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Rapid and accurate detection of
peanut pod appearance quality
based on lightweight and
improved YOLOv5_SSE model
Zhixia Liu, Xilin Zhong, Chunyu Wang, Guozhen Wu,
Fengyu He, Jing Wang* and Dexu Yang*

College of Engineering, Shenyang Agricultural University, Shenyang, Liaoning, China
Introduction: With the escalating demands for agricultural product quality in

modern agriculture, peanuts, as a crucial economic crop, have their pod

appearance quality directly influencing market value and consumer

acceptance. Traditionally, the visual inspection of peanut pod appearance

quality relies heavily on manual labor, which is not only labor-intensive and

inefficient but also susceptible to subjective judgments from inspectors, thereby

compromising the consistency and accuracy of inspection outcomes.

Consequently, the development of a rapid, accurate, and automated

inspection system holds significant importance for enhancing production

efficiency and quality control in the peanut industry.

Methods: This study introduces the optimization and iteration of the YOLOv5s

model, aiming to swiftly and precisely identify high-quality peanuts, peanuts with

mechanical damage, moldy peanuts, and germinated peanuts. The

CSPDarkNet53 network of the YOLOv5s model was substituted with the

ShuffleNetv2 backbone network to reduce the model’s weight. Various

attention mechanisms were explored for integration and substitution with the

backbone network to enhance model performance. Furthermore, the

substitution of various loss functions was investigated, with the Focal-EIoU loss

function employed as the regression loss term for predicting bounding boxes,

thereby improving inference accuracy.

Results: Compared to the YOLOv5s network model, SSE-YOLOv5s boasts a

mere 6.7% of the original model’s parameters, 7.8% of the computation, and an

FPS rate 115. 1% higher. Its weight size is amere 7.6% of the original model’s, while

the detection accuracy and mean average precision (mAP) reach 98.3% and

99.3%, respectively, representing improvements of 1.6 and 0.7 percentage points

over the original YOLOv5s model.

Discussion: The results underscore the superiority of the SSE-YOLOv5s model,

which achieves a maximum mAP of 99.3% with a minimal model size of 1. 1MB

and a peak FPS of 192.3. This optimized network model excels in rapidly,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1494688/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1494688/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1494688/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1494688/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1494688&domain=pdf&date_stamp=2025-02-20
mailto:wj77@syau.edu.cn
mailto:yangdexu@syau.edu.cn
https://doi.org/10.3389/fpls.2025.1494688
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1494688
https://www.frontiersin.org/journals/plant-science


Liu et al. 10.3389/fpls.2025.1494688

Frontiers in Plant Science
efficiently, and accurately detecting the appearance quality of mixed multi-target

peanut pods, making it suitable for deployment on embedded devices. This study

provides an essential reference for multi-target appearance quality inspection of

peanut pods.
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1 Introduction
Peanut, an essential oil crop, finds widespread applications in

daily life and industries (Sun et al., 2022). However, during

harvesting, transportation, and storage, peanuts are highly

susceptible to damage, mold, and sprouting, thereby compromising

their quality and value (Zhao et al., 2023). Early peanut sorting largely

relied on manual labor, which is time-consuming, labor-intensive,

and inefficient. Nowadays, advancements in computer vision and

machine learning technologies have presented novel solutions for

real-time and automated inspection of agricultural product quality

(El-Mesery et al., 2019). Traditional machine learning approaches

have garnered valuable experiences in quality inspection and grading

of agricultural products, including image segmentation (e.g., K-

means clustering (Jia et al., 2023) and thresholding methods (He

et al., 2023)), feature detection (e.g., SURF (Saraswat et al., 2024),

KAZE (Qiu et al., 2021), and MSER (Li et al., 2020)), and pattern

recognition (e.g., KNN (Gao et al., 2022), SVM (Cao et al., 2023), and

BP neural networks (He et al., 2023)). Nevertheless, due to the

complexity of image preprocessing and feature extraction, these

methods often yield suboptimal detection performance.

Deep learning can automatically learn hierarchical features from

different appearance representation regions, eliminating the need for

manual feature extraction and classifier design, and exhibiting

remarkable generalization and robustness. The utilization of

Convolutional Neural Networks (CNNs) for detecting crop

appearance quality has emerged as a new hotspot in smart

agriculture research. Yadav et al. (2022) proposed an improved

VGG-16 model and developed SoftMax for classification, achieving

an average accuracy of 99.84% in detecting citrus peel diseases. Dogra

et al. (2023) developed a CNN-VGG19 model for identifying rice

brown spot disease, leveraging transfer learning to achieve a maximum

accuracy of 93.0%. Si et al. (2023) introduced amethod based onweight

contrast transfer and MobileNetV3 for detecting surface defects on

apples, achieving a recognition accuracy of 94.47%. However, these

methods are primarily suited for simple classification tasks. For

complex detection tasks, the mainstream approach currently in use is

YOLO. Su et al. (2022) proposed an SE-YOLOv3-MobileNetV1

network model for detecting four tomato maturity stages, achieving

an average accuracy of 97.5%. Wang et al. (2022) presented an

improved YOLOv4-Tiny algorithm for accurate and rapid
02
recognition of sugarcane stem nodes, with an average precision of

99. 11%. Wang et al. (2023) designed a novel method based on

modified YOLOv5 for grading kiwifruit defects, incorporating SPD-

Conv and DW-Conv modules and using EIOU as the loss function.

Results showed that the improved model reduced training loss by

0.013, achieved an overall detection accuracy of 97.7%, and required 8.0

ms for detection. Zhan et al. (2023) proposed the YOLOv5s_AMM

model, replacing the original C3 network in YOLOv5s with the M3-

Net from MobileNetV3, achieving rapid and accurate detection of

walnut appearance quality with amaximum average detection accuracy

of 80.78%, a reduced model size of 20.9 MB, and a detection speed of

40.42 frames per second. Zhang et al. (2023) introduced a YOLOv7-

based neural network model for inflorescence recognition,

incorporating an Efficient Multi-scale Attention Mechanism (EMA)

and a parallel processing strategy to achieve cross-channel feature

interaction, maximizing the retention of pixel-level features and

positionalinformation on feature maps. Under varying time periods,

distances, and weather conditions, the average detection accuracy and

recall rate for inflorescence detection reached 91.4% and 89.8%,

respectively. Uddin et al. (2024) employed an improved YOLOv8 to

design the Cauli-Detmodel for automatic classification and localization

of cauliflower diseases, demonstrating that the modified YOLOv8

model achieved an average precision of 91. 1% on the test dataset.

The above represents recent applications of machine learning and

deep learning in agricultural product quality inspection. Notably, deep

learning methods have also made significant contributions to peanut

quality inspection. Wang et al. (2023) proposed a multi-spectral

system combined with an improved Faster RCNN method for

detecting peanut defects (mildew, mechanical damage, and

germinated seeds). The results indicated that all evaluation metrics

were improved compared to the original network, with the average

detection accuracy (mAP) reaching 99.97% when using the VGG16

backbone network. Yang et al. (2023) introduced a peanut pod quality

detection algorithm (PQDA) based on a modified ResNet

convolutional neural network. They determined ResNet18 as the

optimal backbone feature extraction network for model training and

incorporated the KRSNet module, CSPNet module, and

Convolutional Block Attention Module (CBAM) into the algorithm.

The results showed that the improved PQDA model achieved an

accuracy of 98. 1% with a parameter size of 32.63 MB. Wang et al.

(2022) proposed the CG-SqueezeNet model for peanut pod quality

grading. By introducing a coordinated attention module into the
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SqueezeNet model and adopting a gradient-focused optimization

algorithm, the CG-SqueezeNet model achieved a detection accuracy

of 97.83%with a parameter memory of 2.52MB. Yang andQin (2022)

conducted preprocessing on RGB images of peanut kernels, extracted

six color feature values, constructed a feature vector combining color

and texture, and then classified peanut kernels using BP neural

networks and SVM classifiers. The results revealed that the BP

neural network achieved an overall recognition accuracy of 96.67%,

while the SVM classifier achieved 97.22%. Zhang et al. (2020)

proposed a peanut quality inspection method based on machine

vision and an adaptive convolutional neural network to identify

common defects such as mold, breakage, and shriveling. To

enhance the model’s generalization ability, a transfer learning

algorithm was introduced. The results showed that this method

achieved an average recognition rate of 99.7% for common peanut

defects. Jiang et al. (2024) presented a terahertz wave imaging system

using a convolutional neural network (CNN) machine learning

approach for identifying standard, moldy, defective, dried, and

germinated peanut seeds. The average detection time was 2.2

seconds, with a recognition accuracy of 98.7%. Lin et al. (2022)

combined an improved YOLOv5s, DeepSort, and OpenCV

programs to propose a real-time video counting model for peanuts.

The results demonstrated an accuracy of 98.08%.

As aforementioned, numerous scholars have proposed highly

innovative ideas and methods in the field of agricultural product

quality inspection, which have been successfully applied in

agricultural production, yielding remarkable results. However, there

remains room for further improvement in peanut quality inspection,

particularly in addressing challenges such as the small size of moldy

peanut targets and overlapping during detection. Many existing

methods achieve high detection accuracy but come with significant

computational costs, or vice versa. This study aims to develop a model

that combines high detection precision with low parameter counts. It

endeavors to extract peanut appearance quality feature information

from various angles and structures, leveraging different feature

representations. By fusing feature structures that embody distinct

semantics, the study seeks to enhance the detection quality of peanut

pod appearance. The refined model has undergone continuous

comparative experiments to achieve the desired performance.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Image acquisition

The experiments were conducted in the Engineering

Foundation Laboratory at Shenyang Agricultural University,

Shenyang, Liaoning Province, China. Three types of peanut

samples (Tieyinhua No.1, Qinghua 308, and Nihon Dou) were

collected from the Tieling Academy of Agricultural Sciences,

Liaoning Province. Image acquisition was performed between

9:00 AM and 6:00 PM from March 10th to March 15th, 2024. As

depicted in Figure 1, the image acquisition setup consisted of a dark

box enclosure, lighting sources, a camera, a camera mount, a

conveyor belt, an operation platform, and a Raspberry Pi. The

camera (Webcam) featured 2 megapixels with a maximum

resolution of 1280×720, capturing images in JPEG format. The

conveyor belt had overall dimensions of 500×100×73 mm, operated

with an adapter voltage of 110-230V, and offered a speed range

from 1.8 cm/s (slowest) to 7.6 cm/s (fastest). The Raspberry Pi 4B

employed a Broadcom BCM2711 SOC, powered by a 64-bit 1.5

GHz quad-core CPU. The camera was securely mounted at a height

of 150 mm above the desktop, while the light sources were

positioned 220 mm above the desktop. All images were captured

under uniform conditions, including consistent camera height, even

light source brightness, and a standardized background. A total of

1600 images were acquired, with 320 images captured daily.
2.2 Image data augmentation

Using Python software, the 1600 original images underwent

image data augmentation, resulting in an expansion to 8000 images

through techniques such as Gaussian noise, salt-and-pepper noise,

brightness reduction, and brightness enhancement. These images

were then sliced and segmented into uniform-sized images of 640

pixels × 640 pixels, as depicted in Figure 2. Annotation was performed

using the LabelImg tool, generating VOC-formatted.xml files, which

were subsequently converted into YOLO-formatted.txt files. Finally,

the annotated images were randomly divided into a training set of
FIGURE 1

Illustration of the (A) acquisition equipment (B) image display. 1-Dark Box Enclosure, 2- Lighting Sources, 3- Camera, 4- Camera Mount, 5-
Conveyor Belt, 6- Operation Platform, 7- Raspberry Pi.
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5600 images, a validation set of 1600 images, and a test set of 800

images, according to a 7:2:1 ratio.
2.3 YOLOv5 network model and
optimized architecture

2.3.1 YOLOv5 model
YOLOv5, compared to previous YOLO series object detection

models, places greater emphasis on small object detection while

maintaining high accuracy and speed. YOLOv5 offers a total of five

versions, ranging from smallest to largest in model size: YOLOv5n,

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. These models

differ in width and depth, enabling YOLOv5 to adapt to various

datasets and facilitating user selection.

Table 1 provides a comparison of detection accuracy, model size,

and detection performance among four different YOLOv5 models. In

terms of detection accuracy, YOLOv5s exhibits a slightly lower

precision (P) compared to YOLOv5m (by 0.06%), YOLOv5l (by

1.5%), and YOLOv5x (by 1.8%). However, when considering model

size, YOLOv5s stands out due to its compact size of 16.3 MB,

significantly smaller than YOLOv5m, offering a reduction of 34.3

MB. This size advantage makes YOLOv5s an economically efficient

choice, particularly crucial for embedded devices with storage

constraints. In terms of detection speed, YOLOv5s outperforms

other models, processing 93.17 more frames per second (FPS) than

YOLOv5m, 105.35 more FPS than YOLOv5l, and 112.96 more FPS

than YOLOv5x. YOLOv5s’ superior inference speed positions it as an

excellent choice for real-time detection scenarios and applications

requiring quick responses. Given YOLOv5s’ emphasis on low-latency

and cost-effective deployment for lightweight multi-object detection
Frontiers in Plant Science 04
within Peanut pods, it presents a compelling proposition with a

detection accuracy of 97.7%, a model size of 14.4 MB, and fast

detection speed.

YOLOv5 is an object detection algorithm, whose model

architecture primarily comprises an input stage, a Backbone network,

a Neck network, an output stage, and an activation function. The input

stage, which primarily facilitates image preprocessing, incorporates

Mosaic image enhancement, adaptive anchor box calculation, and

adaptive image resizing. The Backbone layer, composed mainly of the

CSPResNet53 (Bochkovskiy et al., 2020) structure, is responsible for

feature extraction. YOLOv5 employs two distinct Neck network

structures: SPPF (Spatial Pyramid Pooling Fast) (He et al., 2014) and

PAN (Path Aggregation Network) (Jiang et al., 2019). The SPPF

structure enhances the model’s perception capability and scale

invariance, while the PAN structure strengthens the fusion of multi-

scale features. The output stage of YOLOv5 primarily consists of

prediction boxes, where each box comprises confidence, class

probabilities, and bounding box coordinates. YOLOv5 utilizes anchor

boxes in the output layer to predict the position and size of object

bounding boxes, while the softmax function is employed to calculate

class probabilities for each prediction corresponding to an anchor box.

Mish, an activation function that serves as a substitute for ReLU, is used

in YOLOv5 to enhance model performance. The architecture of the

YOLOv5 model is illustrated in Figure 3.
2.3.2 ShuffleNetv2 lightweight backbone network
To achieve a lightweight network architecture for enhancing

YOLOv5s in detecting the external quality of peanut pods,

ShuffleNet v2 is adopted as the backbone network. ShuffleNet v2

(Ma et al., 2018), proposed by Megvii in July 2018, strikes a balance
TABLE 1 Comparison of performance among different YOLOv5 models.

Model P(%) R(%) mAP0.5(%) FPS(.s-1) Model Size(MB) FLOPs(G) Parameters

YOLOv5s 96.7 95.4 97.7 166.70 14.4 16.3 7074330

YOLOv5m 96.7 96.2 98.3 73.53 40.5 50.6 21072570

YOLOv5l 98.2 98.4 99.2 61.35 89.4 114.6 46652890

YOLOv5x 98.3 98.5 99.5 53.74 167 217.9 87271290
FIGURE 2

Data augmentation images. (A) Original Image (B) Gaussian Noise (C) Salt-and-Pepper Noise (D) Brightness Reduction (E) Brightness Enhancement.
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between speed and accuracy. Distinct from ShuffleNet v1 (Zhang

et al., 2018), ShuffleNet v2 adheres to the G1-G4 guidelines as

closely as possible while designing an efficient network that excels in

both speed and accuracy.

The fundamental block of ShuffleNet v2, as depicted in

Figure 4A, employs channel split (Weng et al., 2019) to divide the

input feature maps into two branches with equal channel numbers
Frontiers in Plant Science 05
along the channel dimension. The left branch serves as an identity

mapping to reduce network fragmentation, while the right branch

comprises three convolutions with identical channel numbers,

ensuring that the input and output channels remain the same. A

Concat operation is then performed on these two branches,

resulting in output feature maps with the same channel count as

the original input. Channel shuffle is utilized to facilitate
FIGURE 4

(A) Basic Block of ShuffleNet v2 (B) Spatial Downsampling Module.
FIGURE 3

The architecture of the YOLOv5 model.
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information exchange between the two branches. The spatial

downsampling module (He et al., 2016), illustrated in Figure 4B,

eliminates channel split and utilizes the original feature maps for

both branches. By modifying the stride of the convolutional units to

2, the concatenated feature maps are halved in size while doubling

the channel count.
2.3.3 SE attention mechanism
SE Net (Hu et al., 2020) (Squeeze-and-Excitation Networks)

represents a channel attention mechanism that imposes weights on

different channel features through a learning-based approach at the

channel level. A higher weight indicates greater relevance, assisting

the model in capturing the significance of each channel,

emphasizing useful information while ignoring irrelevant details,

thereby enhancing the accuracy of detection outcomes. The SE

network initially employs a global information embedding

(Squeeze) operation, as illustrated in Figure 5, to perform global

pooling on the original 3D feature maps of size C×W×H. This

compression function Fsq sequentially traverses the height and

width of each feature map. Consequently, the compression

calculation can be formulated as compressing each 2D feature

channel (W×H) into a single real number along the spatial

dimension, with the output dimension matching the number of

input feature channels, yielding a feature map with a global

receptive field of 1×1×C, as expressed in Equation 1.

Fsq(uc) = zc =
1

H �Wo
H

i=1
o
W

j=1
uc(i, j) (1)

In the equation, Fsq represents the global average pooling

operation applied across channels; uc denotes the c-th 2D matrix

of the 3D feature map u; Zc is the c-th element of Z; andW×H refers

to the dimensions of the 2D feature channel.

The second step is the adaptive recalibration (Excitation), where

the module consists of two sequentially connected fully connected

neural networks. It employs a sigmoid function to generate weights

for each feature channel, signifying the correlations among various

feature channels, as calculated in Equation 2.
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Fex(z,W) = sigmoid½W2 � Re LU(W1z)� (2)

In the equation, Fex represents the adaptive recalibration

operation; W1 and W2 denote the linear layers; z is the feature

map after the Squeeze operation.

The final Scale operation assigns weights to each of the c

channels, accomplishing adaptive recalibration of the original

features in the channel dimension. This procedure enhances

salient features while attenuating less critical ones, resulting in

varying levels of importance across individual channels. This, in

turn, enhances the directivity of the extracted features, yielding the

final feature map as presented in Equation 3.

Fscale(uc, sc) = ~xc = scuc (3)

In the equation, Fscale represents the channel-wise weighting of

the weights; ~xleads to the final output; sc denotes the channel-

specific weight.

The application of the SE Net attention mechanism can, to a

certain extent, compensate for the loss in detection accuracy incurred

by lightweight feature extraction networks. The attention mechanism

enhances the model’s sensitivity to targets, enabling it to disregard

background features and improve recognition accuracy.

2.3.4 Loss function
The loss function measures the discrepancy between the

predicted results and the true labels, with a smaller value

indicating a closer prediction to the actual label. Given the high

similarity between peanut pods and soil clumps, particularly the

inaccurate localization of small targets, the Focal-EIoU (Lin et al.,

2020) boundary box regression loss function is introduced to

enhance the model’s localization capability. A schematic diagram

of the loss function is presented in Figure 6. The EIoU (Efficient

Intersection over Union) (Lin et al., 2020) algorithm ingeniously

balances the contribution of high- and low-quality samples to the

loss function by incorporating positional information and

redesigning the calculation of penalty terms. This innovation not

only effectively reduces the likelihood of free transformation of

predicted bounding boxes during training but also guides the
FIGURE 5

Basic structure of the SE module.
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detection boxes to approach the true target boxes with more

precision and rationality, thereby significantly enhancing the

regression accuracy in object detection tasks. The EIoU loss

function, denoted as LEIOU, is defined as follows:

LEIOU =   LIOU + Ldis + Lasp

             = 1 − IOU + r2(b,bgt )
(wc)2+(hc)2

+ r2(w,wgt )
(wc)2

+ r2(h,hgt )
(hc)2

(4)

In the equation, LEIOU represents the EIoU loss function; LIOU

denotes the overlap loss between the predicted bounding box and the

ground truth box; Ldis represents the center distance loss between the

predicted bounding box and the ground truth box; Lasp represents

the width and height loss between the predicted bounding box and

the ground truth box; hC and wC are the width and height of the

smallest enclosing rectangle that contains both the predicted and

ground truth boxes; b represents the center coordinates of the

predicted bounding box; bgt represents the center coordinates of

the ground truth box; h and w are the width and height of the

predicted bounding box, respectively; and wgt and hgt are the width

and height of the ground truth box, respectively.
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In the context of bounding box regression, high-quality anchors

are significantly outnumbered by low-quality ones, posing a

detrimental effect on the training process. Consequently, there is

a pressing need to investigate strategies that can amplify the

influence of high-quality anchors. To direct the EIoU loss

function towards greater emphasis on high-quality samples, we

propose the Focal-EIoU Loss, denoted as LFocal-EIoU, which is

defined as follows:

LFocal−EIOU = IOUYLEIOU (5)

In the equation,g=0.5.

2.3.5 Improving the network
2.3.5.1 Architecture of YOLOv5

In this study, a YOLOv5-based architecture was established as

the foundation for model improvement, aiming to address issues

related to accuracy, model size, and detection speed, thereby

developing a more suitable model for detecting peanut pod

categories during the primary processing stage. The overall

enhanced network structure is illustrated in Figure 7. Within this

model refinement, the CSPDarkNet53 network of the original

YOLOv5 was selected to be replaced by the ShuffleNetv2

backbone network. This alteration was undertaken to reduce

model size while ensuring a lightweight and efficient design.

Furthermore, the Convolutional Attention Module, SE Net

(Squeeze-and-Excitation Networks), was introduced into the

backbone layers to compensate for any loss in detection accuracy

incurred by the lightweight feature extraction network. Lastly, the

Focal-EIoU loss function was adopted as the regression loss metric

for bounding box predictions, enhancing inference accuracy. This

adjustment was tailored to improve the input-specific data

distribution, ultimately strengthening feature detection across

varying image scales.
FIGURE 7

Improved network architecture of YOLOv5.
��b bgthhC hgt

wgt

w

wC

A:Anchor Box

B: Target Box

C: The Minimum Enclosing

Box of A,B

b: Central point of box

w:Width of box

h: Height of box

|C|: Area of C.

FIGURE 6

Schematic diagram of the loss function.
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3 Results

3.1 Model specifications

The computer specifications include an Intel Core i7-12700F

Central Processing Unit operating at a frequency of 2.10 GHz. It is

equipped with 32GB of RAM and an NVIDIA GeForce RTX 3060

Ti graphics card, featuring 8GB of dedicated video memory. The

development environment runs on Windows 10 operating system,

accompanied by the PyTorch deep learning framework, PyCharm

IDE, Python 3.8 configuration, and a Raspberry Pi 4B device.

Table 2 provides a detailed overview of the model training

specifications. Commencing with an initial learning rate of 0.01, the

learning rate is subsequently reduced using a cosine annealing

schedule. The neural network parameters are optimized via

Stochastic Gradient Descent (SGD) with a momentum parameter

set to 0.937 and a weight decay factor of 0.0005.

Each training batch contains 16 images, and the training process

spans 100 epochs, with input images resized to 640 × 640 pixels.
3.2 Evaluation metrics

The selection of Precision (P), Recall (R), F1 Score, and Mean

Average Precision (mAP) as evaluation metrics for assessing the

accuracy of object detection is based on the following calculation

formulas, respectively:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

F1 = 2� PR
P + R

(8)

mAP =
1
No

N

i=1

Z 1

0
pi(R)dR (9)

Wherein, TP (true positive), FP (false positive), and FN (false

negative) represent the number of correctly predicted, falsely

predicted, and missed peanut pod targets, respectively; N denotes

the number of detection categories, which is 5 in this study; pi(R)

represents the PR curve for each category plotted using precision and

recall. The Intersection over Union (IoU) is used to determine the

closeness between the predicted bounding box and the ground truth

box. When the IoU between the predicted box and the ground truth

box is greater than 0.5, the detection result is considered correct, and

the resulting mAP value is denoted as mAP0.5. The complexity of the

model is represented by the number of parameters and floating-point

operations per second (FLOPs), while the detection speed of the

model is evaluated using frames per second (FPS).
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3.3 Experimental results of the SSE-
YOLOv5 Model

The experimental results of the SSE-YOLOv5 model are

presented in Table 3. It can be observed that the improved

YOLOv5 model achieves mean average precision (mAP0.5) of

99.6%, 99.6%, 99.5%, 98.6%, and 99.2% for the five categories of

Good, Loss, Germinant, Moldy, and Soil, respectively. Notably, the

highest average detection accuracy is achieved for Good and Loss

categories, with all five categories demonstrating over 95% detection

accuracy. This indicates that the SSE-YOLOv5 model exhibits high

detection accuracy for the visual quality assessment of peanut pods

and can be effectively utilized for this purpose.

3.4 Results of ablation experiments

To specifically verify the impact of each improvement on the

network model, a detailed ablation study was conducted on the

feasibility and effectiveness of ShuffleNetv2 lightweight network, SE

attention mechanism, and Focal-EIoU loss function. The results of the

lightweight network ablation experiments are presented in Table 4.

Replacing the backbone of the original YOLOv5s with the

ShuffleNetv2 lightweight network resulted in a 1.4% decrease in

mAP0.5 compared to the original YOLOv5s. Although the detection

accuracy was lower, it demonstrated that ShuffleNetv2 possesses a

certain degree of feature extraction capability. By introducing

depthwise separable convolutions, a significant reduction in network

parameters and computational complexity was achieved, realizing

network lightweighting and enhancing detection speed. Additionally,

the network utilizing ShuffleNetv2 exhibited a 7.1 frames per second

(FPS) higher detection rate for peanut pods compared to the original

YOLOv5s, with a model size of merely 1.0MB, indicating the

advantages of ShuffleNetv2 in embedded device applications.

When SE attention mechanism was solely incorporated into the

backbone network or only the loss function was changed to Focal-

EIoU, there were respective increases of 0.6% and 0.5% in mAP0.5

compared to the original YOLOv5s. These results indicate that the

introduction of attention mechanisms and the use of Focal-EIoU

loss function facilitate the network in extracting critical features of

peanut pods, thereby enhancing detection accuracy.

Combining the SE attention mechanism in the backbone

network with the Focal-EIoU loss function led to a 1.0% increase

in mAP0.5 compared to the original YOLOv5s.
TABLE 3 Experimental results of the SSE-YOLOv5 model.

Good Loss Germinant Moldy Soil

mAP0.5/% 99.6 99.6 99.5 98.6 99.2

R/% 99.9 98.6 98.8 95.4 99.8

P/% 97. 1 98.9 98.7 97.9 98.9
fronti
TABLE 2 Training program parameter settings.

Parameter Batch size Epochs Input size Optimizer Initial learning rate Momentum Weight decay

Value 16 100 640x640 SGD 0.01 0.937 0.0005
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Embedding the SE attention module within ShuffleNetv2 as the

feature extraction network resulted in a 1.3% improvement in

mAP0.5 and a 3.0% boost in detection accuracy compared to

ShuffleNetv2 alone, with a 22.3 FPS increase. This underscores

the effectiveness of integrating SE attention modules within

ShuffleNetv2 in enhancing both detection speed and accuracy

while reducing model complexity.

Substituting the backbone of the original YOLOv5s with

ShuffleNetv2 and replacing the loss function with Focal-EIoU not

only improved the model’s computational speed but also enhanced

mAP0.5 by 1. 1% and FPS by 8 frames compared to ShuffleNetv2 alone.

Based on comprehensive ablation studies, and aiming to balance

model lightweighting with recognition accuracy, this study proposes

an improved lightweight peanut pod appearance quality detection

model based on YOLOv5s, named SSE-YOLOv5s, which incorporates

ShuffleNetv2 + SE attention + Focal-EIoU loss function. Compared to

the YOLOv5s network model, SSE-YOLOv5s boasts a mere 6.7% of

the original model’s parameters, 7.8% of the computational

complexity, 115. 1% of the FPS, and 7.6% of the model size.

Furthermore, it achieves precision and mean average precision

(mAP) of 98.3% and 99.3%, respectively, representing a 1.6% and

0.7% improvement over the original YOLOv5s model. Thus, SSE-

YOLOv5s successfully achieves lightweighting while enhancing the

model’s recognition accuracy for peanut pod quality.
3.5 Influence of various backbone
networks on detection performance

To analyze the effect of network models on enhancing the

performance of different backbone networks, the CSPResNet53
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backbone in YOLOv5s was replaced with ShuffleNet v2,

MobileNetv3 (Howard et al., 2019), and GhostNet (Rajaraman

et al., 2018) respectively. The comparison results are presented

in Table 5.

As observed in Table 5, while utilizing the ShuffleNet v2

backbone led to a certain degree of compromise in detection

accuracy, it significantly reduced the number of parameters and

computations compared to the other models. Notably, it achieved

the highest detection speed of 173.8 frames per second (FPS).

Consequently, employing the ShuffleNet v2 backbone network is

more conducive to lightweight model applications.
3.6 Impact of various attention
mechanisms on detection performance

To investigate the performance of network models with the

incorporation of different attention mechanisms, the SE (Squeeze-

and-Excitation) attention module in the modified YOLOv5s was

replaced with CBAM (Convolutional Block Attention Module)

(Woo et al., 2018), ECA (Efficient Channel Attention) (Wang

et al., 2020), and CA (CoordAttention) (Hou et al., 2021). The

comparative results are summarized in Table 6.

As shown in Table 6, the model utilizing the SE attention

mechanism achieved a mAP0.5 of 99.2%, outperforming CBAM,

ECA, and CA by 0.4, 0.3, and 0.6 percentage points, respectively.

Additionally, the model with SE attention demonstrated higher

accuracy and recall rates compared to CBAM, ECA, and CA, by 1.0,

0.8, and 0.6 percentage points for accuracy, and 1.9, 1.4, and 2.9

percentage points for recall, respectively. Notably, the F1 score of
TABLE 4 Ablation study results of network lightweighting.

ShuffleNet
v2

SE
attention

Focal-EIoU
loss

function

mAP0.5/% Parameters/MB FLOPs/G FPS/(. s−1) P/% R/% MODEL
SIZE/
MB

– – – 98.6 7.07 16.3 166.7 96.7 95.4 14.4

√ – – 97.2 0.44 1.3 173.8 94. 1 92.2 1.0

– √ – 99.2 7.27 16.6 166.9 98. 1 98. 1 14.4

– – √ 99. 1 7.06 16.3 165.1 98.2 97.6 14.4

√ √ – 98.5 0.46 1. 1 196.1 97. 1 94.6 1. 1

√ – √ 98.3 0.44 1.3 181.8 95.4 94.9 1.0

– √ √ 99.6 7.07 16.6 175.4 99.0 99.0 14.4

√ √ √ 99.3 0.47 1.3 192.3 98.3 98.5 1. 1
fr
TABLE 5 Impact of various backbone networks on detection performance.

Backbone mAP0.5/% P/% R/% F1 score/% Parameters/MB FLOPs/G FPS/(.s−1)

CSPResNet53 98.6 96.7 95.4 96.0 7.07 16.3 166.7

ShuffleNet v2 97.2 94. 1 92.2 93.1 0.44 1.3 173.8

MobileNetv3 97.8 93.6 93.6 93.4 3.54 6.3 138.7

GhostNet 98.8 96.8 96.2 96.4 5.08 10.6 151.9
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the SE-attentive model was only slightly lower than that of CA,

indicating that the channel-wise attention allocation by SE

significantly enhanced the model’s performance. While the

number of parameters slightly increased and the FLOPs

(Floating-Point Operations) remained comparable when

comparing SE with CBAM, ECA, and CA, the SE attention

module exhibited an advantage in terms of FPS (Frames Per

Second). Based on the above analysis, SE attention achieves the

highest detection accuracy while maintaining network

lightweightness, demonstrating the optimal performance for

peanut pod detection.
3.7 Impact of various loss functions on
detection performance

To investigate the performance of network models with

different loss functions, the CIoU (Complete Intersection over

Union) loss function in YOLOv5s was replaced with Alpha-IoU,

EIoU (Efficient Intersection over Union), and Focal-EIoU (Focal-

Efficient Intersection over Union) loss functions. The comparative

results are presented in Table 7.

As shown in Table 7, the model utilizing the Focal-EIoU loss

function achieved a mAP0.5 of 99. 1%, outperforming CIoU,

Alpha-IoU, and EIoU by 0.5, 0.4, and 0.4 percentage points,

respectively. Furthermore, the number of parameters, FLOPs

(Floating-Point Operations), and FPS (Frames Per Second) values

of the model with Focal-EIoU loss were comparable to those

of CIoU,

Alpha-IoU, and EIoU. This demonstrates that the adoption of

the Focal-EIoU loss function significantly enhances the average

detection accuracy. This improvement can be attributed to the

inclusion of vector angle loss between the predicted and ground

truth bounding boxes in Focal-EIoU, which reduces the loss

incurred during the “wandering” process of prediction boxes and

ultimately improves inference accuracy.
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3.8 Comparison of results from different
detection models

To further analyze and validate the effectiveness of the proposed

method in this study, it was compared with representative two-stage

object detection algorithms such as Faster R-CNN (Ren et al., 2015),

and one-stage object detection algorithms including SSD (Liu et al.,

2016), YOLOv7 (Ultralytics, 2023), and YOLOv8. As shown in

Table 8, although Faster R-CNN achieves a high accuracy in

detecting the appearance quality of peanut pods, it has the largest

number of parameters, making it unsuitable for lightweight

applications. While SSD reduces the number of parameters

compared to Faster R-CNN, its detection accuracy is not as high as

the proposed method. YOLOv7 and YOLOv8 not only have relatively

larger numbers of parameters and floating-point operations (FLOPs)

compared to the proposed method, hindering lightweight design, but

also generally perform inferiorly in terms of mAP0.5 and accuracy.

The algorithm presented in this study, which is an improvement upon

YOLOv5s, achieves a 0.7% increase in mAP0.5 over the baseline

model YOLOv5s, with a reduction of approximately 6.59MB in

parameters and a decrease of 15.0G in computational complexity.

Additionally, the detection accuracy improves by 1.6%. Among these

models, the proposed algorithm demonstrates the highest accuracy in

detecting the appearance quality of peanut pods, with the smallest

number of parameters and computational complexity, fulfilling the

requirements for network lightweightness. This is conducive to the

detection of peanut pods and prepares the ground for peanut

quality grading.

3.9 Visual analysis of results

To validate the efficacy of the SSE-YOLOv5s model in assessing

the appearance quality of peanut pods, two sets of experimental

samples were randomly selected and subjected to detection using a

Raspberry Pi (a microcomputer). The visualization outcomes are

presented in Figure 8. During the detection process with YOLOv5s,
TABLE 7 Impact of various loss functions on detection performance.

Loss function mAP0. 5/% P/% R/% F1 score/%
Parameters/

MB
FLOPs/G FPS/(. s−1)

CIoU 98.6 96.7 95. 1 95.8 7.07 16.3 166.7

Alpha-IoU 98.7 96.8 96.2 96.4 7.06 16.3 159.8

EIoU 98.7 97.5 95.6 96.5 7.06 16.3 161.5

Focal-EIoU 99. 1 98.2 97.6 97.4 7.06 16.3 165. 1
TABLE 6 Impact of various attention mechanisms on detection performance.

Attention mechanisms mAP 0.5/% P/% R/% F1 score/% Parameters/MB FLOPs/G FPS/(.s−1)

CBAM 98.8 97. 1 96.2 96.6 7.27 16.6 155. 1

ECA 98.9 97.3 96.7 96.9 7.20 16.6 158.8

CA 98.6 97.5 95.2 99.0 7.26 16.6 103.4

SE 99.2 98. 1 98. 1 98. 1 7.27 16.6 166.9
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no missed detections were observed, resulting in an actual detection

rate of 95.4%. Similarly, when utilizing SSE-YOLOv5s, no missed

detections occurred, and the actual detection rate rose to 98.3%.

During the practical testing with the Raspberry Pi, the video streams

exhibited smooth playback. These findings demonstrate that the

enhanced SSE-YOLOv5s model significantly accelerates the

detection and recognition speed for the appearance quality of

peanut pods.
4 Discussion

Based on the information provided, the SSE-YOLOv5s model

proposed in this study offers an accurate, real-time, and secure

approach for lightweight intelligent detection of five common types

of peanut pod appearance quality. This model incorporates several

enhancements to its components. In the backbone network,

ShuffleNet v2 employs channel split and channel shuffle

techniques, and is further augmented by the integration of an SE

(Squeeze-and-Excitation) module. As demonstrated in Table 4 of
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the experimental results, ShuffleNet v2 achieves a lightweight design

(Params 0.44MB) and real-time capability (FPS 173.8).

Additionally, the inclusion of the SE module, as shown in

Table 5, further enhances detection performance (mAP 99.2%)

while maintaining real-time functionality (FPS 166.9).

For the loss function, Focal-EIoU is utilized, leading to an mAP

of 99. 1%, as presented in Tables 5. 6 showcases the superior

performance of SSE-YOLOv5s compared to various detection

models, particularly in terms of accuracy (mAP 99.3%), speed

(FPS 192.3), and lightweight design (Params 0.48MB). Figure 8

visually illustrates the application of SSE-YOLOv5s on a Raspberry

Pi, contrasting its results with those of the YOLOv5s model,

confirming the superior recognition accuracy and speed of SSE-

YOLOv5s in practical applications.

Although data augmentation was adopted in this study to

reduce the risk of overfitting, in practice, the model may still

suffer from overfitting if the training dataset is not sufficiently

diverse or small in size. To mitigate this problem, it is necessary to

continuously collect more diverse sample data of peanut pods and

test the model with sufficient cross-validation and generalization
FIGURE 8

Visualization results.
TABLE 8 Comparison of results from different detection models.

Model mAP0.5/%
Parameters/

M
FLOPs/G

FPS/
(.s−1)

P/% R/%
MODEL
SIZE/MB

Faster R-CNN 98.7 45.98 130.4 46.3 97.2 96.4 552.9

SSD 98.4 22.63 146.7 100.2 97. 1 94.6 90.7

YOLOv7 98.3 9.33 26.7 156.2 95.4 95. 1 19.0

YOLOv8 98.8 11.13 28.4 212.7 97. 1 96.0 22.5

YOLOv5s 98.6 7.07 16.3 166.7 96.7 95.4 14.4

SSE- YOLOv5 99.3 0.48 1.3 192.3 98.3 98.5 1.1
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ability. Moreover, in real-world scenarios, peanut pods may be in

complex backgrounds, such as mixed with other impurities and

background colors similar to peanut pods. These complex

backgrounds may cause the model to mistakenly detect the

background objects as peanut pods or miss the detection of real

peanut pods. To reduce the false detection rate, the model’s

background suppression capability can be further optimized and

more sophisticated post-processing algorithms can be considered to

filter out the false detection results.
5 Conclusion

To address the challenges of complex detection backgrounds and

highmodel complexity in the grading stage of peanut pods, particularly

for the identification of appearance qualities such as superior, moldy,

damaged, germinated, and soil-contaminated pods, this study proposes

the SSE-YOLOv5s detection model, an improvement upon the

YOLOv5s framework. The following conclusions are drawn:
Fron
1. The modified YOLOv5s utilizes ShuffleNet v2 as the

backbone network to reduce model parameters. By

embedding the SE (Squeeze-and-Excitation) attention

module within the network, it enhances the focus on

small targets. Furthermore, the introduction of the Focal-

EIoU loss function for bounding box regression improves

the model’s localization ability. The proposed algorithm

achieves a detection speed of 192.3 frames per second (FPS)

and a mean average precision (mAP@0.5) of 99.3%,

meeting the requirements for practical applications.

2. Through experimental analysis and comparisons, the

method presented in this study demonstrates significant

advantages in detecting small targets compared to other

object detection methods. Specifically, when compared to

Faster R-CNN, SSD, YOLOv7, YOLOv8, and the original

YOLOv5s algorithms, the proposed SSE-YOLOv5s model

achieves the highest detection accuracy for peanut pod

appearance qualities, facilitating precise detection of

small targets.
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