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Introduction: Rice is one of the world's leading food crops, with nearly half of the

world's population eating rice as their staple food. Rice yield is directly related to

varieties, and the most intuitive agronomic trait of varietal yield is the number of

grains per panicle.

Methods: In this study, rice panicles are taken as the research object, and images

of the panicles are captured using a smartphone. The CSRNet counting model

based on deep learning is then improved and applied to the problem of counting

the number of grains per panicle in rice.

Results and discussion: The results show that the method of this study has a

mean error value of 3.83% on the final validation set. On this basis, the

development of rice per panicle counting APP based on Android terminal and

batch counting software RiceGrainCounter based on PC terminal realizes real-

time counting on Android terminal and batch counting on PC terminal, which

can provide theoretical basis and technical support for rice per panicle counting.
KEYWORDS

rice panicle counting, deep learning, CSRNet, yield estimation, automatic counting
1 Introduction

In crop breeding research, crop yield has always been a concern of agronomic

researchers and how to improve crop yield remains a worldwide problem. In order to

find the correlation between crop yield and variety, yield measurement is an essential part

of the process. The yields of grain crops such as rice, wheat and maize are mainly closely

related to the number of panicles per unit area, thousand-panicles quality and the grain

number of per panicle. The traditional measurement of counting mainly relies on manual

counting, which is time-consuming, inefficient and prone to errors, and the counting of

thousand-panicles quality and the number of per panicle is destructive to crop panicles,

which is not conducive to the reuse of materials (Tester and Langridge, 2010; Al-Tam et al.,
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2013). With the development of computer image technology, it is an

inevitable trend to take pictures of grain crops such as rice, wheat,

and corn, analyze the resulting images, and complete yield forecasts

instead of manual measurements. Especially in recent years,

research on crop yield prediction by incorporating deep learning

has also made significant progress. For example, deep learning is

utilized to count the number of panicles per unit area of wheat, rice,

etc. and thus predict the yield in the field (Lu et al., 2017; Hasan

et al., 2019; Bao et al., 2020; Yang et al., 2022; Yang, 2020). The

number of panicles counted per unit area is often analyzed from the

perspective of environmental impact on yield. However, the

number of grains per panicle in grain crops such as rice, wheat,

and corn are also an important agronomic trait that directly affects

their yields (Garcıá et al., 2016; Li et al., 2004; Slafer et al., 2014; Xing

and Zhang, 2010). Rapid and accurate measurement of the number

of grains per panicle can improve the efficiency of scientific research

and variety development. Therefore, counting the number of grains

per panicle is a very important task.

The method of yield estimation using computer image

technology provides a new approach to the problem of counting

the number of grains per panicle in rice. There are two main

traditional methods for measuring the number of grains per panicle

using image technology: one involves counting the grains by

extracting the outline of the panicle (Bleau and Leon, 2000;

Crowell et al., 2014; Lin et al., 2014; Mandal, 2018), and the other

is to count the grains by extracting the morphological features of the

rice panicle (Al-Tam et al., 2013; Crowell et al., 2014; Ikeda et al.,

2010). In recent years, an increasing number of researchers have

applied deep learning to the count of grain number per panicle in

rice. Wu et al. used image processing and deep learning algorithms

(Faster RCNN+ResNet101 network) to detect the number of grains

per spike of rice from rice spike images. They first extracted the

features and generated the feature maps using ResNet101, and then

used Faster RCNN for prediction. The results showed that among

the three types of captured images (the natural state, artificially

spread, and with the main axis removed), the detection accuracy for

the images with the main axis removed was 99.38% (Wu et al.,

2019). Deng et al. integrated the feature pyramid network into the

Faster R-CNN network and proposed a rice grain per panicle

measurement model for automatic recognition and counting of

grains on the main branches of rice panicles, the overall recognition

accuracy of the model was 99.4% (Deng et al., 2021).Gong et al.

designed a full convolutional network based on U-Net and

combined it with labeling for counting grains per panicle in rice,

which has an error rate within 5 percent (Gong and Fan, 2022).

Due to the disadvantages of manual counting of rice panicles

such as inefficiency, time-consuming and labor-intensive, research

on software for convenient and fast counting is an inevitable trend.

There are many researchers who have landed and transformed the

technology into convenient and fast counting software. For instant,

the P-TRAP software developed by Al-Tam et al. can analyze rice

panicle structure and grain traits, as well as the count of per panicle

(Al-Tam et al., 2013). Additionally, the PASTAR and PASTA,

developed by Ikeda et al. can automatically extract values for

length, number of branches, and number of grains from scanned
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panicle images (Ikeda et al., 2010). Deng et al. used the Cascade R-

CNNmethod embedded in a feature pyramid network to establish a

whole panicle grain detection (WPGD) model, and used the WPGD

model to develop a system for automatic counting of per panicle in

rice (Deng et al., 2022). Ma designed a hardware platform called the

‘grain-panicle integrated seed examiner,’ which uses a tablet

computer instead of an industrial camera and a host PC. This

platform can simultaneously measure the number of grains per

panicle and the plant traits (Ma, 2018). However, in the study

mentioned above, the mutual shading of rice panicles still affected

the accuracy of the counting results to some extent.

In this study, we used smartphones to take images of rice

panicles, while the CSRNet counting model (Li et al., 2018) based on

deep learning is improved and applied to the problem of counting

the number of grains per panicle in rice, and use curve fitting to

correct the prediction results for eliminating the effect caused by

shelter. On this basis, we developed the rice grain counting APP for

Android and RiceGrainCounter, a batch counting software based

on PC, to realize the rapid counting of rice grains per panicle.
2 Materials and methods

2.1 Materials

2.1.1 Image capture of rice panicles
The rice panicles in this study were mainly from Zhangping

City, Zhongshan, Putian City, and Xiapmen, Fuding City, China.

Rice panicles were boxed and brought to the laboratory for

photographs after being picked. The aim of this study was to

detect the number of grains per panicle quickly and lossless, so

no rice variety was specified. In order to verify the influence of light,

camera equipment, distance and image size on the results, different

phones were used in this study and do not set specific light source. A

total of 4000 rice panicle images were collected in this study.

In this work, images of rice panicles were taken using the

smartphone’s built-in camera. For photographing, the rice panicle

samples were placed on black background paper, and the camera

device was positioned 20-30 cm above the samples, parallel to the

horizontal plane. The images of the rice panicle samples were then

stored in.jpg format. In order to avoid incomplete capture due to

shading, which could affect the final count of the panicle grains, the

entire rice panicle was completely spread -out during shooting, and

the individual branch stalks were kept from touching each other as

much as possible (as shown in Figure 1). The shooting equipment

parameters and image parameters are shown in Table 1.

2.1.2 Image normalization processing
Since the images are taken with different phones, the image

quality varies, so to accelerate the convergence speed of network

training, the images need to be normalized before model training.

Image normalization refers to a series of standard processing

transformations of an image, so that it is transformed into an

image with a fixed standard form, the standard image is called a

normalized image.
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Many researchers used the mean (mean = [0.485,0.456,0.406])

and standard deviation (std = [0.229,0.224,0.225]) from the

ImageNet dataset to normalize the image. However, unlike the

Image Net dataset which has a single image background and target

object in this paper, the direct use of the mean and standard

deviation of the Image Net dataset may have a strong bias.

Therefore, in this paper, the algorithm proposed by Zou (Zou,

2022) is used to normalize the image, and the mean and standard

deviation of the rice panicle image are obtained as follows: mean=

[0.301, 0.294, 0.274], std= [0.189, 0.182, 0.163].
2.2 Methods

In this study, the NCSRNet model was proposed by improving

the CSRNet network model and applied to the study of grain count

per panicle in rice, and the specific technology roadmap is shown

in Figure 2.

2.2.1 Rice panicle density map
(1) Image annotation

To facilitate the application of this study, we developed a

concise image annotation software by ourselves, which is named

as PointMarker. The image annotated by PointMarker, the position

of the annotated panicles will be changed with the change of the

picture when scaling, which makes it possible to make different sizes
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of the picture not to have to be re-labeled after the uniform

resolution. There are three situations that need to be considered

when annotating the position of the panicles. First, when the panicle

is not covered, the annotation position is located in the center of the

panicle as much as possible; second, when the panicle is partially

covered, the annotation can be placed in the area where it is not

covered; third, as the panicle is severely covered, even the human

eye cannot be determined, the panicle will not be annotated. The

annotation process is shown in Figure 3. The information about the

location of the annotated panicles is stored in an Excel document,

and the annotated file is saved in the form of.xlsx in the same path

of the annotated image, with the same prefix name as that of the

annotated image.

(2) Algorithm for generating density map of rice panicle images

The counting model based on convolutional neural network has

two network input and output scheme configurations. The input of

one is the image and the output is the number of targets in the image;

the input of the other is the image and the output is the density map

and the number of targets in the image is estimated from the density

map. The second scheme was selected for this study, while the density

map of each rice panicle image was generated using the method of

Zhang et al. (Zhang et al., 2016). According to the generation method

of the density map proposed by Zhang et al., the formula for

calculating the density map is shown in Equation 1:

F(x) =o
N

i
d (x − xi) * Gsi

(x),       si = bdi (1)

Where, d (x − xi) is an incremental function representing there

is a panicle grain at pixel xi, o
N

i=1
d (x − xi) represents an image of a rice

panicle marked with N grains. Gsi
(x) is a normalized Gaussian

function which dynamically obtained extend parameter si by using

an adaptive Gaussian kernel method. b is a hyperparameter. di

represents the average distance from all neighbors to the rice grain

at pixel xi. Assuming that the rice grain at pixel xi has k neighbors,

the calculation formula is shown in Equation 2:
TABLE 1 Shooting equipment parameters and image parameters.

Mobile
phone brand

Camera
model

Resolution
Number
of images

HUAWEI PCT-AL10 3000×4000 246

HUAWEI SPN-AL00 1840×4000 674

HUAWEI TAS-AL00 3648×2736 257

HUAWEI COL-AL10 3456×4608 219

Vivo iQ00 Neo 855 4032×3024 676

Vivo Vivo x60t Prot 3060×4080 228

Realme
Realme X50
Pro 5G

4608×3456 564

Apple iPhone 13 3024×4032 369

Apple iPhone 13 pro 3024×4032 524

HONOR FNE-AN00 3072×4096 243

Total 4000
FIGURE 1

Rice panicle image. This illustration presents a rice panicle set
against a black background, viewed from a top-down angle. It
effectively highlights the overall structure of the rice panicle.
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di =
1
ko

k

j=1
dij (2)

In addition, the experimental results of Zhang et al. showed that

b = 0:3 gave the best results (Zhang et al., 2016), therefore, b = 0:3

is used in this paper. Figure 4 shows an example of the generated

density map.

2.2.2 NCSRNet model
As shown in the Figure 5, the CSRNet model uses the first 10

layers of the VGG-16 network as the front end and the dilated

convolution as the back end. This structure has the advantage of

both utilizing the stronger migration learning capability of the VGG

network to learn the feature information of the image, and using the

dilated convolution to expand the receptive field without increasing
Frontiers in Plant Science 04
the computational effort, maintaining the output resolution while

extracting deeper saliency information.

(1) Loss function

The loss function measures the extent to which the predicted

values differ from the actual data, and its generally used to measure

how well the model predicts.

Three common loss functions are as follows:

L(q) =
1
2No

N

i=1
Z(Xi; q) − ZGT

i

�� ��2 (3)

LC(q) =
1
No

N

i=1

Z(Xi; q) − ZGT
i

ZGT
i

����
����
2

(4)

LA(q) =
1
No

N

i=1
Z(Xi; q) − ZGT

i

�� �� (5)

In the above Equations 3–5, N is the number of images used to

train the model, Xi denotes the ith image in the training set, q
represents the parameters of the model, Z(Xi; q) is the total number

of panicles in the density map predicted by the network, and ZGT
i

indicates the true value of the number of panicles in the i th map.

Equations 3–5 are the Euclidean loss function, relative loss function,

and absolute loss function, respectively.

The distribution of grains in the rice panicle images in this study

has problems such as overlapping and occlusion, uneven sparse and

dense distribution areas, and differences in image scale. A single

Euclidean loss can cause the model to overly focus on high value

dense areas due to the square amplification effect, ignoring the

subtle errors in sparse areas. After adding relative loss, the scale

difference can be eliminated by calculating the ratio of error to true

value, allowing the model to equally focus on different density

regions. After adding absolute loss, it can reduce the interference of

noise samples (such as occlusion and overlap) on model training

and improve the model’s fault tolerance. Therefore, the loss

function in this paper adds relative loss and absolute loss on the

basis of the original Euclidean loss of CSRNet. The improved loss

function is shown in Equation 6:

Lloss = L(q) + aLC(q) + bLA(q) (6)
FIGURE 3

Marked process of rice panicle image. Red cross markers denote the
annotated points on the rice panicle image, with a corresponding
list on the right side detailing the coordinates of these
specific points.
FIGURE 2

The flow chart of technical procedure. The diagram outlines the sequential steps in the technical process, which encompass image acquisition,
normalization, annotation, density map generation, NCSRNet model training, and prediction correction.
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Where the a and b represent the balance factor, after a number

of experiments and taking into account the evaluation indicators, it

was determined that a = 0:1, b = 0:01.

(2) Model evaluation indicators
Frontiers in Plant Science 05
The model evaluation indicators are mainly used to assess the

generalization ability of the model (i.e., the performance of a trained

model in the validation set) and to optimize the model step-by-step.

The evaluation indicators used in this paper are Mean Absolute
FIGURE 4

Rice panicle and its density map (A) Panicle of rice image (B) Density map of rice panicle.
FIGURE 5

CSRNet model.
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Error (MAE), Mean Square Error (MSE), Root Mean Square Error

(RMSE) and Mean Absolute Percentage Error (MAPE). The

calculation formula is shown in Equations 7–10). The smaller the

value of each evaluation indicator is, the better the model trained by

the network is.

MAE = o
N
i=1 Ci − CGT

i

�� ��
N

(7)

MSE =
1
No

N
i=1 (Ci − CGT

i )2
�� �� (8)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(C

GT
i − Ci)

2

r
(9)

MAPE =
1
No

N
i=1

Ci − CGT
i

CGT
i

����
���� (10)

In Equations 7–10, N denotes the number of images in the

validation set, Ciindicates the number of panicles in the ith image

predicted by the model, and CGT
i represents the actual number of

panicles in the ith image.

2.2.3 Revision of predictions
Due to the mutual shading of the panicles, which resulted in the

existence of some panicles that were not labeled during manual

labeling, causing the counts of the generated true density map to

deviate from the original manual counts. To correct this error, the

labeled counts and manual counts were fitted using a first-order

linear curve, and the obtained first-order linear fitting curve is shown

in Equation 11, and the fitted curve graph is shown in Figure 6.

y = 1:0294x + 0:6069 (11)
Frontiers in Plant Science 06
In Figure 6, each blue circle represents the numerical

information of an image, the x-coordinate of the blue dot is the

labeled value, and the y-coordinate is the manually counted value.

The output is corrected using Equation 11. For data correction,

x is the model output and y is the final output.
2.3 Experimental environment and dataset
production

The network operates by configuring the Pytorch library with

Anaconda. A Graphics Processing Unit (GPU) is used to perform

accelerated computing. The specific experimental environment

configuration is shown in Table 2.

The acquired 4000 images and their corresponding density

maps are randomly divided into train set, test set and validation

set in the ratio of 8:1:1. Then the number of images in the train set,

test machine and validation set are 3200, 400 and 400 respectively.

The model is trained and tested using the train set and test set

respectively, and the validation set is used as the final test sample.

The distribution of images taken by each model of cell phone is

shown in Table 3.
2.4 Software development of NCSRNet
model

When the error rate of the NCSRNet model reaches the

expected effect, the APP for counting of grain number per panicle

based on Android and the batch count ing sof tware

RiceGrainCounter based on PC are developed respectively. The

APP can count one image at a time (the counting flow is shown in

Figure 7A). RiceGrainCounter can count one image or multiple

images (the counting flow is shown in Figure 7B).
3 Results

3.1 Behavior of the NCSRNet model during
training

Figure 8 displays the change in the loss value of the model

during the training process, which decreases as the number of

training rounds increases. Subsequently, the decrease in the loss

value becomes slower. After 80 epochs, the loss value remains stable
FIGURE 6

First order linear curve fitting. This graph represents the outcome of
first-order linear curve fitting where the x-axis corresponds to the
annotated values and the y-axis reflects manual counting results.
Data points are indicated by blue dots, while the fitted linear curve is
shown as a red line.
TABLE 2 Experimental environment configuration.

Parameter Value

Environment PyTorch 1.10.0, Python 3.9, Cuda 11.3

GPU RTX 3080 * 1

CPU 16-core Intel(R) Core(TM) i7-11700K @ 3.60GHz

Hard disk System disk:256 GB, Data disk:2TB
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in the range of 0.00015 to 0.00016. Therefore, training was

terminated at 100th epoch.
3.2 Performance of the NCSRNet model

The detection results of NCSRNet model are shown in Figure 9.

As can be seen in Figure 9, the model is able to accurately identify and

localize most of the panicles throughout the rice grain. Since the

overlapping panicles in the major branches of the entire rice panicle

image are small and often densely distributed, existing models of

counting in grain number per panicle which based on deep learning

are often unsatisfactory for identifying and detecting overlapping
Frontiers in Plant Science 07
small grains. However, the model in this study was able to accurately

detect most of the rice panicles under overlapping conditions.
3.3 Analysis of model assessment results

To further demonstrate the performance of the rice grain count

per panicle model for detecting panicles on the entire panicle

structure, we trained the CRSNet model using the same dataset.

Table 4 lists the values of the evaluation metrics of the two network

models on the validation set.

As can be seen from Table 4, the model in this study performs

lower in the mean value of each evaluation indicator compared to
TABLE 3 The detail of sample distribution.

Camera model Train set Test set Validation set Total

PCT-AL10 197 25 24 246

SPN-AL00 539 67 68 674

TAS-AL00 206 26 25 257

COL-AL10 175 22 22 219

iQ00 Neo 855 541 68 67 676

Vivo x60t Prot 183 23 22 228

realme X50 Pro 5G 451 56 57 564

iPhone 13 295 37 37 369

iPhone 13 pro 419 52 53 524

FNE-AN00 194 24 25 243

Total 3200 400 400 4000
FIGURE 7

Flow chart of rice panicle number counting. (A) The counting flow of APP (B) The counting flow of RiceGrainCounter. Rice panicle counting is
performed using an APP or the RiceGrainCounter software. With the APP, users can take photos or select images from their album and then view
results. Using RiceGrainCounter, users can import files or select multiple images from a folder for counting before viewing results.
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the CRSNet model. This may be attributed to the fact that when

training the network model, the sum of the Euclidean loss function,

the relative loss function, and the absolute loss function were used

as the loss function for model training in order to take into account

the different sparsities among panicles. The identification and

localization of heavily occluded panicles was enhanced by the

inclusion of relative and absolute losses.

In order to more visually demonstrate the detection

performance of the model, we used an additional 30 panicle

images for a closer validation of the model. The 30 panicle

images used are not part of the train set, test set, and validation

set. Their prediction results are shown in Table 5. Figure 10 shows

the prediction results of 2 images taken out randomly.

The data values in Table 5 reveal that the largest relative error

value is the image numbered 25, with an error value of 8.70%; the
Frontiers in Plant Science 08
smallest error value is the image numbered 29, with an error value

of 0.57%. From the results of this set of data, the purpose of accurate

and non-destructive detection was basically achieved. But when the

final output was corrected, the lack of consideration of varieties

resulted in different degrees of sparsity between the panicles in the

obtained images and an unbalanced number of image samples,

leading to a situation in which the predicted values were more than

the manually counted values (e.g., the data for the rice spikes

numbered 4, 7, 8, and 10-13 as well as 24, 27, and 30 in Table 4).
3.4 Ablation experiments

To evaluate the contributions of individual components of the

loss function within NCSRNet, we conducted ablation studies on

the dataset. The loss function of NCSRNet is composed of three

parts: Euclidean loss function, relative loss function and absolute

loss function. Multiple loss variants were constructed to

systematically analyze the impact of each loss function. The

results are showed in Table 6. The baseline loss function only

included Euclidean loss function. Variants were created by

incorporating either the relative loss function or absolute loss

function individually, followed by the loss function integrating

both components. From Table 6, after by adding relative loss, the

values of MAE, MSE, RMSE, and MAPE decreased from 5.8693 to

5.7614, from 9.6034 to 9.4171, from 2.4227 to 2.4003, and from

0.0435 to 0.0426, respectively, after by adding absolute loss, the

values of MAE, MSE, RMSE, and MAPE decreased from 5.8693 to

5.7273, from 9.6034 to9.4568, from 2.4227 to 2.3932, and from

0.0435 to 0.0424, respectively. The complete loss function, which

integrated both relative loss and absolute loss, achieved the

minimum values of MAE, MSE, RMSE, and MAPE, the values

were 4.9659, 7.8328, 2.2284, 0.0346, respectively. These results

indicate that after adding relative loss and absolute loss, the

values of the four evaluation indicators decreased significantly.
FIGURE 8

The changes of loss values during training process of NCSRNet
model. As the number of epochs increases, the loss values gradually
decrease to stabilize around approximately 0.00015.
FIGURE 9

Detection results of the model (A) Truth density map (B) Generated density map.
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These results also indicate the synergistic effect of collaborating with

relative loss and absolute loss, which collectively enhance the

model’s feature extraction.

The ablation study shows that for the rice grain count per

panicle problem, adding relative loss and absolute loss on the

baseline loss function can improve the robustness and

generalization of the model in different scenarios by focusing on

learning samples with large prediction errors.
3.5 Software of rice grain count per panicle

3.5.1 APP of rice grain count per panicle
The above model was further developed into an Android-based

APP, which can take pictures of rice panicles from a cell phone

album or by using the camera function of the cell phone, as shown

in Figure 11A. The result interface is shown in Figure 11B, and the

interface shows the original picture of the rice panicles, the density

map, and the number of grains in the panicles.

3.5.2 The batch software for counting grains per
panicle in rice- RiceGrainCounter

The rice grain count per panicle APP facilitates rapid seed

testing in the field, but it can only target one rice panicle at a time. In

order to realize batch seed testing, this study developed

RiceGrainCounter, a PC-based batch counting software, using a

trained model. The software not only can count and analyze a single

image, but also can analyze all the images in a folder in a batch.

RiceGrainCounter’s File menu has three submenus, namely From

Image, From Directory, and Export Data. The functions of From

Image are to import an image to be analyzed, From Directory is to

import images in a file to be analyzed, and Export Data is to export

the analyzed data. The main interface of the software is shown in

Figure 12. Below the File menu in the main interface are shown the

currently analyzed images and their corresponding density maps,

and the two buttons “analyse” and “analyse all” in the red box on

the right are used to analyze a single image and all the images in a

folder, respectively. The drop-down box in the blue box is used to

view the analyzed images. The green frame displays information

such as the name of the image, the number of grains detected, and

the process of analysis. It is experimentally verified that the software

completes the detection of one spike in 10 seconds on average,

which basically meets the requirements of batch processing.
4 Discussion

This study focuses on solving the rice grain counting per panicle

problem. In choosing the research method, this study introduces the

CRSNet model used for crowd counting problem into the rice grain

counting per panicle problem, and improves the original loss

function of the CRSNet model, as well as corrects the data for the
TABLE 4 Values of evaluation index.

Model MAE MSE RMSE MAPE

CRSNet 5.8693 9.6304 2.4227 0.0435

NCRSNet 4.9659 7.8328 2.2284 0.0346
TABLE 5 The further verified results of NCSRNet.

No.
Manual
counting

NSCRNet
forecast

Relative
error

1 109 108 0.92%

2 199 191 4.02%

3 133 132 0.75%

4 205 208 1.46%

5 172 165 4.07%

6 276 268 2.90%

7 206 210 1.94%

8 140 145 3.57%

9 187 180 3.74%

10 169 173 2.37%

11 104 109 4.81%

12 187 193 3.21%

13 127 133 4.72%

14 165 154 6.67%

15 160 154 3.75%

16 250 229 8.40%

17 343 334 2.62%

18 226 215 4.87%

19 210 202 3.81%

20 186 181 2.69%

21 225 217 3.56%

22 164 154 6.10%

23 166 159 4.22%

24 98 104 6.12%

25 276 252 8.70%

26 183 171 6.56%

27 98 99 1.02%

28 220 215 2.27%

29 174 173 0.57%

30 113 118 4.42%

Mean error 3.83%
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predicted results. The results show that the model trained in this

study can accurately identify and localize the rice panicles in the

image, and obtain precise counting results. In addition, we have also

developed an APP for rice grain counting per panicle based on

Android and RiceGrainCounter software based on PC on the basis

of the above work.

The improved CSRNet model is not compared with other state-

of-the-art methods in this paper. There are some reasons to
Frontiers in Plant Science 10
consider: first, in the research of rice grain count pre panicle

problem, most studies currently use object detection models

(including one-stage detection algorithms such as YOLO (Sun

et al., 2024), and two-stage detection algorithms such as Faster R-

CNN (Deng et al., 2021; Wu et al., 2019), Cascade R-CNN (Deng

et al., 2022), Mask R-CNN (Kong and Chen, 2021), etc.). The object

detection model takes the original image as input and outputs as

bounding box or point coordinates. The improved CSRNet model
FIGURE 10

Detection results of the model (A) The origin image (B) Truth density map (C) Generated density map.
TABLE 6 Ablation studies on each component of loss function.

No.
Components MAE MSE RMSE MAPE

Euclidean loss Relative loss Absolute loss

1 ✓ × × 5.8693 9.6304 2.4227 0.0435

2 ✓ ✓ × 5.7614 9.4171 2.4003 0.0426

3 ✓ × ✓ 5.7273 9.4568 2.3932 0.0424

4 ✓ ✓ ✓ 4.9659 7.8328 2.2284 0.0346
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takes density maps as input and directly regresses count values.

There are essential differences in the input and output forms

between the two methods, and direct comparison lacks fairness.

Second, Due to the lack of a public dataset for rice panicle images,

researchers had to build their own dataset. For dataset annotation,

object detection requires bounding box/point annotation, while

density maps require point annotation and Gaussian kernel

generation. The difference in annotation forms leads to the

inability to fairly reproduce the detection model, resulting in

unreliable comparability of the results. In addition, although this

study did not compare it with object detection methods, comparing

it with object detection methods is our next research focus. If there

is a public dataset released, further exploration will be conducted.

Despite the fact that this study has made some progress in the

problem of grain counting per panicle in rice, the following

problems still exist:
Fron
1. This study requires that rice panicles picked in the field be

brought back to the laboratory or photographed in the field
tiers in Plant Science 11
and then tested for counting, and does not realize the

function of taking photos and counting directly on the

field plants. The realization of taking photos and giving the

number of grains per panicle directly on the rice panicles in

the field is an important next step.

2. Different rice varieties have different inter-panicles

sparseness, but this study did not differentiate between

rice varieties when obtaining the materials, which resulted

in larger errors for panicles that were heavily adhered and

shaded, and in data corrections that would result in larger

predicted values than manually counted values.

3. There are certain limitations when it comes to taking

images. For example, the background must be black and

the rice panicles need to be spread out in order to be

photographed, which affects the speed of taking pictures

and results in some of the panicles drying up because they

are not photographed in time. Quick and efficient shooting

methods are therefore still a problem that needs to

be solved.
FIGURE 11

Interface of counting of grains per panicle in rice APP (A) Initial interface (B) Result interface.
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4. While using the rice grain counting per panicle APP and

the RiceGrainCounter software for PC, users are required

to spread out each branch stalk of the rice panicle as much

as possible when taking pictures of the panicle, so as to

expose all the grains in the panicle. However, this study still

spreads the rice panicle manually, which is similar to most

of the current studies and does not address how to spread

the panicle quickly, so looking for a fast and effective

spreading method is the next research direction. In

addition, the counting error for very heavily shaded rice

panicles is large, and finding an effective way to eliminate

this error is also the next step.

5. In this work, only the number of grains counted per panicle

of rice was investigated, and the length of the main axis of

the panicle, as well as other characteristics such as the

number of branching stalks, were not calculated. For the

calculation of the length of the main axis, AL-Tam et al.

utilized spikes to fix the ends of the main axis to determine

the starting position of the main axis before taking

photographs, which added extra workload to the users of

the software and was not suitable for high-throughput

measurements (Al-Tam et al., 2013). In this study, when

rice panicles were spread out and photographed in their

natural state, it was found that the spindles would be bent

to varying degrees, and the determination of the starting

point of the spindles was also a major problem. Quickly
tiers in Plant Science 12
obtaining the starting point of the main axis of the rice

panicle from the image and accurately calculating the

length of the main axis of the rice panicle with different

degrees of bending are the focus of the next stage

of research.
Currently, most of the yield estimation of rice, wheat and maize

is focused on the method of measuring the number of spikes per

unit area, and most of them have achieved certain research results

(Lu et al., 2017; Hasan et al., 2019; Bao et al., 2020; Yang et al., 2022;

Yang, 2020), but the number of grains per panicle is also an

important factor in determining the yield, and influences the

choice of breeding. In this study, we mainly improved the loss

function. This improvement enhances the generalization and

robustness of the model. In future research, the model can be

deployed on agricultural embedded devices (such as UAV and

agricultural sensors) for real-time counting of rice panicles in fields.

After collecting images of different growth stages of rice panicles

(heading stage, grain filling stage, maturity stage), this model can be

used to calculate the number of grains per panicle at each growth

stage, providing data support for the intrinsic connections between

rice growth stages. At the same time, it also provides technical

support for specific issues related to grain counting in other grains

(such as wheat, corn, etc.) in the future, achieving accurate and

rapid prediction, and providing guidance for effective evaluation of

breeding. In addition, it also provides a new approach for the
FIGURE 12

RiceGrainCounter main interface. On the left, the original image and its corresponding density map are displayed, while the right side shows the
image name, path, and counting result.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1494564
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2025.1494564
detection, localization, and counting of dense objects. The next step

of this study is to collect images of rice panicles from different

varieties in various countries and study the accuracy of the model in

counting grains in different varieties of rice panicles. Adjust the

model based on the initial data to achieve accurate and rapid

counting of rice grains in each variety.
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