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Wheat is susceptible to mold growth due to storage conditions, which

subsequently affects its quality; therefore, timely and rapid identification of

moldy wheat is critically important. In order to achieve high-precision

recognition and class classification of wheat with different degrees of mold, a

multi-scale context and feature pyramid based moldy wheat recognition

network (MSCFP-Net) is proposed. Firstly, the network uses the residual

network ResNeXt as the baseline network, and incorporates a multi-scale

contextual feature extraction module, which is more helpful to determine the

important discriminative regions in the whole image to extract more image detail

features. In addition, a coordinated attention mechanism module is introduced

to perform global average pooling from both directions to learn the importance

of different regions in the input features in a dynamically weighted manner.

Moreover, a bidirectional feature pyramid network is embedded into the baseline

model, so that certain coarse-grained features and fine-grained features are

retained in the processed output features at the same time to improve the

network recognition accuracy. Compared with the baseline network, the four

evaluation indexes of Accuracy, Precision, Recall and F1-Score of MSCFP-Net are

improved by 1.08%, 1.25%, 0.53% and 0.91%, respectively. In addition, a series of

comparison experiments and ablation experiments show that the classification

network constructed in this paper has the best fine-grained classification

performance for moldy wheat THz images.
KEYWORDS

terahertz, identification of moldy wheat, spectral image, image classification,
deep learning
1 Introduction

Wheat is rich in nutrients, widely grown, and is one of the important reserve grains in

China. However, in the storage process, its internal sugars, fats, proteins and other
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nutrients are very easy to be decomposed by microorganisms to

produce mold, resulting in the phenomenon of mold. In order to

prevent more stored wheat from being contaminated and further

affecting the overall quality, timely and rapid screening of moldy

wheat is important for the safety of stored grain. Traditional

screening means are mainly manual sensory evaluation,

biochemical method, electronic nose detection, etc., which have

shortcomings such as strong subjectivity, low precision, high

requirements for professionalism in operation, and contamination

and damage of test samples.

Terahertz (THz) radiation (Wan et al., 2020), also known as THz

wave, is electromagnetic radiation with a frequency range between 0.1

and 10 THz, which is located in the transition region between

macroscopic electronics and microscopic photonics. Since the

rotational and vibrational jumps between or within many molecules,

the backbone vibrations of nucleic acid macromolecules, and the low-

frequency vibrational absorption frequencies of the lattice in crystals

are all in the THz band range, the THz technique is well suited for the

detection of bio-macromolecular substances. THz wave has the

technical characteristics of non-destructive penetration and low

photon energy, which can not only get the surface information of

the sample, but also obtain the detailed information of the internal

structure of the sample and other details to achieve non-destructive

detection. With the development of novel metamaterials and tunable

devices, THz devices have made significant progress in detection

sensitivity and tunable frequency bands. Zeng et al. (2025) proposed a

square circular Dirac semimetal terahertz tunable absorber,

incorporating new materials, and developed a frequency tunable,

simple structured, and easy to manufacture vibration absorber. Li

et al. (2025) designed a tunable broadband metamaterial absorber

based on graphene, achieving an ultra-wide absorption bandwidth

from 3.8 - 7.19 THz with an absorption rate exceeding 90%. The

design and optimization of THz metamaterial devices provide a

stronger hardware foundation for the application of THz

technology. At present, THz technology have achieved significant

breakthrough in many fields, such as agricultural product safety

detection (Ge et al., 2024; Tu et al., 2025), biomedicine (Koul and

Kaurav, 2022; Zamzam et al., 2025) and security inspection (Zeng

et al., 2024).

The unique nature of THz wave makes it of great potential

application value in the field of agricultural product quality

inspection. In recent years, THz technology has been applied in

this field and obtained corresponding results, such as identification

of genetically modified crops, food adulteration, moisture content

and so on. Liu et al. (2023) used spectra in the 0.2-1.5 THz band to

collect the data of pericarpium citri reticulatae and constructed a

CNN recognition model to identify the samples from different

years, with a recognition accuracy of 95.63%. Wei et al. (2020)

collected THz time-domain spectra of 225 transgenic and non-

transgenic soybean samples, took out the interfering spectral bands

by interval partial least squares (iPLS), and identified the transgenic

samples by using grid search- support vector machine (Grid Search-

SVM), with an identification accuracy of 96.15%. Chen et al. (2020)

combined the collected THz spectral data with chemometric

methods to detect the extent of pesticide residues, and the
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discrimination coefficients obtained were all greater than 0.91

based on the absorption peaks of the three pesticides in the 0.4-

1.7 THz region. The above studies used preprocessing operations

such as dimensionality reduction through THz spectral technique,

combined with a series of machine learning-based algorithms such

as PCA, for sample THz spectral data, and analyzed them

qualitatively or quantitatively with models such as CNN, SVM

and LS-SVM, which all achieved excellent experimental results. Hu

et al. (2024) took dried longans as the research object and used THz

transmission imaging to collect images of dried longans with

different fullness degrees. Firstly, the THz spectral signals of

different regions of interest were analyzed to identify the origin of

dried longans, and the identification accuracy rate can reach

98.57%. The fullness of longan was calculated by combining the

method of Otsu threshold segmentation and image inversion, and

the maximum error was less than 3.11%. Jiang et al. (2024) applied

THz imaging technology to the detection of peanut seed quality. By

taking advantage of the characteristic that THz waves can penetrate

peanut shells and combining with CNN, the identification of

standard, mildewed, defective, dried and germinated peanut seeds

was achieved. The recognition accuracy rate reached 98.7%.

THz technology can be combined with digital signal processing

and spectral analysis to analyze the THz spectral response

characteristics of different kinds of agricultural products, and

achieve high-precision prediction results through the constructed

machine learning and deep learning models.

In this paper, deep learning techniques are introduced so as to

achieve high-precision recognition and classification of moldy

wheat. In order to fully extract the target feature information of

the discriminative region in the moldy wheat image and achieve

high-precision fine-grained image classification, this paper

constructs a THz image recognition network for moldy wheat

based on multi-scale context and feature pyramid, using ResNeXt

as the baseline network.

Firstly, a multi-scale contextual feature extraction module is

designed and embedded in ResNeXt to obtain features at different

scales and improve the image recognition accuracy. Secondly, for

the fine-grained image classification task that needs to give more

attention to the discriminative features in the target region so as to

achieve high-precision classification for samples of the same

category with insignificant differences, the coordinated attention

mechanism module is introduced. Finally, the bidirectional feature

pyramid network is embedded in the baseline network, thus

realizing the fusion of deep semantic features and shallow fine-

grained features to obtain the output features of multi-scale fusion.
2 Experimental materials and methods

2.1 Experimental equipment and principles

The THz spectral imaging system used in this experiment is the

terahertz 3D chromatographic imaging system (QT-TO1000) of

Qingdao Quenda Terahertz Technology Co., Ltd. in China. The

THz detection system used in this paper consists of a total of four
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parts, namely the transmitter and receiver, the optical path system,

the sample platform and the mobile system. Firstly, the sample is

placed on the two-dimensional scanning platform. In the

transmitter module, the pulse signal is generated by the fiber

optic femtosecond laser, the photoconductive antenna converts

the femtosecond pulse signal into a picosecond THz pulse signal,

and a short THz pulse is emitted from the transmitter source, which

is focused on the surface of the sample through the optical path

system and penetrates into the measured sample. Due to the

different refractive indices between the different thicknesses inside

a sample, when the THz wave passes through the interfaces of

different thicknesses, it will emit part of the reflected wave, which is

received by the detector, and the detected THz signal is converted

into an electrical signal by the receiver module.

In this paper, reflectance imaging mode was used for the

experimental samples. The samples were uniformly placed on a

movable two-dimensional scanning platform, and the maximum

scanning range of the system is 100 mm×100 mm with a spatial

resolution of 0.1 mm. Each pixel point acquires the THz time-domain

waveform of 9000 time-domain points within a scanning time range of

90 ps. The acquired image data was stored in three-dimensional form

and contains both spatial and spectral information.
2.2 Sample preparation and data
acquisition

The wheat variety used in the experiment is No.22 Fine Wheat.

According to the moldy wheat culture experiment in the literature
Frontiers in Plant Science 03
(He et al., 2019), normal wheat grains with smooth surface were

selected and their moisture was adjusted to 18%, and then placed in

a constant temperature and humidity chamber with a preset

temperature of 35 °C. Part of the wheat grains were taken out on

each of the third, sixth, and ninth days as slightly moldy, moderately

moldy, and seriously moldy samples, respectively, so as to obtain

the samples with four degrees of mold as shown in Figure 1.

As seen in Figure 1, wheat with different degrees of mold had

complete profile information, but the surfaces had slight differences

due to different degrees of mold encapsulation. Figure 1a had the

smoothest surface with no mold encapsulation. Compared to

normal wheat, slightly moldy wheat has slight traces of mold

encapsulation on the surface, and seriously moldy wheat has the

deepest degree of mold encapsulation and the roughest surface.

A total of 1200 wheat kernels with different levels of mold were

collected in this experiment, including 300 samples each of normal

wheat, slightly moldy wheat, moderately moldy wheat, and

seriously moldy wheat. The original 3D THz data of the wheat

samples were first subjected to Fourier transform, resulting in

frequency-domain data with a size of 180×180×300. Figure 2

demonstrates the 3D THz images of wheat samples obtained by

the imaging system. Subsequently, each 3D image was sliced into

300 two-dimensional THz images of moldy wheat with a resolution

of 180×180.

The original signal acquired by the 3D chromatographic

imaging system is time-domain signal, and then the frequency-

domain signal is obtained by Fourier transform. The frequency

domain signal contains the internal structure information of the

sample, so we use the original signal converted by the Fourier
FIGURE 1

Wheat samples with different degrees of mold: (a) Normal. (b) Slightly moldy. (c) Moderately moldy. (d) Seriously moldy.
FIGURE 2

3D THz images of wheat samples with different degrees of mold: (a) Normal. (b) Slightly moldy. (c) Moderately moldy. (d) Seriously moldy.
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transform to get the frequency domain signal as the data base. The

frequency domain spectra of the four types of samples are shown in

Figure 3, and the amplitude values of all the samples are the highest

near 0.3 THz, and gradually weakened after 0.5 THz.

After slicing the original three-dimensional THz images, a

background removal process was applied to retain only the main

parts of the wheat samples, resulting in background-free two-
Frontiers in Plant Science 04
dimensional images. Taking normal wheat samples as an

example, Figure 4 shows THz images at different frequencies. As

can be observed, at 0.1 and 0.2 THz, the images contain limited

usable features and exhibit weak signal intensity, making them

unsuitable for effective feature extraction. In contrast, at 0.3 and 0.4

THz, the wheat contours are clearly visible, the signal intensity is

relatively strong, and the internal structure of the grains is well

preserved. As the frequency further increases to the range of 0.5 -

0.8 THz, both the contour and internal structural information of the

wheat samples gradually diminish. Therefore, based on the

frequency-domain spectral analysis in Figure 3, the 0.3 THz

images were selected for use in subsequent experiments. A total

of 300 THz images were obtained for each category of wheat with

different mold levels, resulting in 1200 images used as the dataset for

the model.

As can be seen from Figure 5, all four types of sample wheat

after removing the background have complete outlines, and the

main body of the sample is expressed completely. Among them, the

blue area in Figure 5a has the largest area and the darkest color,

which indicates that its internal structure has the most complete

expression and there is no mold wrapping on the surface. The blue

area of the images of slightly moldy and moderately moldy wheat

gradually became lighter, indicating that the degree of mold

encapsulation on its surface gradually deepened. With the

deepening of the degree of mold, the internal molds and various

types of compounds in wheat gradually changed.
FIGURE 3

THz frequency domain spectra of four types of samples.
FIGURE 4

THz images of normal wheat samples at different frequencies.
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3 Identification of moldy wheat based
on multi-scale context and feature
pyramid

The raw THz images of samples acquired by the THz imaging

system need to be further identified and classified by fine-grained

classification algorithms. Aiming at the problems of deep learning-

related traditional algorithms in the recognition process of moldy

wheat, such as low recognition accuracy, we propose a moldy wheat

recognition network based on multi-scale context and feature

pyramid on the basis of ResNext.
3.1 Fine-grained classification algorithm
MSCFP-Net for moldy wheat

The overall network structure of the Multi-scale Context and

Feature Pyramid based Network (MSCFP-Net) for moldy wheat

recognition proposed in this chapter is shown in Figure 6. MSCFP-

Net uses ResNeXt as the baseline model to extract deep complex

features from samples with deeper network, thus achieving fine-

grained image classification.

Based on ResNeXt, the first improvement module proposed is

the multi-scale contextual feature extraction module. Since the

extraction of contextual information helps to determine the

important regions in the whole image so as to enable image detail

feature extraction and improve the image recognition accuracy, and

the fine-grained image classification task aims to achieve high-

precision classification by obtaining the discriminative features of

the important regions, this paper utilizes the idea of multi-scale

contextual information to construct a feature extraction module

and connects it with each block in the ResNeXt directly cascaded.
Frontiers in Plant Science 05
In addition, the THz image features of wheat with different moldy

degrees have a very small gap, and there may be a situation where the

network fails to focus on the discriminative features of different

wheats, which may lead to misjudgment. The coordinated attention

mechanism can guide the network to focus on the fine-grained

discriminative features of the target region, and improve the ability

of the network to learn the features by calculating the weights, so in

this paper we cascade the multiscale contextual feature extraction

module after each a coordinated attention module.

Moreover, in order to fuse the shallow feature maps enriched

with more fine-grained features and the deep feature maps enriched

with semantic features to obtain multi-scale fusion features and

improve the recognition accuracy, this paper embeds a bidirectional

pyramid feature extraction module in the baseline model and

adopts cross-layer feature information connections to perform

multi-scale feature fusion.

The input features are processed by five holistic modules

consisting of a cascade of ResNeXt’s block branch, a multi-scale

contextual feature extraction module, and a coordinated attention

module, while the output of each module also serves as an input

feature for each input channel of the bi-directional feature pyramid

module, which is used to achieve feature fusion through the feature

pyramid module. Finally, the output of the bi-directional feature

pyramid module is then subjected to a global average pooling

operation and a fully connected layer for feature dimensionality

reduction and extraction to obtain the final output.
3.2 ResNeXt network architecture

Deep learning models make predictions closer to actual results

by fitting an objective function, and numerous researchers are
FIGURE 5

THz images of the samples after removing the background: (a) Normal. (b) Slightly moldy. (c) Moderately moldy. (d) Seriously moldy.
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currently stacking CNNs to obtain more features. However, when

the network layers are stacked up to a certain number, the problem

of vanishing gradients occurs and the network performance

degrades instead. The emergence of residual networks can

effectively solve the gradient vanishing caused by excessive
Frontiers in Plant Science 06
network stacking. The ResNeXt network (Xie et al., 2017) can be

seen as a variant of the residual network, mainly replacing the

previous residual structure with another block structure and using

the concept of group convolution. It consists of multiple repeated

blocks stacked together, where each block contains multiple

identical parallel branches, and the results of each branch are

summed and connected using residuals. The structure of each

block is shown in Figure 7. For a feature map F = R256�H�Wwith

256 channels, it is first channel-compressed by 32 convolutional

kernels of size 1×1 to generate a total of 32 sets of feature maps

FC = R4�H�W ,C = 1, 2, : : :, 32 with channel number 4. Then the

size of the feature map is halved using convolution, and the 32

groups of feature maps FC = R4�H�W ,C = 1, 2, : : :, 32 are channel

upscaled by 32 convolutions with kernel size of 256 to generate 32

groups of feature maps FN = R256�H�W ,N = 1, 2, : : :, 32 with 256

channels. Finally, the 32 sets of data are summed in the

corresponding positions to synthesize a 256-channel output and a

residual connection with the identity branch is formed, which

ultimately constitutes the output of a block in ResNeXt.

The model structure of ResNeXt is shown in Figure 8, where C

denotes the number of groups per block in the ResNeXt structure.

As can be seen from the schematic diagram, it not only retains the

residual idea of the ResNet model to avoid the gradient

disappearance of the model caused by network stacking and
FIGURE 7

The structure of a block in ResNeXt.
FIGURE 6

Overall structure of MSCFP-Net.
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deepens the network structure at the same time, but also adopts the

parallel structure of the Inception module, which replaces the three-

layer convolutional block of the original ResNet structure with the

block composed of convolutional concatenated stacking, so that the

model’s recognition accuracy is improved without increasing the

parameter magnitude.
3.3 Multi-scale contextual feature
extraction module

Traditional image classification networks, such as ResNet (He

et al., 2016) and VGG (Simonyan and Zisserman, 2014), tend to

focus only on increasing the depth to extract the deep semantic

features of the image, which is effective for some image classification

tasks with distinct differences in categorization features, such as cat

and dog classification. However, in the fine-grained image

classification task, high-precision classification can still not be

achieved by deep semantic features alone, because for the

traditional image classification tasks, the important discriminative

features in an image, no matter how much weight they have, do not

affect the network’s ability to extract the features in the same way for

all regions of the image. For images where discriminative features

occupy a small proportion, applying the same feature extraction

method to all regions will result in the inclusion of a large amount of

irrelevant background information along with important features in

the network training, thereby affecting the model’s classification

accuracy. Contextual information refers to the target and the

relevant information features around the target area, and the

extraction of contextual information helps to determine

the important areas in the whole image. Traditional multi-scale

feature extraction methods focus on independently extracting

features from multiple scales. In contrast, the proposed multi-

scale context and feature pyramid model integrates multi-scale

feature extraction with contextual information, enabling the

model to better capture multi-scale dependencies at different

levels. This allows the model to extract more discriminative

features from the most relevant regions. This approach reduces

the interference of irrelevant background information on feature

extraction, thereby improving the accuracy of image recognition.
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Based on the above problems, a Multi-scale Context Feature

Extraction Module (MCFEM) is proposed in this section, and the

specific structure of MCFEM is shown in Figure 9.

MCFEM extracts contextual features at different scales by using

a 1×1 convolution, a series of 3×3 convolutions with varying

dilation rates, and its own feature mapping. Among them, the

expansion rates of 3×3 convolution are 1, 2, 3, and 4. After a series

of 3×3 null convolution and 1×1 convolution, the output feature

map receptive fields are 1, 3, 5, 7, and 9, respectively. Small scale

convolution helps in the extraction of detailed features in the feature

maps, while large scale convolution facilitates the extraction of

global features, and the introduction of null convolution achieves a

certain degree of detail features retention while extracting different

sensory field feature maps. The self-mapping of the residual

structure is then introduced to form a total of six feature maps.

In addition, the idea of weighted fusion is used in MCFEM, and

six learnable parameters Zi, i = 1,2,3,4,5,6 are provided in the

module to enable the network to achieve adaptive learning of the

importance of contextual features at different scales, where each

weighting coefficient Wi is determined by a learnable parameter Zi.

Wi is calculated as shown in Equation 1:

Wi =
eZi

o6
c=1e

Zc
, i = 1, 2, 3, : : :, 6 (1)

The above approach allows the module to adaptively learn

contextual features under different scales of sensory fields. Finally,

the channels are downscaled using a 1×1 convolution to obtain the

output features of the MCFEM.

In summary, MCFEM can merge contextual information from

multiple scales and adaptively learn the importance of contextual

features at different scales, where contextual information with small

sensory fields is more beneficial for fine-grained classification tasks.

Considering that the convolution in the ResNeXt structure has

scale singularity, and has limited ability to express the multi-scale

features and detailed features of the moldy wheat image, a MCFEM

is added before and after each block structure in the ResNeXt, so

that each block has the ability to explore the contextual information

of different scales, and then can extract the fine-grained features of

the moldy wheat under different sensory fields.
FIGURE 8

Structure of ResNeXt model.
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3.4 Coordinated attention mechanism
module

Compared to traditional image classification, fine-grained

image classification needs to pay more attention to local salient

features. The THz image features of wheat under different mold

levels are very similar, so in order to avoid failing to pay attention to

the discriminative features of different wheats, which may lead to

misjudgment, a Coordinate Attention (CA) (Hou et al., 2021)

module is added to each block of MSCFP-Net so that the
Frontiers in Plant Science 08
network can pay more attention to the discriminative features in

the THz images of wheat under different mold levels.

The structure of the CA module is shown in Figure 10. CA is an

attentional mechanism used to enhance the network’s ability to learn

feature representations and is designed to learn the importance of

different regions in the input features by dynamically weighting them.

The implementation of the CA module is divided into two parallel

branches, horizontal and vertical.

A global average pooling operation is first performed for the

input feature map F ∈ RC�H�W from both horizontal and vertical
FIGURE 10

Structure of the coordinated attention mechanism module.
FIGURE 9

Contextual convolutional block structure.
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directions to obtain the feature encoding mapping in both

directions. The above process is achieved by using a pooling

kernel of size (H, 1) for global average pooling in the horizontal

direction and using a pooling kernel of size (1,W) in the vertical

direction. The final feature maps yh ∈ RC�H�1 and yw ∈ RC�1�W

after average pooling in both directions are obtained. The parallel

pooling process for the cth channel feature output is shown in

Equations 2 and 3.

yhc (h) =
1
W o

0≤i≤W
x(h, i) (2)

ywc (w) =
1
H o

0≤i≤H
x(j,w) (3)

After the above operation, the feature maps in both directions

are then subjected to the concat operation, and then the nonlinear

mapping of the features is carried out using the 1×1 convolution,

the normalization layer and the activation function to generate the

feature map f ∈ RC
r�(H+W) (r denoting the scaling factor). The

above process can be expressed as Equation 4:

f = d (F½yh, yw�) (4)

The above approach allows the generated feature map f ∈
RC

r�(H+W) to fuse spatial information features in the horizontal and

vertical directions, and then f to be decomposed along the spatial

dimension to obtain f ∈ RC
r�H and f ∈ RC

r�W . Then it is subjected to

channel expansion and nonlinear activation using 1� 1 convolution

and activation functions, respectively, to obtain the attentional weights

in different directions of the spatial dimensionmh ∈ RC�H�1 andmw

∈ RC�1�W . Finally, the obtained attention weight values are multiplied

with the input sequences respectively and modulated by the CA

module to obtain the final output features.

In summary, a CA module is embedded in each block, so as to

make the network pay more attention to the salient features of the

target region.
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3.5 Bi-FPN based feature fusion module

Traditional image classification networks usually use only the

last layer of output as discriminative features for classification, and

the deep features in the network are usually high-level semantic

features. However, in fine-grained image classification tasks, the

discriminative features of an image are often shallow detail

information such as texture. Therefore, if only the output features

of the last layer of the network are used as discriminative features, it

may lead to poor classification accuracy. In this section, multi-scale

feature fusion is used to fuse shallow feature maps enriched with

more fine-grained features with deeper feature maps enriched with

more semantic features, so that certain coarse-grained and fine-

grained features are retained in the output features of the

classification network at the same time. In this way, the accuracy

of the network for fine-grained image classification tasks

is improved.

With the advancement of deep learning, Feature pyramid is an

important method in computer vision for handling multi-scale

problems (Chen et al., 2024). Bi-directional Feature Pyramid

Network (Bi-FPN) (Tan et al., 2020) is a bi-directional feature

fusion model, which improves the recognition accuracy of target

features through multi-level adaptive feature fusion and dynamic

feature weight assignment. In addition, the model adopts cross-level

feature information connection and multi-scale feature fusion to

obtain more effective multi-level fusion features through the

bidirectional cross-scale connection structure.

The specific connection of introducing Bi-FPN in ResNeXt is

shown in Figure 11. The output feature maps of each block in

ResNeXt are introduced into Bi-FPN, so that the shallow feature

maps rich in fine-grained features are feature-fused with the deeper

feature maps rich in semantic features, and the output features

obtained from the topmost features of Bi-FPN are processed by

global average pooling and fully-connected layers, respectively, for

the classification task.
FIGURE 11

Network structure after entering Bi-FPN.
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4 Experimental results and analysis

The 2D THz images of 1200 preprocessed wheat samples with

different degrees of mold were divided into training and test sets in a 9:1

ratio, with 1080 and 120 images. The number of iterations for training is

100, using the SGD optimizer. The training set and labels used for model

training were input into the MSCFP-Net constructed in this chapter for

the classification process, and the loss function and accuracy changes of

the model are shown in Figure 12. With the increase in the number of

iterations, the model recognition accuracy increases rapidly, and when

the epoch is close to 50 when the model training has stabilized, the

accuracy growth slows down gradually and tends to 100%.

The specific values of the recognition results of the classification

network in this paper are shown in Table 1 As can be seen from the

table, for the four samples the highest value of classification

accuracy was 90.11%, while the lowest identification accuracy was

found for mildly moldy wheat. In terms of recall value, 100% was

achieved for both normal and seriously moldy wheat.
4.1 Model comparison

In order to further verify that the classification effect of the

image recognition model constructed in this paper is better than the

traditional recognition models, the mainstream classification
Frontiers in Plant Science 10
networks DenseNet (Huang et al., 2017), ResNet, SENet (Hu

et al., 2018), PVT-S (Wang et al., 2018), MobileNet-V2 (Howard

et al., 2017), CSPDarkNet, ViT-B (Dosovitskiy et al., 2020) and

ShuffleNet (Zhang et al., 2018) were chosen to class the THz images

of moldy wheat and to compare and analyze the results of the above

experiments with the results of the network in this paper from the

point of view of the evaluation metrics Accuracy, Precision, Recall

and F1-Score. The experimental results are shown in Table 2.

As can be seen from Table 2, the recognition performance of

MSCFP-Net is optimal in terms of all the above four metrics. For the

first eight mainstream networks, ViT-B and PVT-T reach the highest

values of the four metrics, where the recognition accuracy is 0.25% and

0.17% higher than the benchmark networks in this paper, respectively.

MSCFP-Net is 0.83%, 1.13%, 0.36% and 0.77% higher in the four

metrics relative to ViT-B, which is the best performer among the top

nine networks. In addition, MSCFP-Net has more performance

improvement compared to the baseline network. Overall, the

recognition accuracy and model stability of MSCFP-Net are optimal,

indicating the superiority of the improvements of MSCFP-Net.
4.2 Ablation experiment

In order to verify that the MCFEMmodule, the CA module and

the Bi-FPN module added to the baseline model in this chapter are
FIGURE 12

Loss function and accuracy change curves.
TABLE 1 Recognition results of MSCFP-Net (%).

Types Normal Slightly moldy Moderately moldy Seriously moldy

Acc. 87.50 85.71 90.11 88.56

Rec. 100 85.71 85.71 100

F1. 92.33 85.71 91.31 92.02
The bold values indicate the best results.
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all effective in improving the network recognition performance,

ablation experiments are conducted on the dataset, and the

performance comparison is made from the three perspectives of

Accuracy, Recall, and F1-Score, respectively. The experimental

results are the average values calculated for the four samples

processed. As shown in Table 3, “√” indicates that the module is

added, and “-” indicates that it is not added.

As can be seen from Table 3, among the eight groups of ablation

experiments, the average recognition accuracy of the last group is

the highest value, reaching 87.97%, which is significantly higher

than that of the combined network with only one module added to

the baseline network, and also higher than that of the combined

network with two modules relative to those of the combined

network with two modules, by 0.85%, 0.41% and 0.29%,

respectively. The recognition accuracy in the last set of network is

the only one that reaches more than 87%. Compared with the

baseline network, the MSCFP-Net constructed in this paper

improves the recognition accuracy of normal wheat by 1.08%.

Experiments show that the MCFEM module, CA module and Bi-

FPN module in the network proposed in this chapter effectively

extract the multi-dimensional detailed features of the image and

achieve effective feature fusion, which improves the recognition and
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classification ability of the samples, and can effectively perform the

classification and recognition of moldy wheat.

From the comparison results of Accuracy, Precision, Recall and F1-

Score, the average values of the metrics proposed in this paper are all

the highest. After the experimental results and theoretical analysis, the

performance of MSCFP-Net proposed in this paper is optimal in all

four evaluation indexes. The network can effectively process THz image

features of moldy wheat and accomplish high-precision classification.
4.3 Comparison of attention modules

The attention mechanism added to the MSCFP-Net is the CA

module, so in order to prove the effectiveness of the CA module for

the performance enhancement of this network, Selective Kernal

(SK) (Li et al., 2019), Convolutional Block Attention Module

(CBAM) (Woo et al., 2018), Efficient Channel Attention (ECA)

(Wang et al., 2020) were embedded in MSCFP-Net respectively,

with which the performance is compared. The comparison results

are shown in Table 4.

From the experimental results, it can be seen that the addition of

all the above four attention modules improves the network
TABLE 2 Comparison of experimental results (%).

Networks Acc. Pre. Rec. F1.

DenseNet 84.65 82.47 86.87 84.61

ResNet 83.42 81.97 87.50 84.64

SENet 84.08 82.14 88.02 84.98

MobileNet-V2 85.06 82.98 88.73 85.67

CSPDarkNet 85.10 83.00 89.96 86.34

ShuffleNet 86.78 83.35 89.52 86.32

ViT-B 87.14 85.14 91.90 88.39

PVT-T 87.06 85.12 91.55 88.22

Baseline 86.89 85.02 91.73 88.25

MSCFP-Net 87.97 86.27 92.26 89.16
The bold values indicate the best results.
TABLE 3 Comparison of ablation experiment results (%).

Groups MCFEM CA Bi-FPN module ACC. Pre. Rec. F1.

Group 1 – – – 86.89 85.02 91.73 88.25

Group 2 ✓ – – 86.97 85.12 91.98 88.42

Group 3 – ✓ – 86.95 85.16 91.82 88.36

Group 4 – – ✓ 86.98 85.13 92.00 88.43

Group 5 ✓ ✓ – 87.12 85.22 92.05 88.50

Group 6 ✓ – ✓ 87.56 85.96 92.21 88.98

Group 7 – ✓ ✓ 87.68 85.90 92.13 88.91

Group 8 ✓ ✓ ✓ 87.97 86.27 92.26 89.16
The bold values indicate the best results.
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performance. Among them, the results of adding SK module and

CBAMmodule are very close to each other, with only 0.66%, 0.26%,

0.06% and 0.17% difference in the four metrics respectively. The

recognition results of the network embedded with CA module in

this paper reach the highest value, these four metrics higher than the

experimental results of the network embedded with ECAmodule by

1.52%, 0.17%, 0.13%, and 0.15%, respectively. This is due to the fact

that the coordinated attention mechanism enables simultaneous

encoding of feature information in different dimensions and

channels, directing the network to focus on fine-grained

discriminative features in the target region and avoiding

misjudgment of similar features.

Although the proposed model achieves a relatively high accuracy

in identifying moldy wheat, there are still some limitations. In terms

of model design, MSCFP-Net does not yet meet the requirements of

high real-time performance in inference speed and computational

efficiency, which restricts its potential for large-scale detection

applications. In addition, the experimental dataset used in this

study involves only a single wheat variety, and the generalization

ability of the model needs to be further validated on more varieties

and under diverse environmental conditions. With the rapid

development of deep learning technologies, future work may focus

on developing novel network architectures with higher accuracy and

lower latency. Subsequent research can be carried out in the following

directions: (1) optimizing the lightweight design of the network to

improve real-time detection performance; (2) enhancing the model’s

generalization ability through transfer learning; and (3) exploring

multimodal data fusion strategies to further improve classification

accuracy.
5 Conclusion

In this paper, a moldy wheat recognition network based on

multi-scale context and feature pyramid is proposed around the

high-precision recognition and fine-grained classification of moldy

wheat, combining with the deep learning theory, thus realizing the

high-precision classification of moldy wheat. The method uses

ResNeXt as the baseline network, and firstly constructs a kind of

multi-scale contextual feature extraction module to obtain the

contextual semantic information of the target features and

determine the important discriminative regions of the image; then

the coordinated attention module is introduced to obtain more fine-

grained features in the discriminative region; moreover, by
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embedding the Bi-FPN, the output feature information with the

fusion of deep features and shallow features is obtained to improve

the recognition accuracy. Extensive comparative experiments

demonstrate that MSCFP-Net improves the recognition accuracy

by 0.85% to 4.55%, significantly outperforming other benchmark

networks in identifying moldy wheat using THz images. In

addition, the model achieved a precision of 86.27% and a recall of

92.26%, enabling high-accuracy classification of wheat samples with

varying degrees of mold contamination.
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