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Plant height measurement
using UAV-based aerial RGB
and LiDAR images in soybean
Lalit Pun Magar, Jeremy Sandifer, Deepak Khatri , Sudip Poudel,
Suraj KC, Buddhi Gyawali , Maheteme Gebremedhin
and Anuj Chiluwal*

College of Agriculture, Health, and Natural Resources, Kentucky State University, Frankfort,
KY, United States
Phenotypic traits like plant height are crucial in assessing plant growth and

physiological performance. Manual plant height measurement is labor and time-

intensive, low throughput, and error-prone. Hence, aerial phenotyping using

aerial imagery-based sensors combined with image processing technique is

quickly emerging as a more effective alternative to estimate plant height and

other morphophysiological parameters. Studies have demonstrated the

effectiveness of both RGB and LiDAR images in estimating plant height in

several crops. However, there is limited information on their comparison,

especially in soybean (Glycine max [L.] Merr.). As a result, there is not enough

information to decide on the appropriate sensor for plant height estimation in

soybean. Hence, the study was conducted to identify the most effective sensor

for high throughput aerial phenotyping to estimate plant height in soybean. Aerial

images were collected in a field experiment at multiple time points during

soybean growing season using an Unmanned Aerial Vehicle (UAV or drone)

equipped with RGB and LiDAR sensors. Our method established the relationship

between manually measured plant height and the height obtained from aerial

platforms. We found that the LiDAR sensor had a better performance (R2 = 0.83)

than the RGB camera (R2 = 0.53) when compared with ground reference height

during pod growth and seed filling stages. However, RGB showedmore reliability

in estimating plant height at physiological maturity when the LiDAR could not

capture an accurate plant height measurement. The results from this study

contribute to identifying ideal aerial phenotyping sensors to estimate plant

height in soybean during different growth stages.
KEYWORDS

soybean, plant height, high throughput aerial phenotyping, unmanned aerial vehicles,
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1 Introduction

Soybean (Glycine max (L.) Merrill) is a vital source of oil and

plant protein globally, recognized for its high nutritional value

(Wilcox, 2016). In the U.S., it ranks as the second most cultivated

crop, following corn (Vaiknoras and Hubbs, 2023), and it plays a

significant role in agricultural exports, with the U.S. being the

second-largest soybean exporter, accounting for 38% of global

soybean trade. To meet the growing global demand and maintain

its status as a top exporter, the U.S. must significantly enhance

soybean yield. Like other crops, yield in soybean is significantly

influenced by a complex interaction of genetic traits, environmental

factors, and agricultural practices. Key yield-related traits like pod

number and seeds per pod (Ning et al., 2018), seed size (Liu et al.,

2011), plant architecture like plant height (Jin et al., 2010),

phenology (Kantolic and Slafer, 2001), photosynthetic efficiency

(Wang et al., 2023), reproductive efficiency (Tischner et al., 2003)

and nitrogen fixation efficiency (Imsande, 1992) are critical to

influence final yield. Among these traits, plant height (PH) is one

of the main critical yield-related traits in soybean, impacting the

crop’s ability to compete for light and, consequently, its overall

productivity (Gawęda et al., 2020). Defined as the distance from the

ground to the top of the primary photosynthetic tissue (Cornelissen

et al., 2003), PH impacts essential factors such as biomass (Bendig

et al., 2014; Tilly et al., 2015; Brocks and Bareth, 2018), crop yield

(Yin et al., 2011; Sharma et al., 2016; Zhang et al., 2017), and soil

nutrient availability (Yin and McClure, 2013). This makes it a

pivotal trait in plant breeding and crop improvement programs.

Traditionally, measuring PH involves using rulers in the field, a

method that is labor-intensive, time-consuming, and susceptible to

errors, especially over extensive areas. These manual measurement

techniques also suffer from spatial and temporal limitations that can

compromise the accuracy of this vital plant phenotype data. To

address these challenges, non-destructive image-based phenotyping

has become increasingly popular, providing a more efficient and

accurate means to assess PH.

Advancements in remote sensing have led to the exploration of

various sensor-based methods for effective PH assessment. Passive

sensors like satellites have been explored to measure PH in forests

(Petrou et al., 2012) and crops like corn (Gao et al., 2013) and rice

(Erten et al., 2016). Cloud cover and the revisit time of satellites

(Zhang et al., 2020) can limit their effectiveness in precision

agriculture. In response to these limitations, recent decades have

seen a shift towards proximal field phenotyping technologies.

Devices such as ultrasonic sensors, RGB depth cameras, and

Terrestrial laser scanners fitted in fixed platforms, tractors, or

autonomous robots have become prominent for high throughput

field phenotyping. These technologies have proven successful in

various crops, including cotton (Jiang et al., 2016; Sun et al., 2017,

2018; Thompson et al., 2019), corn (Hämmerle and Höfle, 2016;

Qiu et al., 2019), and soybean (Ma et al., 2019). However, these

proximal sensor platforms face several challenges including high

cost, limited area coverage, and reduced mobility as the crops reach

advanced stages of growth (Deery et al., 2014).

To further enhance the scope and efficiency of phenotyping, high

throughput aerial phenotyping (HTAP) using unmanned aerial
Frontiers in Plant Science 02
vehicles (UAV) like drones has gained popularity. UAVs, equipped

with various sensors provide rapid, extensive data collection

capabilities. Among these, RGB-based photogrammetry has become

a popular technique for estimating PH across different crop species,

including cotton (Xu et al., 2019; Ye et al., 2023), wheat (Madec et al.,

2017; Khan et al., 2018; Yuan et al., 2018; Volpato et al., 2021), maize

(Han et al., 2018; Malambo et al., 2018; Su et al., 2019; Gao et al., 2022;

Liu et al., 2024) and sorghum (Watanabe et al., 2017; Tunca et al.,

2024). UAV-based RGB cameras are popularly used to estimate PH

using the structure from motion (SfM) technique (Kalacska et al.,

2017; Coops et al., 2021). The PH estimation techniques using RGB

cameras are considered a low-cost and user-friendly approach (Li

et al., 2019). However, some studies argued that the derived canopy

height from the SfM technique showed some issues in height

measurement (Cunliffe et al., 2016; Wijesingha et al., 2019). The

overestimation of the digital surface model (DSM) by the RGB camera

is attributed to its inability to penetrate the canopy and give precise

information (Madec et al., 2017). Hence, the LiDAR technique is more

popular for vertical structure measurement as its pulses have powerful

penetration capacity (Lefsky et al., 2002). LiDAR is particularly noted

for its capacity to provide detailed 3D structural information by

penetrating dense canopies and differentiating between ground and

non-ground points using multiple reflections of laser pulses (Calders

et al., 2020; Coops et al., 2021). This technology has effectively

estimated canopy height in forests, shrubs, and various crops (Liu

et al., 2018; Zhao et al., 2022). Additionally, this technology has

successfully predicted PH in many crops like cotton (Sun et al., 2017,

2018; Thompson et al., 2019), wheat (Madec et al., 2017; Yuan et al.,

2018; Guo et al., 2019; ten Harkel et al., 2019; Blanquart et al., 2020),

maize (Andújar et al., 2013; Zhou et al., 2020; Gao et al., 2022),

sorghum (Hu et al., 2018; Wang et al., 2018; Waliman and Zakhor,

2020; Patel et al., 2023) and rice (Tilly et al., 2014a; Phan and

Takahashi, 2021; Sun et al., 2022; Jing et al., 2023).

Despite these advancements, there remains a gap in

comprehensive UAV-based HTAP studies specifically for

estimating soybean height. Previous studies using an imaging

system of RGB camera and photonic mixer detector (PMD) have

provided valuable insights into PH in a controlled setting (Guan

et al., 2018; Ma et al., 2019). Structure from motion (SFM)

techniques yield PH that helps spot ideotype in soybeans (Roth

et al., 2022). Canopy height and their temporal changes across the

growing season were recorded using RGB imagery captured with a

drone in different soybean cultivars (Borra-Serrano et al., 2020).

Reliable information about soybean height was found when using a

low-cost depth camera mounted on a ground-based phenomics

platform (Morrison et al., 2021). This study further verified the PH

information using information recorded in the field manually and

using single-point LiDAR (SPL) with high precision, assuring the

ability of LiDAR to perform precise PH estimation in soybeans.

Similarly, Luo et al. (2021) recorded data using UAV-based LiDAR

and explored the potential of UAV-based LiDAR sensors to

estimate soybean height. To our knowledge, no other studies have

used UAV-LiDAR multiple times to measure PH in soybeans.

Furthermore, none of the previous studies compared the

effectiveness of UAV-based LiDAR and RGB for PH estimation

in soybean. As a result, there is not yet clear information regarding
frontiersin.org
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which aerial phenotyping sensors and timing are ideal for assessing

PH in soybean. Hence, in this study, we used UAV-based RGB

cameras and LiDAR sensors in the same field experiment to

estimate soybean plant height across different periods. This study

aims to evaluate the potential of UAV-based RGB and LiDAR

sensors for accurately estimating soybean height at different growth

and developmental stages. Hence, the objectives of this study is to

assess the uncertainty in estimating soybean height with UAV-

based RGB and LiDAR sensors and identify the best high

throughput aerial phenotyping sensor for PH estimation

in soybean.
2 Materials and methods

2.1 Experimental design

A field experiment was conducted in 2023 soybean growing

season at Kentucky State University’s Harold R. Benson Research

and Demonstration Farm (3807′ N; -84053′ W; and 207 masl). The

experiment was set up at Split-Split-Plot Randomized Complete Block

Design with four replications (Figure 1). The main plot was biochar

application: no application or biochar application at 12 tons/ha before

planting. Four soybean genotypes (two commercial cultivars -

PB2623, PB423, and two advanced breeding non-nodulating

soybean lines - KS4120NSGT and KS4120NSGT_NN_NIL-268)
Frontiers in Plant Science 03
were used in the experiment as the subplot. Similarly, sub-subplots

were four different levels of late-season N fertilization: 0, 40, 80, and

120 kgN ha-1. There were 88 plots, eachmeasuring 7.32 m (24 ft) long

and 1.83 m (6 ft) wide, with a 90 cm (3 ft) alley separating the plots.

Each plot had five rows and was 38 cm (15 inches) apart. Urea was

used as N fertilizer, which was equally split into 3 doses at R5, 1 week

after R5, and 2 weeks after R5. Soybean was planted on mid-May and

harvested on the last week of September.
2.2 Data acquisition

2.2.1 UAV data
The UAV-DJI Mavic 3M (DJI Technology Co., Ltd., Shenzhen,

China) fitted with RGB and Multispectral sensor (MS), was

employed to capture aerial images of crops. The imaging sensor

used was a 1/2.8 -inch CMOS with a 25 mm focal length, capturing

images at a resolution of 5280 x 3956 pixels. Drone Deploy was

utilized to identify the target area for aerial photography on a

satellite map and to plan the flight route by entering the necessary

flight and camera parameters. Additionally, the DJI Matrice 300

fitted with Zenmuse L1 LiDAR sensor was utilized to gather aerial

LiDAR data. Table 1 presents the detailed parameters of the drones

used in the study. These aerial operations were conducted during

solar noon- between 10 AM and 2 PM for optimal lighting

conditions, reduced shadows, and uniform illumination. The
FIGURE 1

Study area location and experimental design: (A) Experimental area location and (B) Experimental design in the field.
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UAVmaintained a consistent altitude of 150 feet above ground level

and a flight speed of 5 miles per hour throughout the aerial data

collection period.

Data collection with the UAV-LiDAR and RGB images

occurred on June 6, July 7, July 18, and August 29. The first flight

generated the reference ground to compute the digital terrain model

(DTM). The rest of the dates correspond to critical growth stages of

the crop, providing essential data for monitoring its development.

Six ground control points (GCPs) were set up and evenly

distributed in the field, with three GCPs on each side. R12

Trimble (Trimble Inc., Sunnyvale, California) recorded the

positions of the GCPs and checkpoints.

2.2.2 Field data
In the field, the PH was measured manually from the base to the

tip of the main stem to serve as the ground reference height. Within

each plot, three sampling locations were randomly chosen, each

consisting of one plant from middle three rows to reduce border

effect. This sampling approach ensures sufficient representation of

plot level crop height (Dhami et al., 2020). The height of these

plants was measured using a 1-meter ruler and the results were
Frontiers in Plant Science 04
documented in a field notebook. Height measurements were taken

on July 7, July 18, and August 29, aligning with key developmental

stages of the soybean: R3 (beginning of pod development), R5

(onset of seed filling), and R7 (start of physiological maturity of the

pod). Figure 2 shows the further steps carried out after the

acquisition of the aerial data and field data.
2.3 UAV data processing

In the Pix4Dmapper (Pix4D, Lausanne, Switzerland), the captured

RGB images were geometrically corrected through orthorectification

and stitched together using mosaicking techniques. Orthorectification

ensures spatial consistency by correcting geometric distortions caused

by terrain variation and camera orientation (Toutin, 2004). Similarly,

high overlap rates help to provide repetition in image alignment and

reduce gaps and mismatch in processed images (Turner et al., 2012;

Colomina and Molina, 2014). These two important steps were

instrumental to minimize splicing errors during mosaicking

technique. These processes were carried out in Pix4Dmapper

recognized for its precision in photogrammetric technique

(Gonçalves and Henriques, 2015). Ultimately, the digital surface

model (DSM) and orthophotos were then generated using the

software’s structure from motion (SFM) techniques.

The raw LiDAR point clouds collected by the UAV were

uploaded to DJI Terra software (DJI Technology Co., Ltd.,

Shenzhen, China), where noise filtering was conducted. The data

were formatted into LAS files with specified output coordinates.

These LAS files were further post-processed in R studio using the

lidR package, which involved setting up scan angle, ground

classification, and normalizing elevations to produce the final

Digital terrain model (DTM) and DSM.
TABLE 1 Detailed parameter settings of the unmanned aerial vehicles.

Parameter DJI Mavic 3M DJI Matrice 300

Relative flight altitude 150 feet 150 feet

Flight speed 5 miles per hour 5 miles per hour

Forward overlap rate 85% 85%

Side overlap rate 85% 85%

Sensor Multispectral and RGB L1 LiDAR sensor
FIGURE 2

Workflow of the study showing data acquisition, data processing, and data analysis.
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The generated DTM and DSM were imported into ArcGIS Pro

(Esri Inc., Redlands, United States). Here, each image was

georeferenced using the georeferencing tool to add control points,

utilizing the x and y locations of 6 ground control points (GCPs) and

14 checkpoints. Subsequent elevation adjustments were made to ensure

accuracy in the final geographic positioning and elevation data.
2.4 Establishment of ground or
terrain reference

We used the earliest dates of lidar data we had, classified ground

points, filtered for ground class only, and used these to represent the

bare earth surface. We then used the ground control points (or GCPs)

to establish the adjustment needed to offset the generated DTM

elevation to match the actual elevation recorded by the GCPs. We

had several GCPs on bare or near-bare earth to measure the deviation

between these points and the actual GCPs, thereby having the

adjustment needed to match the elevations. All the while ensuring

adherence to a projected KY StatePlane coordinate reference system.

The adjustment performed is primarily to correct an error

introduced first using different takeoff locations (i.e., different

elevations) and the proclivities of the GPS-equipped devices to

slightly misjudge the vertical elevation of the takeoff locations (i.e.,

234.5msl versus 245.1msl recorded at the same spot) on any given day.

While the global baselines are impacted, the relative elevation variation

in our image is not affected before normalization. The corrected images

were further georeferenced, and elevation adjustment was performed to

align our images to accurate terrain before generating plot-level data.

In the case of RGB images, the earliest date from the RGB

camera was used to generate a bare earth surface using the

photogrammetry technique in the Pix4Dmapper. After generating

terrain in the software, georeferencing and elevation adjustment

were conducted in the ArcGIS Pro software.
2.5 Determination of optimum LiDAR scan
angle and elevation adjustment

The LiDAR scan angle, which is the angle at which laser pulses

are directed toward the ground, plays a crucial role in generating a
Frontiers in Plant Science 05
precise DTM using a LiDAR sensor. The study focused on

minimizing the scan angle as closer angles to zero tend to yield

more accurate elevation data (Ehlert and Heisig, 2013). To fine-tune

our methodology, we conducted several trials to determine the most

effective scan angle ranges. We aimed to select angles close to zero

that still provided precise elevation information to generate

accurate DTM.

Terrain irregularities and slope variations can significantly

affect the accuracy of height measurements from aerial data

(Smith et al., 2019). As our study field had irregular terrain,

elevation adjustment was carried out. To adjust the elevation

values, buffers were created around adjustment points in the field.

The mean elevation value of the buffers was computed, and the

offset values were generated, which were further used to adjust the

DTM and DSM raster. Figure 3 illustrates the distribution in mean

elevation values before adjustment and corrected mean elevation

values after adjustment across various GCPs and checkpoints used

as adjustment IDs.

This step ensures that all raster accurately represent the terrain

by aligning them with actual elevation data. This process focuses on

ensuring the elevation data within the raster was precisely adjusted,

providing an accurate base for further analysis, like creating a CHM

from adjusted DTM and DSM.
2.6 DTM, DSM, and CHM extraction

For this study, we initially generated a bare-ground Digital

Terrain Model (DTM) by employing photogrammetry techniques

to process RGB imagery captured during the early growth phase on

June 6. Following this, Digital Surface Models (DSM) were created

using RGB imageries acquired from UAV flights during

reproductive stages. We integrated and spatially aligned the DTM

and DSMs using Ground Control Points (GCPs) within

ArcGIS Pro.

For LiDAR point clouds, the DTM was constructed by isolating

ground points from the dense point cloud data and interpolating

between these points to form a continuous ground elevation model.

As outlined by Evans and Hudak (2007), the multiscale curvature

classification algorithm facilitated the differentiation of ground and

non-ground points. These points were further refined using a
(A)                                      (B)                                (C)                                (D)

FIGURE 3

Distribution of mean elevation values across different GCPs and checkpoints: (A) before adjustment (RGB images); (B) after adjustment (RGB images);
(C) before adjustment (LiDAR images); (D) after adjustment (LiDAR images).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1488760
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pun Magar et al. 10.3389/fpls.2025.1488760
Triangulated Irregular Network (TIN) algorithm to produce the

DTM for the LiDAR data recorded during the initial crop growth

stage. Finally, the ‘pixel metrics’ function from the lidR package was

used to compute the DTM value from the LiDAR point cloud.

The DSM for subsequent dates utilized the same function (pixel

metrics) to calculate each pixel’s minimum, maximum, and

difference. Typically, the maximum value represents the DSM and

was utilized to compute CHM after georeferencing and elevation

adjustment in ArcGIS Pro. We computed the CHM of the soybean

crop in ArcGIS Pro using the raster calculator tool, which involved

subtracting the DTM from the DSM at the pixel level. We further

refined the CHM at the plot level using the ‘extract by mask’ tool,

integrating this with the plot shapefile feature class containing 88

identical plot shapes. Then, plot-level statistics were derived using

the ‘zonal statistics as a table’ as a spatial analyst tool. Through this

methodical approach, we efficiently generated CHM data from both

RGB images and LiDAR point cloud data in ArcGIS Pro.
2.7 Statistical analysis

The PH data derived from RGB, LiDAR, and manual

measurements were analyzed using simple linear regression. In the

simple linear regressionmodel, manually measured PH was considered

the dependent variable and sensor-based PH was used as an

explanatory variable. We validated the soybean heights estimated

from RGB and LiDAR against the manually measured PH. To

evaluate the accuracy of these estimations, we calculated the

coefficient of determination (R2), root mean square error (RMSE),

and mean absolute error (MAE), which were computed to see the

accuracy of LiDAR and RGB for estimating PH. The R2 value assessed

how closely the estimated values aligned with the measured values with

higher R2 values indicating a better fit. Conversely, lower RMSE and

MAE values suggested greater accuracy in the estimates, quantifying

the difference between the estimated and actual values. The formulas

for calculating R2, RMSE, and MAE are provided to ensure a clear

understanding of how these metrics are derived and interpreted.

R2 = o
N
i=1(yi − byi)2

oN
i=1(yi − �yi  )

2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − byi)2
N

s

MAE =
1
No

N
i=1 yi − byij j

Where N is the number of samples, yi and ŷi are the measured

and estimated PH, yi − ŷij j is the absolute error for the i − th data,

respectively �yi   is the average measured PH.
2.8 Modeling calibration and validation

Initially we assessed the individual sensor performance using a

simple linear regression method. Later, we employed a variety of
Frontiers in Plant Science 06
regression models, including multiple linear regression (MLR), partial

least square regression (PLSR), random forest (RF), and Gaussian

process regression (GPR) by integrating both RGB and LiDAR dataset

to enhance predictive accuracy by leveraging the strength of both

datasets. The dataset was split into training (80%) and testing (20%)

sets using random partition method. The splitting was performed at

plot level, so the training plots did not include any measurements

from test plots. The training set was used to train the models, and the

testing set was used to evaluate the performance metrics. The MLR

and PLSR models were implemented using linear techniques, while

RF and GPR were used for non-linear predictions. Each model was

trained on the training dataset using the ‘caret’ package in R Studio.

The models’ performance was evaluated using three metrics: R2,

RMSE, and MAE. 5-fold cross-validation was performed to assess the

generalizability of the models. The parameter configuration for each

model is clearly explained in Table 2.
3 Results

3.1 Estimation of scan angle for the
soybean PH study

The point closer to the nadir tends to provide a consistent

elevation reading as the LiDAR pulses hit the ground more directly

(closer to perpendicular), reducing the distortions. In our study, the

most consistent and precise capture of the ground elevation appears

to occur within the scan angle range of -15 to +15 for DTM

generation, as shown in Figure 4. The distribution of the LiDAR

pulses within this range is more tightly clustered, indicating the

consistency in elevation information with reduced variability.

When looking at the LiDAR pulses distribution across other
TABLE 2 Parameters and description of various regression models.

Model Parameter Description

Multiple Linear
Regression (MLR)

Predictors RGB, LiDAR

Coefficient Automatically estimated using
ordinary least squares (OLS)

Assumptions Linearity, independence,
homoscedasticity, and normality
of residuals

Partial Least Square
Regression (PLSR)

Number
of components

Selected: 3 (via 5 fold
cross validation)

Random Forest (RF) Number of
trees (ntree)

Default: 500

Number of
variables (mtry)

Selected: 1 (via 5 fold
cross validation)

Node size Default: 5

Gaussian Process
Regression (GPR)

Kernel type Radial Basis Function (RBF) kernel
(gaussprRadial method in caret)

Hyperparameters Optimized via default settings in the
caret package
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angles farther from the nadir, more outlier values appeared in

the dataset.
3.2 Elevation adjustment

DSM and DTM raster were adjusted to locate the aerial images

to their absolute position in the ground. Using the offset values

generated around the GCPs and checkpoints, the raster created

using both RGB and LiDAR platforms was adjusted. The shift in the

elevation values in RGB and LiDAR-generated DSM was noticed

after correcting them using adjustment values. In the case of the

DSM generated using an RGB camera, the uppermost elevation

values shifted to 228.436 meters from 222.013 meters (Figure 5A).

In the DSM generated from aerial LiDAR, the uppermost elevation
Frontiers in Plant Science 07
value shifted to 269.786 meters in the adjusted DSM adjusted

DSM (Figure 5B).
3.3 Ground reference height

Table 3 shows the results from the manual height measurement in

the field. It shows the descriptive data offield-measured PH conducted

across 88 plots at three different soybean growth and developmental

dates. The average PHs recorded on July 7, July 18, and August 29 were

0.39 meters, 0.65 meters, and 0.88 meters, respectively.
3.4 Estimation of crop height using CHM

The PHmeasured manually in the field using a ruler was similar

to the values estimated using aerial sensors mounted in the drones.

The comparison can be seen in Table 4, where the distribution of

the height values among different sensors and ground reference

height is shown. The pattern of PH distribution, in general, is

similar on all three dates. However, a considerable variation in the

PH distribution can be noticed on the 7th of July and 18th of July in

the case of RGB vs. Manual and the 29th of August in the case of

LiDAR vs. Manual PH comparison. Furthermore, the complete

distribution of ground reference PH and the PH collected using

different aerial sensors across different dates can be visualized

in Figure 6.
FIGURE 4

Distribution of LiDAR pulses across different scan angles in various
elevations within a transect in the experimental field.
 
(A) (B) 

FIGURE 5

Digital surface model generated from (A) RGB and (B) LiDAR sensors on different dates. The upper plot layout shows the DSM before elevation
adjustment, and the lower plots shows the adjusted DSM.
TABLE 3 Descriptive statistics of ground reference height.

Date Mean Standard
deviation

Minimum Maximum

7-Jul 0.385 0.066 0.23 0.5

18-Jul 0.645 0.11 0.385 0.86

29-Aug 0.874 0.113 0.61 1.12
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A simple linear regression analysis assessed the relationship

between PHs derived from Canopy Height Models (CHM) using

RGB and LiDAR sensors and the heights measured manually in the

field across different dates. The ground reference PH and RGB-

derived PH showed a moderate correlation with the coefficient of

determination (R2) equal to 0.52. The comparison between

manually measured soybean height against the LiDAR-derived

PH showed a strong correlation with the coefficient of

determination (R2) of 0.82. Scatterplots illustrating these

comparisons are displayed in Figure 7: Figure 7A for UAV-based

RGB vs manually measured PH, and Figure 7B for UAV-based

LiDAR vs manually measured PH across various stages.

In the case of manually measured PH versus RGB-derived PH,

the coefficient of determination (R2) value ranged between 0.52 and

0.49 in decreasing order across July 7, July 18, and August 29. The

correlation remained relatively consistent on July 7 and July 18,

with an R2 of approximately 0.52. On August 29, the correlation

decreased slightly with an R2 of 0.49. The PH distribution pattern

was similar to RGB vs. manual PH measurement when comparing

ground-measured and LiDAR-generated PH. The coefficient of

determination (R2) between 0.75 and 0.29 was recorded across

various dates in descending order, as shown in Figure 8. On July 7,

the highest R2 value was recorded; however, by August 29, the

correlation dropped significantly to an R2 of 0.29, suggesting that

the precision of LiDAR may decrease as the crop progresses toward

physiological maturity. Looking specifically at the RMSE and MAE

values, as shown in Table 5, the comparison between manual

measurements and LiDAR-based PH showed the lowest values on

July 7. In contrast, the comparison between RGB-measured PH and

ground reference PH on July 18 generated the highest RMSE and

MAE values, indicating a lesser agreement between ground

reference height and RGB-derived height at that particular stage

of the crop. The lesser RMSE and MAE values indicate the

substantial agreement between the ground reference PH and

sensor-measured height. Despite the inharmonious correlation

values between the PH generated using aerial sensors and ground

reference PH, their relationship remains statistically significant

(p < 0.001) across all the growth and developmental periods.

Various regression models were employed to evaluate the

accuracy and effectiveness of LiDAR and RGB sensors in

predicting soybean PH. Meanwhile, outliers were identified using

residual diagnostic as shown in Figure 9. They were included in the

analysis unless they exceeded 3 standard deviations, as their effect

on the model was minimal.

To evaluate the performance of our regression models in

predicting PH, we calculated the R2, RMSE, and MAE on the test

dataset summarized in the Figure 10.

The GPR model exhibited the highest R2 value of 0.85,

indicating that it explains 85% of the variance in the PH data.
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Additionally, GPR has the lowest RMSE and MAE, suggesting

superior predictive accuracy and consistency compared to the

other models. The RF model also performed well, with an R2 of

0.79, RMSE of 0.09, and MAE of 0.07. The MLR model achieved an

R2 of 0.77, RMSE of 0.1, and MAE of 0.078, indicating reasonable

performance with higher prediction error compared to GPR and

RF. The PLSR model had the lowest performance, with an R2 of

0.73, RMSE of 0.11, and MAE of 0.08.

To assess the generalizability of the models, 5-fold cross-

validation was performed, with the results summarized in

Table 6. The cross-validation metrics provide a more robust

estimate of the model performance by averaging the result across

multiple folds. The RF model maintained strong performance in

cross-validation, with a mean R2 of 0.85, RMSE of 0.09, and MAE of

0.06. The GPR model showed consistent results with a mean R2 of

0.8, RMSE of 0.11, and MAE of 0.08, demonstrating its reliability

and stability.

The MLR model achieved a mean R2 of 0.84, RMSE of 0.09, and

MAE of 0.07, indicating good performance with low variability, as

reflected by the slight standard deviation. The PLSR model had a

mean R2 of 0.78, RMSE of 0.1, and MAE of 0.08, showing slightly

lower performance compared to the other models but with

acceptable stability.
4 Discussion

This study focused on identifying the most effective sensor

between the two most widely used sensors (RGB camera and

LiDAR) for PH estimation using UAVs. Across the crop growth

cycle, HTAP was conducted at three different times. Our result

showed that PH estimation in soybean using UAV-based LiDAR

(R2 = 0.83) could be the most reliable than the UAV-equipped RGB

camera (R2 = 0.53) in the pod growth and seed filling stages.

However, the result showed the reliability of deploying RGB

cameras, specifically in the physiological maturity stage when

LiDAR cannot capture highly correlated results. Similarly, the

study highlighted factors like scan angle and elevation adjustment

critical in canopy height generation using aerial platforms.
4.1 Estimation of crop height

In this study, we assessed crop height using RGB and LiDAR

sensors across three soybean growth stages. To enhance the

precision of crop height predictions from RGB imageries, we

adjusted the DTM and DSM rasters by applying elevation

adjustment. These adjustments used offset values calculated from

buffers around GCPs and checkpoints. For LiDAR point clouds, we
TABLE 4 Average PH using different methods across different aerial dates of soybean.

7-Jul 18-Jul 29-Aug

Manual RGB LiDAR Manual RGB LiDAR Manual RGB LiDAR

PH (m) 0.39 0.57 0.35 0.65 0.85 0.54 0.87 0.82 0.73
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set appropriate scan angles and performed ground classification

using the multiscale curvature classification (MCC) method, which

effectively distinguishes between ground and non-ground points.

The MCC algorithm, along with the Progressive morphological

filter (PMF) and cloth simulation function (CSF), was evaluated to

refine the DTM accuracy. PMF, as described by Zhang et al. (2003)

classifies points as ground and non-ground points based on a dual-

threshold approach. Similarly, CSF, as explained by Zhang et al.

(2016) simulates a virtual cloth dropped over an inverted point
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cloud to identify ground points, and MCC uses curvature

thresholds to interpolate the ground surface as explained by

Evans and Hudak (2007). The PMF algorithm might remove

essential terrain details by classifying ground points as non-

ground (Zhang et al., 2003). Similarly, the CSF algorithm

struggles with the classification of low vegetation and MCC is

well-suited for the classification of complex vegetated surfaces

(Roberts et al., 2019). In our study, ground classification was

done during the extraction of the DTM dataset at the early
FIGURE 6

PH distribution among 88 plots across three dates showing ground reference height by the solid line and sensor-based height by dotted line. The
2D plots were generated using ArcGIS Pro for RGB and LiDAR images.
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growth stage of soybeans, so MCC was preferred over CSF to obtain

accurate terrain information.

For UAV-based data collection, RGB cameras offer a cost-

effective solution despite their limitations in penetrating dense
Frontiers in Plant Science 10
canopies (Cao et al., 2021; Luo et al., 2021). The images can also

be processed in user-friendly processing software. The structure

from motion (SfM) photogrammetry technique is used to gather

canopy height and structure details from high-resolution images as

this method can generate a point cloud from several images

(Kalacska et al., 2017; Coops et al., 2021). UAV-based RGB

camera estimated PH and proved as an important proxy for dry

biomass in summer barley (Bendig et al., 2015). UAV-based

imaging measurement system quantified PH with minimum error

in cotton (Feng et al., 2019). PH and leaf area index (LAI) of

different soybean varieties were estimated using a Kinect 2.0 sensor

indoors (Ma et al., 2019). Conversely, LiDAR technology excels by

penetrating crop canopies to measure PH accurately, unaffected by

external lighting (Yuan et al., 2018). The advantageous features of

LiDAR include its ability to penetrate the crop canopy, enabling it to

reach the ground (Dalla Corte et al., 2022) and supply 3D structural

information invaluable for HTAP (Parker et al., 2004; Omasa et al.,

2006). Terrestrial laser scanning (TLS) produced promising PH and

showed its potential for non-destructive biomass estimation in
FIGURE 8

Comparison of the manually measured PH and estimated PH using aerial (top) RGB and (bottom) LiDAR sensor.
(A)                                                                        (B) 

FIGURE 7

Linear relationship between PH estimated using a ruler in the field and the PH measured using (A) RGB camera and the (B) LiDAR sensor throughout
the season.
TABLE 5 Comparative result between RGB and LiDAR sensors against
manual measurements.

RGB vs. Manual LiDAR vs. Manual

7
July

18
July

29
August

7
July

18
July

29
August

R2 0.52 0.51 0.49 0.75 0.74 0.29

RMSE (m) 0.2 0.24 0.11 0.05 0.12 0.18

MAE (m) 0.18 0.21 0.08 0.04 0.11 0.15

T 9.7 9.5 9.2 16.2 15.9 5.9

P *** *** *** *** *** ***
***, **, * indicate significance at 0.001, 0.01, and 0.1 levels respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1488760
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pun Magar et al. 10.3389/fpls.2025.1488760
FIGURE 9

Residual plots for different regression models with ±3 standard deviation thresholds.
FIGURE 10

Performance metrics for different regression models (Multiple linear regression, partial least square regression, random forest, and Gaussian process
regression) on the test data set.
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maize (Tilly et al., 2014b) and rice (Tilly et al., 2014a). Multiple

sensors mounted on commercial wild blueberry harvesters proved

very efficient at estimating PH and fruit yield (Farooque et al.,

2013). A study on winter wheat using a field phenomics platform

(FPP) of LiDAR and a time of flight (ToF) camera produced a

strongly correlated PH with manual height (Zhou et al., 2015).

UAV-LiDAR was effective in estimating PH in sugar beet and

wheat, while it was difficult in potatoes due to the complex canopy

structure and uneven terrain created by ridges and furrows (ten

Harkel et al., 2019).

Our study found that the UAV-mounted LiDAR more

accurately predicted soybean height which aligns with similar

conclusions in other crops like wheat (Madec et al., 2017;

Jimenez-Berni et al., 2018; Yuan et al., 2018), sorghum

(Maimaitijiang et al., 2020), and maize (Liu et al., 2024). In our

study, there was a strong correlation between the PH obtained from

the LiDAR sensor and manual measurement on July 7 and July 18.

The R2 values obtained in all three growth stages were greater than

those of the earlier study done by Luo et al. (2021) using UAV-

LiDAR in soybean. This may be attributed to the overestimated

DTM, which led to a smaller correlation value in the earlier studies.

To avoid DTM overestimation, our study used aerial data when the

soybean field was completely visible, and soybean were in a very

small growth stage. We observe a decline in R2 value in the R7 stage

which aligns with similar studies in maize by Zhu et al. (2020) where

a significant decrease in plant length, PH, canopy height, and plant

width was observed as the plant progressed toward maturity and

leaves fell off. At the R7 stage, soybeans undergo senescence, leading

to leaf drop and changes in canopy structure. These changes might

affect the LiDAR’s ability to capture accurate plant height due to

reduced canopy density and increased exposure to underlying

structure that might have reduced the plot aggregated mean of all

the pixels. Photogrammetry PH shows a moderate correlation in all

the R3, R5, and R7 stages as demonstrated by moderate R2 values.

However, increasing RMSE value indicated increasing deviation of

RGB-derived PH from manual measurement. Similar results were

found in the earlier studies where the CHM created using the SfM

technique exhibited some inaccuracies in height measurement,

specifically noticeable in shorter plants (Cunliffe et al., 2016;

Wijesingha et al., 2019). Our finding of PH obtained from RGB

showing moderate correlation aligns with the conclusion from

previous research on corn (Grenzdörffer, 2014; Bareth et al.,

2016), which indicated that the photogrammetry technique

struggles to reconstruct the uppermost parts of the canopy
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accurately. The overestimation in the PH estimated from the RGB

camera in comparison to the LiDAR sensor may be partly due to the

disparity in the spatial resolution of the two sensor systems as well

as differences in canopy penetration capacity (Madec et al., 2017).

Overall, the regression models validated the PH predictions,

with Gaussian Process Regression (GPR) showing the best

performance and MLR and PLSR the least. Incorporation of the

model improved the soybean height prediction demonstrated by the

increased R2 from 0.83 (LiDAR) to 0.85 (GPR). A similar result was

obtained in the study of PH using UAV-based oblique photography

and LiDAR sensor in maize (Liu et al., 2024). This study

underscores the effectiveness of integrating multiple sensing

technologies and analytical models to optimize the accuracy of

crop height assessments throughout different stages of plant growth.
4.2 Influence of scan angle in PH
prediction using LiDAR sensor

The complex plant morphology makes it harder for laser

penetration which makes it difficult to obtain accurate

measurements (Saeys et al., 2009). Earlier studies in winter wheat

and winter rye demonstrated that overestimation is low for smaller

angles and higher for increasing angles (Ehlert and Heisig, 2013).

They further concluded the necessity of evaluating the role of scan

angle in overestimating the measurement error in individual crop

species (Xu et al., 2023) identified and developed a correction model

based on scan angle to improve grassland canopy height estimation

and demonstrated considerable improvement in PH from their

corrected model (Guo et al., 2019) showed how varying scan angles

and positions significantly influence accuracy in wheat height

measurement throughout its growth stages. Earlier studies using

LiDAR technology in predicting PH have not explored the influence

of scan angle. However, we observed the distribution of LiDAR

pulses across different scan angles and made efforts to identify

appropriate scan angles. Reducing the scan angle towards zero can

significantly enhance the accuracy of elevation data, particularly in

establishing the digital elevation model (Lohr, 1998). To restrict our

scan angle ranges to zero we evaluated the distribution of LiDAR

pulses across various scan angles and identified that the -15 to 15-

degree range consistently captured our ground feature. Our choice

of scan angle range was further validated when ground points

obtained using the MCC algorithm were uniformly distributed to

zero elevation value. Thus, our study identified the optimum scan

angle range in soybean PH estimation. Further, studies need to be

conducted to quantify the effect of different scan angle ranges on

the PH.
4.3 Significance of elevation adjustment in
PH estimation

In our study, we observed inconsistencies in field elevation,

underscoring the necessity of elevation adjustment to enhance the
TABLE 6 Summarized result of 5-fold cross-validation metrics.

Model R2

Mean
R2

SD
RMSE
Mean

RMSE
SD

MAE
Mean

MAE
SD

MLR 0.84 0.01 0.09 0.002 0.07 0.002

PLSR 0.78 0.021 0.1 0.004 0.08 0.004

RF 0.85 0.02 0.09 0.006 0.06 0.005

GPR 0.8 0.03 0.11 0.006 0.08 0.008
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accuracy of PH predictions. PH estimation is particularly

susceptible to biases stemming from errors in Digital Terrain

Models (DTM) and Digital Surface Models (DSM), as well as the

effects of wind (Han et al., 2018). Accurate elevation information is

crucial for precision agriculture, as it allows for a detailed

understanding of elevation gradients across the research field,

which is essential for estimating precise elevation. Despite

advancements in remote sensing technologies such as LiDAR and

InSAR, which offer improved vegetation height assessments,

adjustments for elevation are still required to refine these

measurements (Breidenbach et al., 2008). The variability in

ground profiles, influenced by external factors and the operation

of agricultural machinery, further complicates accurate ground-

level detection (Sun et al., 2022). Malambo et al. (2018) also

highlight the significant impact that accurate ground surface

detection has on PH estimation accuracy.

The role of elevation is particularly critical in ecological studies,

such as predicting plant species distribution in mountainous areas,

where the pattern of elevation is a key determinant (Oke and

Thompson, 2015). Additionally, the creation of DTMs from aerial

data, whether from LiDAR or photogrammetric methods, is susceptible

to inherent inaccuracies due to sensor noise, atmospheric conditions, or

the angle of data acquisition (Hug et al., 2004). Tilly et al. (2015) noted

that elevation adjustments are essential when integrating multiple

datasets collected at different times or using various technologies, to

ensure a consistent reference point across datasets.

Adjusting for elevation not only enhances the precision of PH

measurements but also improves the overall interpretation of

remote sensing data, facilitating applications such as crop

monitoring, yield prediction, and precision farming (Bendig et al.,

2014; Mulla and Belmont, 2018). While many studies have

acknowledged biases in PH prediction, few have addressed the

influence of elevation adjustment as comprehensively as Tilly et al.

(2015) and Bendig et al. (2014). In this study, we employed this

approach to derive the improved DTMs and DSMs, leading to

improved PH estimations from both aerial RGB and LiDAR

sensors. This methodological advancement contributes

significantly to the field of precision agriculture by providing

more reliable data for crop management and research.
4.4 Practical application of the study

RGB cameras and LiDAR are the two most popular sensors

used for high-throughput plant height estimation techniques across

agricultural operations on proximal or aerial platforms. Multiple

studies across various crops have already demonstrated the

usefulness of both the sensors for reliable plant height estimation.

Those results have been valuable sources for farmers, agronomists,

and breeders for high throughput plant phenotyping. In the case of

soybeans, there are fewer studies regarding UAV-based plant height

estimation techniques. The results of this study suggest LiDAR as
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the most effective sensor for soybean plant height estimation

between pod development to seed filling. However, low-cost RGB

cameras was found more effective to predict plant height at a later

stage (onset of physiological maturity). Thus, the experimental

results from this study would be useful to the agricultural

researchers and farmers for the selection of the most effective

sensor for plant height estimation during different growth stages

in soybeans. Recording plant height at an appropriate time using

the most effective sensor will help farmers make an informed

decision regarding crop management, as plant height is one of the

most important proxies for estimating soybean yield and biomass.
5 Conclusion

This study explored low-cost RGB and LiDAR sensors (the most

popular for PH studies) to evaluate which sensors produced more

effective results for the PH estimation in soybean. An appropriate scan

angle range was identified during the data processing, and ground

classification was done using the MCC algorithm to compute precise

DTM values. The CHM-based PH obtained from RGB and LiDAR

sensors was compared with ground reference PH collected manually.

Low-cost RGB cameras showed a moderate and consistent correlation

across all three growth stages. In contrast, LiDAR demonstrated

superior accuracy for soybean height estimation. However, aerial data

collection timing and scan angle could significantly influence the result.

Furthermore, low-cost RGB cameras could still be a more reliable

option than LiDAR sensors for estimating soybean height at a later

stage. This study verified the potential of low-cost RGB cameras and

LiDAR in assessing soybean PH at different growth stages. The results

from this study would help select appropriate aerial phenotyping

sensors for estimating PH during different soybean growth stages.
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