation indicators. The evaluation

algorithm adopts the method described in Section 2 of this article.

The manual evaluation adopts the method of manually counting the

number of seeds per unit grid, as follows:

According to the method described in Table 1, seedling trays

with 50 g/tray, 60 g/tray, and 70 g/tray were divided into 738 grids/

tray, 864 grids/tray, and 1,044 grids/tray, respectively. In the

experiment, the grid frame was made of transparent thin wires,

and the grid frame specifications for 50 g/tray, 60 g/tray, and 70 g/

tray were 15.56 mm × 14.15 mm, 15.56 mm × 12.08 mm, and 15.56

mm × 10.00 mm, respectively. These grid frames were used to

divide the seed trays into seed grids. Then, the number of seeds in

each seed grid was counted. The uniformity qualification rate was

calculated according to the method in Section 2.6.2, and the empty

grid rate was calculated as follows: empty grid rate = (number of

empty grid/total number of grids) × 100%. For each type of seedling

trays, three trays were tested, which is equivalent to three
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repetitions. The average of the results of the three tests was taken

as the corresponding test result. The results are shown in Table 5.

In Table 5, the empty grid rate and uniformity qualification

rate resulting from algorithm evaluation are respectively named as

testing empty grid rate and testing uniformity qualification rate,

and the empty grid rate and uniformity qualification rate resulting

from manual evaluation are named actual empty grid rate and

actual uniformity qualification rate, respectively. Test error =

actual uniformity qualification rate − testing uniformity

qualification rate.

According to Table 5, the experiment indicates errors of −0.15%

to 0.21% for empty grid rate and −2.43% to 2.92% detection,

indicating that the algorithm has good accuracy. The actual

uniformity qualification rates of ditching strip sowing with 50 g/

tray, 60 g/tray, and 70 g/tray are 80.82%, 80.83%, and 77.29%,

respectively, with an average of 79.65%. The actual uniformity

qualification rates of no-ditching drill sowing with 50 g/tray, 60

g/tray, and 70 g/tray are 75.47%, 75.10%, and 72.43%, respectively,

with an average of 74.33%. The actual uniformity qualification rates

of broadcast sowing with 50 g/tray, 60 g/tray, and 70 g/tray are

70.88%, 69.27%, and 67.22%, respectively, with an average of

69.12%. From this, it can be seen that the effect of sowing density

on sowing uniformity is relatively small when the sowing density is

not too high. Among different sowing methods, the order of

uniformity qualification rates from high to low is as follows:

ditching strip sowing > no-ditching strip drill sowing > broadcast

sowing, which is consistent with the actual situation.
4 Discussion

(1) The evaluation method proposed in this paper is mainly

suitable for evaluating the sowing uniformity of rice under low-

density conditions (usually referring to sowing density less than 70

g/tray). On one hand, according to the agronomic requirements of

rice production (five to seven seedlings per hill for conventional rice
TABLE 5 Sowing uniformity evaluation test results.

Seedling
density/
(g·tray−1)

Seedling type

Testing
empty grid
rate (%)

Actual
empty grid
rate (%)

Testing
uniformity
qualification

rate (%)

Actual
uniformity
qualification

rate (%)

Test
error
(%)

Broadcast
sowing

No-
ditching
strip

sowing

Ditching
strip

sowing

50

√ × × 4.67 4.82 68.75 70.88 2.13

× √ × 4.30 4.26 72.63 75.47 2.84

× × √ 3.75 3.54 82.77 80.82 −1.95

60

√ × × 3.82 3.79 70.83 69.27 −1.56

× √ × 3.19 3.05 73.05 75.10 2.05

× × √ 2.77 2.72 77.91 80.83 2.92

70

√ × × 2.75 2.62 65.97 67.22 1.25

× √ × 1.94 2.04 69.86 72.43 2.57

× × √ 1.11 1.18 79.72 77.29 −2.43
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and one to three seedlings per hill for hybrid rice), high-density

sowing is usually used for conventional rice seedling nursing, while

low-density sowing is used for hybrid rice seedling nursing. When

high-density sowing is used for seedling nursing, the impact of

sowing uniformity on the quality of rice transplanting is relatively

small; however, when using low-density sowing for seedling

nursery, the sowing uniformity has a significant impact on the

quality of rice transplanting. Therefore, the evaluation of rice

sowing uniformity is mainly applied in low-density sowing for

hybrid rice seedling nursing. On the other hand, when the sowing

density is very high, such as more than 120 g/tray, there will be a lot

of overlapping seeds in the seedling tray. It is very difficult to

evaluate sowing uniformity whether manually or through machine

vision, and its evaluation significance is also very limited. As a

result, this paper does not involve the evaluation in high-density

sowing condition, and the impact of seed overlapping on the

algorithm has not been considered temporarily.

(2) Assuming that one grid in a blanket tray is equivalent to one

pot in a pot tray, we can find that the detection method adopted by

Tan et al. (2014) achieved a mAP 94.4%, while our research method

achieved 98.6%, an improvement of 4.2 percentage points.

Dong et al. (2020) proposed a detection method with an mAP of

90.98%, whereas our research method achieved 98.6%, an

improvement of 7.62 percentage points.

(3) In the detection area of this article, a seedling tray includes

738–1,044 grids. In terms of detection time, the average detection

time is 7 ms per unit seed grid image. Compared to the detection

method proposed by Tan et al. (2014), the detection time per grid

image is reduced from 10.28 to 7 ms, a decrease of 3.28 ms.

(4) In practical applications, the detection of sowing uniformity

is mainly applied in two places: first, evaluating the performance

testing of seeders carried out by institutions; the second is to adjust

the performance of the seeder during production to ensure the

stability of sowing quality. Objectively speaking, the method

proposed in this article can adapt well to the first scenario, but it

still cannot adapt well to the second scenario. There are still some

difficulties in deploying this method to achieve real-time detection

on edge devices such as smartphones. This is a limitation of the

evaluation method proposed in this paper. In the future, we will

research how to achieve real-time online detection without reducing

detection accuracy. In addition, to meet the needs of large-scale

farm production, we will conduct systematic research on the

impact of factors such as lighting environment, variety, and

image acquisition equipment on the detection effect in our

subsequent work.
5 Conclusions

In response to the issue of evaluation of sowing uniformity in

hybrid rice blanket-seedling nursing, this paper proposes an

evaluation method that integrates image processing with the

OEW-YOLOv8n model, and an evaluation experiment for the
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sowing uniformity in hybrid rice blanket-seedling nursing was

conducted. The following conclusions were mainly obtained:
(1) On the test set, the model achieves a mAP of 98.6%. The

model size is 6.84 MB, the FLOPs are 8.0 G, and the number

of parameters is 3.35 M. Compared to the original model,

with a slight increase in model size and parameters, the

FLOPs, precision, recall, and mAP increased by 0.2 G, 4.5%,

4.8%, and 2.5%, respectively.

(2) Among the three improvement strategies suggested, the

strategy of using ODConv module has the greatest impact

on model improvement. This strategy can respectively

increase the precision, recall, and mAP by 2.8%, 3.1%,

and 1.3%. Similarly, adding the ECA attention

mechanism or replacing the CIoU loss function with the

WIoUv3 loss function can increase the precision, recall, and

mAP by 1.9%, 2.6%, and 0.6%, or 1.5%, 2.2%, and 0.4%,

respectively. In addition, replacing the CIoU loss function

with the WIoUv3 loss function has little effect on the

complexity of the model, and these three improvement

strategies have a cumulative effect on improving the

detection performance of the model.

(3) The analysis of application sample experiments shows that

the algorithm proposed in this paper has satisfactory

accuracy. The experiment indicates errors of −0.15% to

0.21% for empty grid rate and −2.43% to 2.92% detection.

Furthermore, the study also found that the sowing density

has little impact on sowing uniformity in low-density

sowing. In terms of different sowing methods, the order

of sowing uniformity qualification rates from high to low

is ditching strip sowing > no-ditching strip sowing

> broadcast sowing, which is consistent with the

actual situations.
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