
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Valerio Hoyos-Villegas,
McGill University, Canada

REVIEWED BY

Ram Kumar Basnet,
Rijk Zwaan, Netherlands
Zitong Li,
Commonwealth Scientific and Industrial
Research Organization (CSIRO), Australia

*CORRESPONDENCE

Rafael Augusto Vieira

rafael.vieira2@ufu.br

RECEIVED 13 September 2024
ACCEPTED 17 January 2025

PUBLISHED 10 February 2025

CITATION

Vieira RA, Nogueira APO and
Fritsche-Neto R (2025) Optimizing
the selection of quantitative traits
in plant breeding using simulation.
Front. Plant Sci. 16:1495662.
doi: 10.3389/fpls.2025.1495662

COPYRIGHT

© 2025 Vieira, Nogueira and Fritsche-Neto.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 10 February 2025

DOI 10.3389/fpls.2025.1495662
Optimizing the selection of
quantitative traits in plant
breeding using simulation
Rafael Augusto Vieira1*, Ana Paula Oliveira Nogueira2

and Roberto Fritsche-Neto3

1Department of Research & Development, Crop Science - Breeding, Uberlândia, Brazil, 2Institute of
Biotechnology, Graduate Program in Genetics & Biochemistry and Graduate Program in Agronomy,
Federal University of Uberlândia, Uberlândia, Brazil, 3Department of Plant, Environmental and Soil
Sciences, Louisiana State University, Baton Rouge, LA, United States
This review summarizes findings from simulation studies on quantitative traits in

plant breeding and translates these insights into practical schemes. As agricultural

productivity faces growing challenges, plant breeding is central to addressing these

issues. Simulations use mathematical models to replicate biological conditions,

bridging theory and practice by validating hypotheses early and optimizing genetic

gain and resource use. While strategies can improve trait value, they reduce

genetic diversity, making a combination of approaches essential. Studies

emphasize the importance of aligning strategy with trait heritability and selection

timing and maintaining genetic diversity while considering genotype-environment

interactions to avoid biases in early selection. Using markers accelerates breeding

cycles when marker placement is precise, foreground and background selection

are balanced, and QTL are effectively managed. Genomic selection increases

genetic gains by shortening breeding cycles and improving parent selection,

especially for low heritability traits and complex genetic architectures. Regular

updates of training sets are critical, regardless of genetic architecture. Bayesian

methods performwell with fewer genes and in early breeding cycles, while BLUP is

more robust for traits with manyQTL, and RR-BLUP proves flexible across different

conditions. Larger populations lead to greater gains when clear objectives and

adequate germplasm are available. Accuracy declines over generations, influenced

by genetic architecture and population size. For low heritability traits, multi-trait

analysis improves accuracy, especially when correlated with high heritability traits.

Updates including top-performing candidates, but conserving variability enhances

gains and accuracy. Low-density genotyping and imputation offer cost-effective

alternatives to high-density genotyping, achieving comparable results. Targeting

populations optimizes genetic relationships, further improving accuracy and

breeding outcomes. Evaluating genomic selection reveals a balance between

short-term gains and long-term potential and rapid-cycling genomic programs

excel. Diverse approaches preserve rare alleles, achieve significant gains, and

maintain diversity, highlighting the trade-offs in optimizing breeding success.
KEYWORDS

genetic gain, genetic diversity, simulation, genomic selection, prediction accuracy,
selection response, breeding methods, breeding optimization
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1 Introduction

Global agriculture faces a convergence of critical challenges,

including food and fuel crises, climate fluctuations, and a range of

biotic and abiotic stresses. These factors collectively threaten crop

yields, creating significant risks to food security and agricultural

sustainability. Addressing these challenges requires innovative

strategies that consider the complex interactions between genetic,

environmental, and economic factors. By deepening our

understanding and management of these stresses, we can develop

resilient agricultural systems capable of withstanding the pressures

of modern crop production.

The growing population and urgent demand for food security

necessitate significant increases in both yield potential and crop

quality, nutritional composition of agricultural products. This

challenge is compounded by shifting consumption patterns and

climate variability that further strain agricultural productivity. The

need for advancements in crop productivity and resilience is

indispensable and can be met, in part, by developing crop

varieties and hybrids that thrive in different climatic conditions

without sacrificing yield. By harnessing genetic diversity and

employing innovative techniques, plant breeding plays an

important role in this effort.

The evolution of plant breeding, from early domestication to

modern precision breeding, showcases the synergy of scientific

inquiry, technological progress, and agricultural practice. By

integrating cutting-edge techniques—such as marker-assisted

selection, genomic selection, selection indexes, gene editing, artificial

intelligence, process automation, data analytics, epigenomics,

phenomics, enviromics, and biotechnology—plant breeding has

transformed into a precise science. It is now a powerful engine for

innovation, driving the development of high-performing crop varieties

and addressing evolving agricultural challenges.
2 Plant breeding strategies
and objectives

Plant breeding is a continuous process focused on improving

genetic traits through systematic selection and crossbreeding. A

modern plant breeding program typically involves: (ii) selecting

individuals with desirable traits for crossbreeding; (i) employing

methods to achieve homozygosity, either fully or partially; and (iii)

utilizing recurrent selection to recycle high-merit individuals while

evaluating them in field trials. This dual strategy ensures the

development of new cultivars with improved yield, performance,

disease resistance, and quality while continuously improving the

genetic foundation of the breeding population.

The simplest selection method is based on phenotypic values,

but relying solely on field trials to estimate breeding values is risky,

as they may not fully represent the target environment. In this

context, since the breeding value determines an individual’s genetic

contribution to future generations, effective selection depends on

how well phenotype can represent breeding values. To select

superior genotypes with high agronomic performance across
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diverse environments, breeders must test numerous candidates

either through multi-year, multi-location phenotypic trials or by

genotyping to estimate breeding values. However, many agronomic

traits are complex, influenced by multiple quantitative trait loci

(QTL), and their express ion is heavi ly impacted by

environmental factors.

Genomic estimated breeding values (GEBVs) and genomic

selection offer new opportunities to increase breeding efficiency.

GEBVs combine genomic and phenotypic data to predict an

individual’s genetic merit for specific traits. In genomic selection,

candidates are genotyped to obtain GEBVs, bypassing the need for

phenotyping. GEBVs are derived from a prediction equation based

on the genetic proximity of candidates to a training population,

which has been both genotyped and phenotyped.

Genomic predictions rely on accurate estimates of genomic

relationships. Implementing genomic selection begins with creating

a training population that provides phenotypic data for target traits

and genome-wide DNA marker genotypes (Meuwissen et al., 2001).

The genotype and phenotype data develop a prediction equation

that fits each marker’s effect on the trait. When markers are in

sufficient linkage disequilibrium with causal variations of the trait,

they capture a significant proportion of the associated genetic

variance, allowing the prediction of GEBVs without phenotype

collection. Many breeding programs today incorporate genomic

data into various phases, improving selection accuracy, shortening

breeding cycles, and accelerating early-generation selection (Hickey

et al., 2014).

Several strategies integrate genomic selection into breeding

programs. For example, rapid-cycle recurrent genomic selection

promises significant increases in genetic gains (Santantonio et al.,

2020). Combining genomic selection with speed breeding can

further reduce breeding cycle time. Genome editing introduces

new variations, while marker-assisted selection and transgenic

methods enhance breeding efficiency. Nonetheless, effective plant

improvement requires balancing genetic gain with time and cost

(Hickey et al., 2014). Whether employing phenotypic, genomic, or

combined selection approaches, optimizing strategies is crucial to

maximiz ing genet ic ga in whi le managing costs and

operational efficiency.

Improving multiple traits simultaneously is a key challenge in

plant breeding, as the product’s value often depends on interrelated

traits. Trait selection methods include tandem selection, which

sequentially improves traits across generations, and independent

culling, which rejects individuals failing predefined standards for

any trait. A widely used approach is multi-trait selection through a

selection index. With genomic selection, multi-trait analysis

enhances breeding accuracy, especially for low heritability traits

linked to high heritability ones (Hayashi and Iwata, 2013).

Assuming clear breeding objectives, rigorous selection criteria, a

diverse pool of germplasm, and well-defined target environments,

the efficacy of a breeding program predominantly depends on the

efficient utilization of available resources to respond to selection,

also known as genetic gain. Optimizing either genomic or

phenotypic selection approaches within breeding pipelines is

crucial. Substantial genetic progress requires considering several

factors, including the number of breeding cycles, population size,
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parent selection, genomic prediction accuracy, genetic diversity,

and cost management.
3 Simulations and their role in
plant breeding

3.1 Definition and applications

In plant breeding and genetics, simulations use mathematical

models to replicate biological conditions and investigate specific

problems (Figure 1). These models are either deterministic or

stochastic (Covarrubias-Pazaran et al., 2022). Deterministic

models rely on equations from quantitative genetics to predict

selection responses using parameters like selection intensity,

heritability, and accuracy. However, they have limitations in

accounting for breeding processes such as crossing, generation

advancement, and genetic introgression. Stochastic simulations,

on the other hand, generate genotypic and phenotypic data for

each genetic entity, making themmore applicable to breeding stages

like recombination, evaluation, and selection.

Simulations bridge theory and practice by computationally

modeling breeding strategies to optimize genetic gain, minimize

genetic variance loss, and ensure resource efficiency. They compare

strategies like phenotypic, marker-assisted, and genomic selection

over various timeframes, incorporating early- and late-stage

processes. Simulations also identify optimal selection factors, such

as intensity, parental lines, and family sizes, while considering
Frontiers in Plant Science 03
genotype-by-environment interactions, inheritance, and gene

effects. By validating hypotheses prior to real-world testing,

simulations streamline transitions from phenotypic to marker-

assisted and genomic selection.
3.2 Limitations and advantages

One limitation of breeding scheme simulations is the potential

for random error, reflecting real-life processes like meiosis and

genotype evaluation, where simulations often introduce random

deviations from the genotypic value (Jannink et al., 2024). These

simulations can also be computationally intensive. Genomic

predictions require large-scale linear mixed models, which are

time-consuming for both real and simulated data. Incorporating

training data from previous selection cycles is possible, but

computing limitations may arise when dealing with large datasets

(Ramasubramanian and Beavis, 2021).

Simulation accuracies often exceed real-world conditions due to

factors like error-free molecular markers, absence of epistasis, and

limited germplasm exchange (Gaynor et al., 2017). Therefore,

careful interpretation is necessary when applying simulation

results to practical breeding. Real-world breeding programs also

account for multiple traits—such as agronomic performance,

disease resistance, and end-use quality—adding complexity to

simulations, which must represent multi-trait selection accurately.

Despite these challenges, simulations offer significant

advantages. They allow the exploration of various scenarios,

genetic models, and methods, helping identify efficient paths to

target cultivars (Li et al., 2012). This is particularly important in

genomic selection, where balancing resources, program size, and

genetic gain is critical. Simulations provide insights into factors

affecting genetic gain, prediction accuracy, and cost-effectiveness

under different conditions (Hickey et al., 2014; Gorjanc et al., 2018).

While field trials are essential, they provide only a snapshot of

outcomes, and random effects may distort results (Li et al., 2012).

Simulations, with multiple replications, offer more reliable

probabilistic assessments and can test a range of input parameters

to evaluate their impact on selection efficiency. They also account

for multistage selection and inbreeding rates (Hassanpour

et al., 2023).

Modern simulation is characterized by the capacity to model

meiotic processes, including crossing over and crossover

interference, through coalescent and gene-drop methods, which

are employed in backward-in-time and forward-in-time

simulations (Hickey and Gorjanc, 2012). The coalescent method

generates whole-chromosome founder haplotypes with linkage

disequilibrium and allele frequency that align with a specified

population genetic model (Hickey and Gorjanc, 2012).

Conversely, the gene-drop method simulates the creation of new

haplotypes from original founder haplotypes by modeling genetic

recombination during meiosis. This process is guided by a genetic

map and incorporates the gamma model, which accounts for

crossover interference (Hickey and Gorjanc, 2012).

Overall, simulations have become crucial in plant breeding,

enabling the evaluation of genetic gain and comparison of breeding
FIGURE 1

Diagram of simulation models in plant breeding, illustrating how
mathematical models replicate biological conditions to bridge
theoretical concepts with practical breeding applications.
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strategies by incorporating gene information, crossing schemes,

population size, and selection intensity. This helps optimize

breeding parameters to maximize gains, while efficiently

allocating resources (Li et al., 2012; Hickey et al., 2014; Gorjanc

et al., 2018). Simulations also aid in gene mapping, validating new

methods, and assessing factors like marker density and QTL

heritability (Li et al., 2012).Translating breeding strategies into

digital schemes requires abstraction to represent biological and

operational processes while addressing programming limitations.

Breeding involves iterative cycles of selection, crossing, and

evaluation, which must be encoded into simulations. Challenges

include balancing computational efficiency with biological realism,

handling large datasets, and modeling diverse genetic architectures.

Simulations often assume idealized conditions—error-free markers,

no genotype-environment interactions, or perfect linkage maps—

which may not align with real-world complexities. Interpreting

results requires critical evaluation of these assumptions. Practical

integration involves validating insights with field data,

incorporating feedback loops, and refining models to align

predictions with real-world outcomes. Simulated genetic gain

represents a theoretical maximum, often reduced by attrition

during practical implementation.
4 Diversity, background recovery, pre-
breeding and bridging to
elite germplasm

A simulated study by Fu (2015) assessed how selection impacts

genetic diversity, confirming that plant breeding can reduce

diversity as expected. Although artificial selection enhanced the

genetic value of targeted traits, it also decreased genetic diversity

and heterozygosity. The breeding schemes studied showed similar

effects, either preserving or accelerating diversity loss, with half-sib

mating proving the most effective for achieving higher genetic gains

while minimizing reductions in diversity. The trends in trait

improvement and diversity loss were consistent for progeny sizes

of 20 and 50, offering important insights for managing these factors.

Gorjanc et al. (2016) investigated different strategies and genetic

parameters for initiating pre-breeding programs with selected

landrace populations for integration into elite maize breeding

programs. Their results indicated that starting pre-breeding with

landraces could significantly influence genetic merit. Higher genetic

merit was found when the founding population had low diversity,

high within-landrace diversity, or substantial heritability (h² =

0.50). Although testcross initiation provided the highest genetic

merit, it mainly reconstructed the elite genome and did not

incorporate the desired traits from landraces. The authors

recommended random mating between initial landrace × elite

individuals across several generations to recombine genetic

segments and break their linkage. Krenzer et al. (2024)

emphasized the importance of simulation-designed pre-breeding

crossing schemes for maintaining genetic variation and ensuring

long-term success before implementing general combining ability-

based selection in hybrid breeding programs.
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Building on this, Allier et al. (2020) advanced the understanding

of pre-breeding strategies by investigating the integration of new

germplasm into elite lines using genomic selection and optimal

cross-selection in simulations. Their study introduced donors with

various performance levels, showing that recurrent introductions of

improved donors could maintain genetic diversity and enhance

both mid- and long-term performance. Considering a bridging step

resulted significantly higher mid- and long-term genetic gain even

when introducing low performing donors. Further, direct

introductions of donors with a large performance gap compared

to elite germplasm did not generate gains. For donors with an

intermediate performance gap, both direct introductions and

bridging steps provided increased long-term gains. Additionally, a

genomic selection model trained on both bridging and breeding

progeny improved prediction accuracy within introduction

families. This suggests that excessive selection for performance

during the bridging phase might favor the elite genome, limiting

the incorporation of new favorable alleles, as noted by Gorjanc

et al. (2016).

Cowling et al. (2017), Villiers et al. (2024), and Platten and

Fritsche-Neto (2023) highlight the complex balance required

between genetic diversity, selection intensity, and long-term

genetic gains. Cowling et al. demonstrated the advantages of

optimal contribution selection (OCS) over truncation selection,

with OCS yielding higher index values and maintaining lower

coancestry across various population sizes and selection pressures.

Villiers et al., building on the importance of genetic diversity

underscored by Cowling et al., introduced optimal haplotype

stacking (OHS) as a superior strategy for preserving diversity

while achieving genetic gains. Their results, particularly in small

populations, revealed that even a single OHS cycle could

outperform OCS and truncation selection in long-term outcomes,

emphasizing its potential as a complement to other methods.

Platten and Fritsche-Neto (2023) further nuanced this

discussion by focusing on strategies to integrate new genetic

material into breeding programs. Their findings showed that

while introducing fewer parents (e.g., 10 rather than 20)

minimized penalties and enhanced fixation efficiency, genetic

diversity and background recovery remained critical factors. This

aligns with Villiers et al.’s emphasis on diversity preservation and

Cowling et al.’s observation of plateauing gains under traditional

truncation selection. Notably, Platten and Fritsche-Neto’s

recommendation to prioritize GEBV-based selection parallels the

targeted approaches of OCS and OHS, highlighting how tailored

strategies optimize genetic outcomes under different constraints.

Together, these studies illustrate the trade-offs inherent in balancing

genetic diversity, selection efficiency, and long-term genetic

progress. While Cowling et al. advocate for OCS in avoiding

diversity erosion over extended cycles, Villiers et al. demonstrate

how OHS can bolster diversity and gains in the short term, even

when combined with truncation selection. Meanwhile, Platten and

Fritsche-Neto emphasize the necessity of strategic parent selection

to achieve rapid fixation of desirable traits. In conclusion, balancing

genetic gain and diversity remains a critical challenge in plant

breeding. Strategies like optimal contribution selection and optimal

haplotype stacking show potential to address this issue. Integrating
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landraces or other germplasm donors with good performance can

improve long-term gains, but careful planning is necessary.

Ultimately, combining strategic selection approaches is crucial for

optimizing breeding outcomes while maintaining genetic

variability, as simplistic methods are inadequate for navigating

this complex process.

The findings from this section are illustrated in Figure 2.
5 Phenotypic selection and classical
methods, including gene effects

Casali and Tigchelaar (1975) conducted pioneering simulations

to investigate breeding methods, focusing on single seed descent

(SSD) combined with pedigree and mass selection. Their research

found that SSD, whether used alone or with mass selection, better

preserved genetic variability for line selection in the F6 generation.

Pedigree and mass selection were effective for high heritability traits

in early generations (F2 and F3), while SSD and F6 selection

maximized genetic gain for low heritability traits. Their work

demonstrated that early generations are effective for traits with

medium or high heritability, while traits with low heritability benefit

from later selection. These findings laid the groundwork for modern

breeding practices.

Complementary, Van Oeveren and Stam (1992) examined

breeding strategies for self-pollinating crops using simulations.

They compared early selection, which estimates cross means and

variances in the F3 generation and selects lines based on these

estimates, with SSD, which delays selection until the F6 generation.

SSD performed comparably to early selection with more crosses and

outperformed early selection at low heritability due to early

prediction inaccuracies. Differences between early selection and

SSD decreased when traits were influenced by many loci. SSD was

less effective with fewer than 100 F2 plants, and the number of

segregating loci had a significant impact on selection outcomes.

These studies underline a critical principle in plant breeding: the

choice of breeding strategy should be matched to trait heritability

and selection timing. Early selection methods are advantageous for

traits with high heritability, while SSD is more effective for traits

with low heritability when selection is delayed. They highlight the
Frontiers in Plant Science 05
importance of maintaining genetic diversity and considering

genotype-environment interactions to avoid biases in early

phenotypic selection. These findings were based on simulated

data and predate the adoption of marker-assisted and genomic

selection techniques.

Building on this, Wang et al. (2003) compared two prevalent

breeding strategies—modified pedigree selection and selected bulk

selection—using genetic models that accounted for epistasis,

pleiotropy, and genotype-environment interactions. Their

simulations indicated that bulk selection achieved a 3.3% higher

genetic gain than modified pedigree selection, required one-third

less land, and produced 60% fewer families, highlighting its superior

efficiency. The study emphasized that selected bulk selection not

only resulted in marginally higher genetic gains but also offered

significant cost-effectiveness advantages, which is crucial for

modern commercial breeding programs.

In a subsequent study, Wang et al. (2004) examined the impact

of partial dominance in wheat and found that it had minimal effect

on genetic advancement compared to pure additive models. The

partial dominance effects were small and difficult to detect through

covariance across various mating schemes, suggesting limited

applicability in inbred breeding. These observations may be

specific to wheat or reflect limitations in the simulations’ ability

to capture such gene effects. Additionally, Wang et al. (2007)

compared three marker selection schemes for integrating nine

genes into a single genotype and recommended a top cross

scheme. This approach, involving equal selection intensity at

three stages (top cross F1, top cross F2, and doubled haploid),

minimized the total number of lines needed to achieve the

breeding objective.

Continuing the focus on maximizing selection response and

genetic gain, Bernardo (2003) analyzed the impact of parental

selection, the number of breeding populations, and population

size on optimal breeding strategies. Using computer simulations

with 2,000 recombinant inbreds for a quantitative trait controlled

by 100 additive loci with varying heritabilities, Bernardo found that

the highest selection responses were achieved by maximizing the

number of breeding populations. The ability to identify high-

performing breeding populations before making crosses was more

critical than balancing the number of populations and their size.
FIGURE 2

Flowchart depicting the application of simulation-derived strategies for managing genetic diversity, pre-breeding processes, and transitioning from
theoretical models to elite germplasm.
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As emphasized by Bernardo, successful breeding depends on

strategic parental selection before establishing breeding

populations. A widely accepted recommendation is to use

genetically divergent yet superior parents to broaden the genetic

base and enhance target traits.

Covarrubias-Pazaran et al. (2022) simulated various parent

combinations to provide practical recommendations for breeding

programs. Their model, designed for cassava but applicable to other

crops, found that overlapping cohorts for recycling—using a mixed

crossing block with parents from both preliminary and advanced

yield trials—consistently led to higher genetic gains. However, the

number of parents used was critical; using more than 30 parents

reduced genetic gain compared to fewer. For 60 years, involving 16

to 32 parents proved most effective, with more crosses generally

enhancing genetic gains. Within a 20-year timeframe, fewer crosses

with more progeny per cross yielded higher gains, with an optimal

setup being 8–16 parents, 24 crosses, and approximately 68

progenies per cross annually. Over 60 years, the optimal

configuration was 16–32 parents, 60 crosses, and around 30

progeny per cross. The study recommended using 15–30 parents

recycled from both preliminary and advanced yield trials, with 40

crosses and 40 progenies per year, a strategy that could be adapted

to other crops.

Supporting these findings, Lanzl et al. (2023) demonstrated

through simulations that mating designs producing large biparental

families from few disjoint crosses risk generating progenies with

strong covariances between QTL pairs on different chromosomes.

Their research revealed that a single recombination round

effectively disrupts both positive and negative covariances

between QTL pairs, providing practical insight for optimizing

breeding programs.

In summary, optimizing genetic gain in breeding programs

involves strategic parental selection and careful management of

breeding populations. Using overlapping cohorts for recycling,

along with an optimal number of parents and crosses, can

significantly enhance genetic gain. Identifying high-performing

breeding populations prior to initiating crosses is essential.

Additionally, the optimal number of parental lines involved in

breeding crosses varies depending on the breeding timeframe.

Specifically, a larger number of parents is beneficial for achieving

long-term genetic gains, whereas fewer parents are recommendable

for attaining higher short-term, immediate gains. These strategies,

validated through simulations, apply to both phenotypic and

genomic approaches, improving breeding efficiency across

various crops.

Backcross is a common method in plant breeding for

transferring specific traits from one genetic entity to another

while retaining desirable characteristics of the original line.

Another common approach in developing breeding crosses

involves emphasizing the importance of one parent over the

other. In this method, the F1 generation is backcrossed with the

superior parent to enhance its desirable traits, either to recover the

parental genetic background or directly derive recombinant lines

for the development of new cultivars.

Wang et al. (2009) used computer simulations to show that

single backcrossing with a selected bulk is more effective than other
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crossing and selection methods. This approach is particularly useful

for preserving or enhancing the adaptation of recurrent parents

while transferring most of the desired donor genes. However,

repeated backcrossing may not be necessary if molecular markers

can identify the transferred genes, especially when donor parents

exhibit poor adaptation. The study identified three conditions

under which single backcrossing with bulk selection until F6 is

highly effective: (1) when traits being transferred are controlled by

multiple genes, (2) when donor parents have genes that can

improve adaptation in recipient parents, and (3) when

conventional phenotypic selection is used, or individual genotypes

cannot be easily identified. These insights are valuable for

introgressing elite germplasm in rapid-cycle breeding programs,

enhancing both efficiency and outcomes.

Continuing on this topic, backcrossing is used to introduce

traits or genes into important crops, such as corn. This process

includes four stages: single-event introgression, event pyramiding,

trait fixation, and version testing. The goal is to ensure that at least

one version of the final product performs as well as the original. Sun

and Mumm (2015) investigated two critical aspects of this process

through simulations: (i) the impact of residual donor germplasm

(non-recurrent parent) in the converted germplasm and (ii) the

effect of creating multiple versions for each parental line conversion.

Their research found that a residual donor germplasm range of

about 5-8% of the genome was associated with a high success rate in

conversion. Additionally, the success rate increased with the

number of versions produced, with 3-5 versions providing the

best outcomes. These findings offer practical insights for market-

assisted backcrossing in other crops, emphasizing the importance of

managing residual donor germplasm and generating multiple

versions during germplasm conversion for specific traits.

The findings from this section are illustrated in Figure 3.
6 Marker-assisted selection methods
and QTL studies

In the early development of marker-assisted selection (MAS),

simulations were primary utilized to assess its feasibility as either a

complement or replacement for conventional breeding methods.

The secondary goal was to optimize MAS integration into breeding

strategies for both allogamous and autogamous crops.

Simulation studies by Edwards and Page (1994) and Van Berloo

and Stam (2001) assessed the effectiveness of MAS compared to

phenotypic selection. They investigated various genetic structures,

parental populations, and crop species with different reproductive

systems. At this point in history, when researchers assessed the

potential of applying MAS to quantitative traits, studies found that

while MAS led to rapid initial gains, these improvements

diminished significantly after three to five cycles. MAS was

particularly effective in utilizing genetic diversity in more

heterozygous populations, outperforming phenotypic selection.

However, its effectiveness was limited by linkage disequilibrium

between markers and QTL, being effective for traits controlled by

fewer QTL, such as disease resistance and growth habits in

autogamous plants, but not yield.
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Despite these limitations, MAS at that time offered notable

advantages, including the ability to perform two selection cycles per

year for faster initial improvements, with conventional methods

potentially taking over in later stages (Edwards and Page, 1994).

MAS also provided more accurate predictions of superior parental

combinations for multiple traits compared to phenotypic selection

(Van Berloo and Stam, 2001). Thus, while MAS generally

outperformed phenotypic selection, its initial gains highlighted

the value of integrating MAS with traditional breeding methods

to maximize genetic potential.

Hospital et al. (1997) further explored MAS through

simulations and found that its response at low heritability levels

was more variable compared to phenotypic selection. Nonetheless,

MAS’s efficiency increased with larger population sizes, even for low

heritability traits. MAS was effective in fixing QTL with large effects

in early generations. However, while fixing QTL alleles with small

effects, the advantage was offset by a higher fixation rate of

unfavorable background alleles or an increased likelihood of

linkage drag, making MAS less efficient than phenotypic selection

over time. MAS operates by targeting favorable alleles linked to

specific markers, independent of a trait’s heritability (h²).

Nevertheless, heritability indirectly affects the efficacy of MAS, as

it reflects the proportion of phenotypic variation explained by

genetic factors. Traits with high h² facilitate more precise marker-

trait associations, enhancing the reliability of selection, whereas

traits with low h² may experience reduced accuracy due to a

stronger influence of environment. Consequently, while MAS is

not directly contingent on h², the strength of the genetic signal

remains a determinant of its success.

Overall, these studies emphasize MAS’s substantial initial

benefits in plant breeding, particularly in capturing genetic

diversity and facilitating rapid gains in early selection cycles. MAS

is especially effective in more heterozygous populations and for

specific traits such as disease resistance. However, the reliance on

linkage disequilibrium between markers and QTL presents

challenges, limiting MAS’s effectiveness for complex traits like yield.

In managing and optimizing marker-assisted selection (MAS),

Lande and Thompson (1990) highlighted that the effectiveness of
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MAS and the advantages of molecular markers depend on genetic

parameters and the selection strategy used. They emphasized that

large population sizes can enhance the detection of additive genetic

variance through marker associations, accelerating quantitative

trait improvement.

Defining practical population sizes is essential for cost-effective

breeding. Ooijen (1992) investigated the use of adjacent marker

pairs to improve QTL linkage information within specific

chromosomal segments. The study demonstrated that with 200

backcross or F2 individuals, there is a high probability of identifying

QTL accounting for at least 5% of the total variance. Although QTL

with larger genetic effects are mapped more precisely, challenges

remain for traits controlled by multiple minor effect genes. Ooijen

concluded that QTL mapping accuracy is influenced by trait

heritability, gene number, interactions, and marker distribution.

To enhance QTL effect estimation, he recommended increasing

sample sizes and testing environments.

Bernardo and Charcosset (2006) argued that targeting QTL

with large effects is more beneficial than including those with

smaller effects. Their findings indicated that marker-assisted

recurrent selection programs are most effective when focusing on

traits controlled by a moderately large number of QTL,

approximately 40. For traits governed by fewer genes, having

more genetic information correlates with a higher selection

response. In contrast, for traits influenced by 40 or 100 genes,

including all genes in the selection model results in a lower selection

response (Bernardo and Charcosset, 2006). Although these

conclusions are now considered intuitive, they were significant in

shaping subsequent research and practical MAS applications in

plant breeding.

Gimelfarb and Lande (1994) confirmed that using genetic

markers can effectively utilize linkage disequilibrium between

markers and QTL generated by crossing inbred lines. They

cautioned that merely increasing the number of markers does not

necessarily improve selection efficiency. Instead, the population size

under selection was identified as a more critical factor for MAS

efficiency, aligning with Lande and Thompson’s findings (1990).

Darvasi and Soller (1997) further refined molecular marker spacing
FIGURE 3

Flowchart demonstrating practical insights for phenotypic selection and traditional breeding methods, as informed by simulation studies. It outlines
how these methods can be optimized to balance trait selection and genetic diversity.
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in backcross and F2 linkage experiments through simulations,

providing formulas for calculating the optimal number of markers

based on factors like population size, and allele substitution effects,

and explained variance. Their recommendations offered practical

guidance for MAS strategy design.

In autogamous crops, MAS has been shown to improve

selection outcomes for obtaining superior genotypes compared to

traditional methods (Van Berloo and Stam, 1998). This aligns with

earlier findings suggesting MAS can outperform phenotypic

selection techniques. Van Berloo and Stam highlighted the

advantages of MAS when dominant alleles at QTL are linked in a

coupling phase—where loci on the same chromosome are co-

inherited more frequently. However, the benefits were moderated

by uncertainties in QTL map positions, underscoring the need for

precise QTL mapping. Charmet et al. (1999) further supported this

by finding that precise QTL location significantly impacts selection

when using inbred line parents to maximize favorable allele

accumulation. Fine-tuning QTL following initial identification

remains crucial in modern crop breeding.

Marker-assisted selection (MAS) offers improved accuracy in

parental selection and potentially quicker breeding cycles but tends

to be less efficient over time, particularly as the risk of fixing

unfavorable alleles increases in later generations. These

observations suggest that MAS should complement traditional

breeding methods to maximize genetic potential and ensure long-

term improvement. Kuchel et al. (2005) investigated integrating

restricted backcrossing and doubled haploid (DH) techniques in

MAS breeding strategies. They found that applying MAS at all three

stages of breeding was effective for achieving high frequencies of

desired outcomes and combining favorable traits. However, they

identified that applying MAS at two specific stages (BC1F1 and

haploid) was optimal. This approach increased genetic gain

compared to phenotypic selection and reduced overall costs by 40%.

A prevalent application of MAS is optimizing backcross phases

in breeding programs. Early simulations were crucial in refining this

method. Viicher et al. (1996) demonstrated that genetic markers

were effective for introgressing specific alleles and selecting the

desired background in backcross populations derived from inbred

lines. Their simulations showed that markers spaced 10–20 cM

apart could shorten the breeding process by one to two generations

compared to random or phenotypic selection methods. This time

reduction is essential for achieving genetic gain and delivering

products efficiently.

Hospital and Charcosset (1997) found that for generations 1 to

3, background selection on both carrier and non-carrier

chromosomes with equal weights is optimal. Selection for

recipient parent marker alleles should include both carrier and

non-carrier chromosomes. They indicated that manipulating no

more than four QTL simultaneously is advisable, requiring

approximately 1600 individuals to achieve a target genotype with

99% confidence, though using a pyramidal design can reduce this

number to 580.

Ribaut et al. (2002) similarly demonstrated that the selection

response in BC1 is significantly enhanced when the selectable

population size is fewer than 50, with diminishing returns above

100. Efficient selection is achieved by targeting loci in BC1 and BC2
Frontiers in Plant Science 08
combined with background selection in BC3. Specifically, a

population size of 10 in BC1 and BC2, and 100 in BC3, can

reduce the donor genome to below 5%, which is often desirable.

Peng et al. (2014) recommended a selection scheme involving five

generations of MAS for integrating up to 15 transgenic events. This

involves selecting for the event of interest in BC1 through BC3 with

a population size of 600, and for both the event and recurrent parent

germplasm in BC4 and BC5 with a population size of 400, using a

selection intensity of 1% for all generations.

These findings are summarized in Figure 4. The integration of

MAS has significantly enhanced the efficiency of backcross breeding

programs, particularly for allele introgression and background

optimization. Strategic marker use can expedite breeding cycles,

improving genetic gains and product delivery. Key aspects include

precise marker positioning, balancing foreground and background

selection, and managing the number of QTL. Effective background

selection in early generations and controlling QTL numbers are

essential for maximizing efficiency. Additionally, optimizing
FIGURE 4

Flowchart showcasing marker-assisted selection and QTL
management strategies derived from simulation research.
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selectable population sizes underscores the strategic role of MAS in

achieving targeted genetic outcomes.

As noted, the scarcity of marker-assisted selection (MAS)

methods and QTL studies in the literature over the past decade

reflects the substantial evolution in breeding technologies. This shift

is largely attributed to the emergence of genomic selection (GS).
7 Genomic selection

Emerging from the limitations of marker-assisted selection

(MAS), genomic selection has become the foundational

methodology in modern plant breeding. Since its introduction,

computer simulations have been essential in demonstrating and

optimizing genomic selection to achieve greater and more
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sustainable genetic gains. These insights are summarized

in Figure 5.

Two key simulation-based studies established the framework for

genomic selection before the term was widely recognized (Bernardo,

1999; Meuwissen et al., 2001). Meuwissen et al. (2001) established the

foundational principles of genomic selection. Their simulations used

approximately 50,000 marker haplotypes derived from a limited

number of phenotypic records within a simulated genome of 1000

cM, withmarkers spaced at 1 cM intervals. They found that predicting

genetic values frommarkers could significantly accelerate genetic gain,

especially when combined with reproductive techniques to shorten

generation intervals. Their research also demonstrated that genomic

selection could overcome the limitations of traditional MAS, such as

its restricted variance capture, overestimated QTL effects, and

discrepancies between mapping and breeding populations.
FIGURE 5

Flowchart illustrating practical schemes for implementing genomic selection, based on insights from simulation studies.
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7.1 Evaluating genomic selection versus
phenotypic and marker-assisted selection

The synthesis of findings across various studies highlights the

superior performance of genomic selection compared to traditional

phenotypic selection and MAS. Although genomic selection

accelerates the depletion of genetic diversity, it consistently yields

higher genetic gains per unit of time due to reduced breeding cycle

durations and improved accuracy in parent selection. This

advantage is particularly notable under conditions of low trait

heritability and complex genetic architectures. Regular updates to

training sets are essential to maintain the effectiveness of genomic

selection, regardless of genetic architecture (Muleta et al., 2019; Lin

et al., 2023). The integration of doubled haploid populations and

high-throughput phenotyping further enhances the efficiency and

stability of genomic selection, establishing it as a crucial tool in

modern breeding programs. Despite its benefits, genomic selection

accelerates the depletion of genetic variance compared to

phenotypic selection.

Bernardo (1999) bridges the gap between MAS and genomic

selection. He assessed the predictive accuracy of breeding values

derived from phenotype data alone versus a combination of

phenotype and markers. His findings showed that both methods

were similarly effective in predicting untested single crosses, across a

range of 10 to 100 QTL and trait heritabilities of 0.4 or 0.6. Bernardo

and Yu (2007) further demonstrated that genomic selection

provided a 6 to 43% greater response compared to marker-

assisted recurrent selection, with this effect being more

pronounced with a higher number of QTL and lower heritability.

Simulation studies consistently show that genomic selection

outperforms phenotypic selection for traits with low heritability and

polygenic architecture, such as yield, regardless of population sizes

or selection cycles (Gaynor et al., 2017; Muleta et al., 2019; Ali et al.,

2020; Silva et al., 2021; Lubanga et al., 2022; Chiaravallotti et al.,

2023; Fritsche-Neto et al., 2024). This advantage is particularly

evident in early selection cycles, with genomic selection reaching a

performance plateau after fewer cycles (Gaynor et al., 2017; Muleta

et al., 2019; Ali et al., 2020; Tessema et al., 2020; Lubanga et al., 2022;

Chiaravallotti et al., 2023; Fritsche-Neto et al., 2024).

As expected, genomic selection leads to a more significant

reduction in genetic diversity compared to phenotypic selection

(Gaynor et al., 2017; Muleta et al., 2019; Tessema et al., 2020; Silva

et al., 2021; Sabadin et al., 2022). This reduction is influenced by

factors such as population size and genetic architecture but can be

mitigated by retaining a larger number of individuals for future

generations and incorporating new breeding materials from outside

the program. Lin et al. (2023) found that parental populations of 15

exhibited the highest allele fixation, particularly when combined

with single-seed descent and speed breeding. Larger population

sizes can enhance selection intensity while preserving genetic

variance, leading to significant genetic gains and reduced

depletion of genetic variance (Muleta et al., 2019; Silva et al.,

2021; Fritsche-Neto et al., 2024).

In practical breeding applications, the size of breeding

populations is often constrained by limitations in phenotyping
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and genotyping capabilities. Silva et al. (2021) observed that

the number of families and their sizes significantly impact

genetic gains over 50 and 100 breeding cycles. More families

contribute to increased long-term genetic gains, while larger

population sizes are associated with enhanced short-term

gains. Despite these constraints, genomic selection generally

offers more advantages. Even when genomic and phenotypic

selection yields similar genetic gains, the ability of genomic

selection to bypass phenotyping costs often makes it preferable

(Lin et al., 2023).

However, some simulation studies suggest that phenotypic

selection can outperform marker-based selection strategies,

particularly under epistatic genetic models and reduced genotype-

by-environment interaction (Ali et al., 2020; Peixoto et al., 2023).

Muleta et al. (2019) found that in oligogenic architectures—where a

few genes with large effects control the trait—the number of

genomic selection cycles affected short-term genetic gains. Their

results indicated that while more cycles of genomic selection were

beneficial for maximizing genetic gain, phenotypic selection

achieved higher long-term gains before the fifth breeding cycle.

Phenotypic selection also maintained greater genetic variance

during early selection years, while prediction accuracy for traits

with oligogenic architecture declined more rapidly than for traits

with polygenic architecture (Muleta et al., 2019).

Addressing the enhancement of multiple traits simultaneously

in plant breeding requires a comprehensive approach. The genomic

selection index—a linear combination of genomic estimated

breeding values leveraging genomic markers to predict net genetic

merit and select parents from a non-phenotyped population—has

proven effective in delivering greater genetic gains per unit of time

compared to approaches based solely on phenotypic data (Ceron-

Rojas et al., 2015).

Gaynor et al. (2017) utilized simulations to propose a two-part

genomic selection program comprising: (i) a recycling component for

rapid population improvement, and (ii) a product development

component for generating commercial products and updating

genomic models. Their study showed that this scheme more than

doubled genetic gain compared to conventional breeding programs

due to shorter breeding cycles. Similarly, Sabadin et al. (2022) and

Fritsche-Neto et al. (2024) reported that genomic selection achieved

genetic gains 0.5 to 6 times higher than phenotypic selection,

attributed to reduced breeding cycle duration and enhanced

selection accuracy. Tessema et al. (2020) and Li et al. (2022) reached

similar conclusions, emphasizing that shorter breeding cycles were key

to the improved effectiveness of genomic selection.

Breeding strategies utilizing genomic selection also

demonstrated more stable genetic gains despite genotype-by-

environment interactions, whereas traditional programs showed

greater variability in genetic gains (Gaynor et al., 2017; Peixoto

et al., 2023). This stability arises from using genomic predictions

that incorporate multi-year historical data and markers designed to

minimize genotype-by-environment interaction effects, ensuring

optimal cohort selection (Bernal-Vasquez et al., 2022).

Conventional programs, in contrast, rely on phenotypic data from

a limited number of years. Bernal-Vasquez et al. (2022) showed that
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employing a kinship matrix to model breeding values over multiple

years, even with single-year data, improved the outcomes in

breeding programs.

Gaynor et al. (2017) also highlighted that applying genomic

selection at the head-row or progeny stage enhances parent

selection accuracy, crucial for successful breeding. Sabadin et al.

(2022) demonstrated that applying genomic selection to F2 and

evaluating F4 families phenotypically resulted in higher genetic

gains compared to other methods, including exclusive phenotypic

selection and rapid cycling from parental selection in F2. They

also found that preserving a larger number of individuals (48-

parent scenario) helped reduce genetic variance depletion and

allowed for long-term genetic gains. Lin et al. (2023) supported

these findings, noting that postponing line derivation to later

generations is advantageous for traits with low heritability,

offering a product development perspective. Silva et al. (2021)

suggested that parental selection at the F4 stage is often treated as

an early recycling generation due to limited and less reliable

phenotypic data.

In summary, these authors advocate for the strategic use of

genomic selection, emphasizing later-stage parental selection, for

example, F4 generation (Gaynor et al., 2017; Silva et al., 2021;

Sabadin et al., 2022; Lin et al., 2023). Their research highlights the

benefits of this approach in terms of precision and long-term

genetic gains while preserving a larger genetic pool. They argue

that later-stage selection provides more stable gains and maintains

genetic diversity better than early-stage selection.

In contrast, Li et al. (2022) found that selecting parents early in

the breeding cycle, at stages such as F1 or F2, yielded substantially

higher genetic gains compared to selection at later stages. They

emphasize that earlier-stage genomic selection can yield higher

immediate genetic gains, despite the moderate prediction accuracy.

This result aligns with Peixoto et al. (2023) corroborated this by

showing that early parental recycling, whether based on genomic or

phenotypic selection, produced greater and faster genetic gains

compared to scenarios where parental selection occurred after test

cross-evaluation.

In summary, the synthesis of simulation studies emphasizes the

advantage of selecting parents for recycling as early as possible while

considering selective accuracy and trait-related breeding value

estimates. Breeding programs equipped with high-throughput

phenotyping, extensive genotyping, or other advanced methods

can benefit from rapid-cycling strategies to maximize genetic

gain. However, it is crucial to set specific accuracy or heritability

targets for selecting parents to effectively address the complexities of

breeding, such as specific objectives, available genetic diversity, and

the balance between short-term and long-term gains.

For crops utilizing doubled haploids, rapid cycling within the

population improvement component of two-stage breeding

programs is part icular ly advantageous for managing

heterozygosity and advancing generations efficiently. In crops

where doubled haploid techniques are unavailable, it may be

necessary to incorporate an additional stage with phenotypic

assessments before yield testing to eliminate poorly segregating

individuals and expedite the advancement of promising ones.
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7.2 Evaluating different models in breeding
value estimation

Best Linear Unbiased Prediction (BLUP) is fundamental in

genomic selection, each offering unique advantages in optimizing

prediction accuracy across complex genetic architectures. BLUP,

utilized within mixed linear models, seeks to minimize bias by

accounting for both fixed and random effects. On the other hand,

Bayesian methods integrate prior knowledge with observed data,

allowing for continual refinement of probability estimates to

address uncertainty.

Meuwissen et al. (2001) provided early insights into these

methods, demonstrating that while BLUP achieved a prediction

accuracy of 0.73, Bayesian approaches, particularly those

incorporating marker haplotypes, improved accuracy to 0.85. This

early evidence underscored Bayesian methods’ potential to enhance

genomic selection performance.

Subsequent research has shown comparable performance

between BLUP-based methods (e.g., gBLUP, RR-BLUP) and

Bayesian methods (e.g., BayesB, LASSO), with minor differences

in accuracy and genetic gains across various models (Technow et al.,

2012; Wang et al., 2015; Yao et al., 2018; Silva et al., 2021;

Fernández-González et al., 2023). Bayesian approaches,

particularly BayesB and Bayesian LASSO, have demonstrated

superior accuracy and genetic gains in models accounting for

dominance effects, especially when traits are influenced by fewer

genes (Technow et al., 2012; Wang et al., 2018). BayesB, in

particular, is noted for its effectiveness in capturing genetic gains

and acce lera t ing outcomes in ear ly breeding cyc les

(Ramasubramanian and Beavis, 2021).

Certain BLUP variants, such as sBLUP (Super BLUP) and

cBLUP (Compressed BLUP), demonstrate distinct advantages

depending on the heritability of the traits. When compared to

Bayesian LASSO and gBLUP in prediction accuracy, sBLUP

outperformed these methods for Mendelian (simple) traits,

whereas cBLUP proved more effective for traits with low

heritability. In the cBLUP method, particularly for traits with low

heritability, grouping individuals based on kinship and maximum

likelihood (clustering) proved advantageous for estimating breeding

values. This approach outperformed other well-known methods,

likely due to replacing individual kinship with group kinship, which

enhances estimation accuracy and mitigates the challenges

associated with low heritability. However, it does not offer similar

benefits under conditions of high heritability. In another study, RR-

BLUP (Ridge Regression BLUP) demonstrated a slight advantage

over other methods for traits influenced by numerous minor genes,

making it a viable alternative (Wang et al., 2015).

Best Linear Unbiased Prediction (BLUP) is extensively applied

in the estimation of breeding values, renowned for its simplicity and

robustness in managing large populations with polygenic traits—

characterized by the cumulative influence of numerous genes with

small effects. A notable strength of BLUP is its capacity to minimize

bias by simultaneously accounting for fixed and random effects,

thereby delivering consistent predictions across varying scenarios.

Specific adaptations, such as cBLUP, exhibit heightened efficiency
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when applied to traits with high heritability. However, BLUP is not

without limitations. The method encounters challenges in

accommodating complex genetic architectures, particularly those

involving significant dominance effects, and exhibits reduced

accuracy for traits with low heritability. In such cases, alternative

approaches, such as Bayesian methods, often outperform BLUP.

Furthermore, its reliance on additive genetic models restricts its

adaptability to scenarios involving non-additive genetic interactions

or traits controlled by a small number of major genes.

Bayesian methods offer an effective alternative for breeding

value estimation, particularly for traits influenced by a few major

genes or dominance effects, where they often outperform traditional

approaches. Their flexibility allows the integration of prior

knowledge and adaptation to diverse genetic models. Methods

like BayesB and Bayesian LASSO are especially useful in early

breeding cycles, capturing genetic gains efficiently. However,

Bayesian methods are computationally intensive, which can be a

limitation in large-scale breeding programs, and reliance on prior

specifications may introduce bias if not properly defined. While

Bayesian methods excel in specific genetic contexts, BLUP remains

a reliable tool for polygenic traits with numerous small-effect genes,

ensuring consistent performance in various breeding scenarios.

In conclusion, the choice between BLUP and Bayesian methods

should be driven by the genetic architecture, population size, and

specific breeding objectives. Bayesian methods, such as BayesB, are

particularly beneficial for traits with fewer genes and in early

breeding cycles. In contrast, BLUP methods are robust for traits

with extensive QTL. RR-BLUP stands out for its flexibility and

consistent performance across diverse conditions. Thus, no single

model excels universally, emphasizing the need for tailored

approaches based on the breeding program ’s specific

characteristics and goals.
7.3 Analyzing the impact of genetic
parameters and architectures on gains

Increasing the size of breeding populations typically leads to

greater genetic gains with genomic selection, provided that breeding

objectives are well-defined and there is adequate. Extensive research

has consistently indicated this trend (Lorenz, 2013; Muleta et al.,

2019; Silva et al., 2021). However, it is important to note that the

accuracy of genomic recurrent selection predictions tends to decline

over generations. This decline is influenced by the trait’s genetic

architecture and population size (Muleta et al., 2019). The

population size can fluctuate due to various breeding operations

such as truncation selection, which reduces genetic diversity and

narrows the gene pool over generations. Additionally, other

breeding operations, like crossing and inbreeding, may further

impact the effective population size and the genetic variability

available for selection. As these factors alter the genetic structure

of the population, they can lead to reduced accuracy in genomic

predictions, especially when selecting for complex traits with

low heritability.

For traits with genetic architectures involving 40 or 400 QTL,

the selection response often plateaus after approximately 10 to 15
Frontiers in Plant Science 12
cycles (Ramasubramanian and Beavis, 2021). Conversely, traits with

more complex genetic architectures, such as those involving 4,289

QTL, can sustain selection responses for up to 30 to 40 cycles before

encountering limitations (Ramasubramanian and Beavis, 2021). In

this context, the numerous QTLs frequently exhibit significant

interactions with the environment, ultimately reducing the

heritability of the trait.

Heritability plays a critical role in determining genetic gain,

with higher heritability leading to greater gains across various

models and parental selection methods (Yao et al., 2018). Traits

with high heritability demonstrate greater prediction accuracy, as a

larger proportion of the phenotypic variation is attributed to genetic

factors, and the corresponding QTL exhibit reduced interaction

with environmental influences. In such cases, multi-trait analysis

can improve the accuracy of breeding value predictions for traits

with low heritability, particularly when these traits are correlated

with high-heritability traits, as compared to single-trait analysis

(Hayashi and Iwata, 2013). However, simulation studies

investigating the advantages of multi-trait analysis remain limited,

partly constrained by programming capabilities. To improve the

accuracy of genomic selection, increasing the number of initial

parents in the breeding cycle can be advantageous (Chiaravallotti

et al., 2023). Modeling marker effects as population-specific is

beneficial under low linkage disequilibrium and enhances

prediction accuracy at lower marker densities (Technow et al.,

2012). Additionally, incorporating dominance effects into models

can substantially improve prediction accuracy, particularly for

populations with convergent parentage (Technow et al., 2012).

The effectiveness of genomic selection in introgressing large QTL

is influenced by the trait’s genetic architecture, breeding strategy,

and the number of initial parents, highlighting the complexity

involved in optimizing genomic selection methods (Chiaravallotti

et al., 2023).
7.4 Analyzing the impact of different
training set configurations

The studies highlight the importance of optimizing training

populations and marker densities in genomic selection to enhance

prediction accuracy and genetic gain. In general, using lines in the

test set that are closely related to the training population improves

genomic breeding value (GEBV) accuracy by having a close

relationship (Hickey et al. , 2014; Muleta et al. , 2019;

Ramasubramanian and Beavis, 2021; Sabadin et al., 2022;

Chiaravallotti et al., 2023). When closely related to the test set,

smaller, well-structured training sets with low to mid-density

markers effectively capture genetic information, especially with

high linkage disequilibrium (Gorjanc et al., 2017). Regular

updates to the training population with top-performing lines

further boost genetic gain and prediction accuracy.

Expanding training and prediction sets with low-density

genotyping and imputation is a cost-effective strategy to improve

selection responses. Although low-density genotyping may initially

reduce prediction accuracy, strategic imputation and training set

updates can counter this, achieving results comparable to high-
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density genotyping. Targeting relevant populations enhances

genetic relationships between training and prediction sets, leading

to better prediction accuracy and breeding outcomes.

Simulation studies indicate that for biparental populations

closely related to selection candidates, using 200–500 markers and

about 1,000 phenotypes can achieve effective breeding value

accuracy (Hickey et al., 2014; Gorjanc et al., 2017). Increasing

marker density beyond 10,000 markers provides no additional

benefit (Hickey et al., 2014). Phenotyping only a subset of

doubled haploid (DH) lines is usually sufficient to predict the

performance of the remaining lines. However, while studying

single biparental population of doubled haploid lines, Lorenz

(2013) found that including all DH lines in the training set

significantly improves prediction accuracy compared to excluding

part of them, suggesting that phenotyping a subset might be less

effective. Budget constraints should guide these decisions.

Training sets with full-sibling and half-sibling families generally

achieve high prediction accuracy (Melchinger et al., 2023a;

Melchinger and Frisch, 2023b). Including unrelated families is

discouraged due to potential negative impacts on prediction

outcomes (Melchinger et al., 2023a; Melchinger and Frisch

2023b). To avoid these issues, unrelated families should be

excluded, and a moderate number of genotypes per family (about

50) should be maintained. Training with full-sibling families,

compared to half-sibling families, leads to greater selection gains

in hybrid breeding programs, particularly where specific combining

ability (SCA) effects are crucial.

There are two main strategies for genotyping: high-density

genotyping, which is accurate but costly, and lower-density

genotyping combined with imputation, which is more cost-

effective yet retains acceptable precision. Gorjanc et al. (2017)

found that accurate imputation is a cost-effective approach by (i)

reducing genotyping costs per individual for both training and

prediction sets and (ii) improving prediction accuracy by enlarging

training sets. Using nearly 100 DHs, they reported imputation

accuracies of 0.71 across families and 0.42 within families with

high-density genotypes. Imputation led to a modest decline across

families (from 0.71 to 0.66) compared to within families, from 0.42

to 0.34 (Gorjanc et al., 2017), likely due to the substantial genetic

diversity represented and its connection to the training set.

Accuracy improved most when imputed genotypes were used for

both training and prediction sets (Gorjanc et al., 2017). For cross-

family predictions, accuracy plateaued with marker densities

between 100 and 50 low-density markers, while for within-family

predictions, the plateau occurred between 200 and 100 low-density

markers (Gorjanc et al., 2017).

Both modelling for cross-pollinated genomes, Gorjanc et al.

(2017) and Do Vale et al. (2022) offer complementary perspectives

on the trade-offs between low-density genotyping, imputation, and

marker density in breeding programs. Gorjanc et al. demonstrated

the effectiveness of expanding training and prediction sets through

low-density genotyping and imputation, showing that the use of

low-density genotypes, followed by imputation with as few as five

segregating markers per chromosome, could achieve prediction

accuracy and selection response comparable to high-density

genotyping. They found that the response plateaued when 100
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low-density markers were used, indicating diminishing returns with

increased marker numbers. Imputation with about 20 segregating

markers per chromosome still yielded satisfactory results in

selection response and prediction accuracy, especially in non-

phenotyped families, where genotyping with 50 low-density

markers achieved a minimum accuracy of 0.3. In contrast, Do

Vale et al. (2022) highlighted that increasing marker numbers can

mitigate the decay of linkage disequilibrium (LD) over cycles,

potentially improving long-term selection responses. They argued

that while low-density marker panels offer benefits such as reduced

multicollinearity, faster computation times, and cost-efficiency,

high-density panels ultimately provide superior long-term gains,

especially when the training set is not frequently updated. Their

analysis suggests that the advantage of marker reduction through

LD-based strategies is limited to a single cycle, as the accuracy of

selection declines significantly in subsequent cycles, emphasizing

the long-term value of high-density genotyping. Ultimately, the

choice of marker strategy depends on the specific breeding

objectives, resource constraints, and the need for sustainable

improvements across multiple cycles.

Prediction accuracy is influenced by population structure, trait

heritability, training set size, and the precision of genomic

relationships at QTL regions. Regular updates are crucial for

maintaining effective breeding programs (Hickey et al., 2014;

Cuyabano et al., 2024). Research indicates that prediction

accuracy typically declines within the first two cycles (Fritsche-

Neto et al., 2024) and updating training sets generally enhances

accuracy by preserving linkage disequilibrium between markers and

QTL (Muleta et al., 2019; Ramasubramanian and Beavis, 2021;

Sabadin et al., 2022; Chiaravallotti et al., 2023).

Trait heritability is a significant factor in the loss of prediction

accuracy (Muleta et al., 2019; Ramasubramanian and Beavis, 2021).

Ramasubramanian and Beavis (2021) found that genomic

prediction models performed best when updated with data from

up to 14 selection cycles, with optimal cycles varying by QTL count:

10 cycles for 40 QTLs and 30 cycles for 4289 QTLs. Results also

depended on QTL effect sizes and whether effects were additive or

dominant. Larger training sets, incorporating diverse conditions,

offered more effective guidance for future selection decisions. Their

study also revealed that static training sets when using genomic

selection combined with a chain-rule mating design, can potentially

capture up to 62% of the greatest genetic potential, even with

advanced methods like RR-REML and Bayesian approaches

(Ramasubramanian and Beavis, 2021). It worth mentioning that

they considered 20 family designed with a common parent in all

crosses with 100 F5 lines of family size. Expanding both the training

population size and the number of replications improved prediction

accuracy, with population size being particularly beneficial when

genotyping costs were low, or heritability was high. Consistent with

Lorenz (2013), phenotyping all doubled haploid (DH) lines resulted

in greater genetic gains, making this approach preferable when

feasible. Additionally, dispersing populations across multiple

environments improved selection outcomes (Lorenz, 2013).

Sabadin et al. (2022) found that integrating top-performing

parental lines from each cycle into long-term breeding schemes—

while maintaining genetic diversity to balance allele frequencies and
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better fit the prediction model—yielded the highest genetic gains.

They recommended retaining data from the most recent three

generations to optimize genetic relationships between the training

set and the target population. This method, referred as TSGPO, was

noted for its ease of implementation and consistent performance.

Fernández-González et al. (2023) demonstrated that integrating

test set information into the training set—referred to as targeted

optimization—achieved the highest accuracies, particularly for low

heritability traits like yield. For untargeted optimization approach,

they advised that minimizing the average genetic relationship

within the training set as a more reliable strategy than

maximizing the relationship between the training and test sets.

This finding is particularly noteworthy, as it challenges the widely

accepted assumption that maximizing the relationship between

training and test sets is essential for enhancing prediction

accuracy (Wallace et al., 2018). Instead, it highlights that a

universal approach may not be suitable in all cases.
7.5 Evaluation of different genomic
selection strategies

Evaluating genomic selection strategies reveals a complex

balance between short-term gains and long-term genetic

potential. Rapid-cycling genomic selection programs, which

initiate selection and parental recycling earlier, often surpass

traditional phenotypic selection methods. This advantage arises

from the reduced time required for parental recycling and the

development of new cultivars, with both the rapid-cycling process

and the genomic selection components contributing significantly to

this efficiency. Advanced strategies such as Optimal Population

Value Selection (OPV), Genomic Optimal Contribution Selection

(GOCS), Optimal Haploid Value (OHV), and Weighted Genomic

Selection (WGS) effectively preserve rare favorable alleles, achieve

significant genetic gains, and ensure long-term genetic diversity,

highlighting the trade-offs in optimizing breeding success.

Gaynor et al. (2017) proposed a two-part genomic selection

program consisting of (i) a rapid population improvement

component through genetic gain recycling, and (ii) a product

development component that creates commercial products and

updates genomic selection models with new data. Their research

demonstrated that genetic gains were 1.31 to 1.46 times greater than

those achieved with traditional genomic selection methods. The

approach involving recycling parental lines from head-rows for

population improvement yielded superior results, although these

gains were inversely related to the depletion of genetic variability in

subsequent seasons. Addressing this challenge will be critical for

future strategies.

Gorjanc et al. (2017) tackled the challenge of balancing short-

term and long-term genetic gains by proposing optimal cross-

selection within rapid recurrent genomic selection programs.

Their approach enhanced the efficiency of converting genetic

diversity into genetic gain, reducing the loss of genetic diversity

and the decline in genomic prediction accuracy that often

accompanies rapid cycling.
Frontiers in Plant Science 14
Goiffon et al. (2017) found that the Optimal Population Value

(OPV) method achieved superior genetic gains over the first ten

generations compared to other methods. OPV and Genotype Building

(GB) showed better long-term responses than basic genomic selection,

WGS, and OHV. However, genomic selection and WGS provided

rapid and significant improvements in GEBVs before reaching a

plateau by generation 4, proving valuable in specific contexts.

OPV, GB, and OHV were more effective at preserving genetic

variance within breeding populations over time compared to

genomic selection or WGS. OPV, which evaluates the genetic

merit of selection candidates rather than using truncation

selection, is particularly useful for large, commercially significant

cohorts. OPV and OHV also excel at maintaining rare favorable

alleles, which might otherwise be underrepresented in training sets

due to their infrequent occurrence or unique characteristics.

Beukelaer et al. (2017) compared Genomic Optimal

Contribution Selection (GOCS), which limits genomic

relationships among selection candidates, and Weighted Genomic

Selection (WGS) with basic genomic selection. They found that

GOCS and WGS achieved similar long-term genetic gains and

inbreeding rates, but WGS slightly reduced short-term genetic gain

compared to basic genomic selection. Alternative strategies such as

IND-HE (focusing on heterozygosity) and IND-RA (focusing on

rare alleles) demonstrated superior long-term gains and a better

balance between genetic merit and diversity than GOCS or WGS,

remaining effective across varying trait heritabilities and initial

training population sizes. As outlined by Beukelaer et al. (2017),

IND-HE aims to balance genetic gain and expected heterozygosity,

seeking to control the inbreeding rate, defined as the relative decline

in expected heterozygosity calculated from SNP markers.

Additionally, IND-RA focuses on preserving rare alleles by

incorporating them into the selection process.

Ramasubramanian and Beavis (2021) found that WGS

produced greater responses in longer selection cycles compared to

unweighted basic genomic selection, although it initially yielded

lower response rates than phenotypic selection and basic genomic

selection. They concluded that the effectiveness of genomic

selection depends on the number of simulated QTL and trait

heritability, with RR-BLUP offering better responses early on and

WGS excelling in later cycles. Combining strategies can leverage

different approaches’ strengths, mitigating costs, errors, and time

requirements associated with phenotypic selection.

Akdemir et al. (2019); Moeinizade et al. (2019); Silva et al.

(2021); Ramasubramanian and Beavis (2021), and Sabadin et al.

(2022) contribute to the growing understanding of optimized

selection strategies in breeding programs, offering insights into

the balance between short-term genetic gains, long-term

sustainability, and genomic advancements. Akdemir et al.

demonstrated that multi-objective optimized parental proportion

approaches, which balanced genetic variance and genomic

estimated breeding values, yielded 20-30% higher outcomes over

extended breeding cycles , outperforming index-based

selection methods.

Silva et al. (2021) and Ramasubramanian and Beavis (2021)

focused on selection methods within breeding cycles, highlighting
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the nuances of family-based selection. Silva et al. found that while

across-family selection benefited short-term gains, within-family

selection proved more effective for long-term improvements, with

optimal results emerging at selection intensities between 7.5% and

10%. Their work emphasized that using 100 families with 150

individuals per family maximized genetic gains over ten cycles.

Ramasubramanian and Beavis, in a similar vein, noted that genomic

selection through RR-BLUP combined with recombination of high-

merit parents within a hub network design was particularly effective

in the first 5 to 10 cycles, further supporting the utility of family-

based and genomic strategies for early-cycle improvements.

Building on these findings, Sabadin et al. (2022) refined

genomic selection methods, demonstrating that a two-stage

approach combining genomic selection in the F2 generation with

phenotypic selection in the F4 produced 20% higher genetic gains

than fast-recycling methods that skipped phenotyping. Their

research highlighted the trade-offs between increasing selection

cycles and the necessity of updating training sets to maintain

selection effectiveness. This two-stage approach proved more

advantageous than rapid cycling methods that relied solely on

genomic selection in the early stages, reinforcing the importance

of a balanced approach to maximize genetic gain over time.

In hybrid crop breeding, programs using high-density markers

(10,000 or more) and QTL-level genotyping achieved greater

genetic gains and heterosis compared to those using low-density

and SNP markers (De Jong et al., 2023). Genomic approaches for

predicting single-crosses were found to be more effective and

simplified compared to rapid-cycling recurrent genomic selection

and cyclical tester updates (Fritsche-Neto et al., 2024), though

combined applications of these methods hold potential.
8 Multi-trait selection

Hayashi and Iwata (2013) and Akdemir et al. (2019) explore

multi-trait genomic selection, offering complementary insights into

improving prediction accuracy and genetic gains while managing

program constraints. Hayashi and Iwata demonstrated that multi-

trait Bayesian analysis, especially for low-heritability traits

correlated with high-heritability traits, enhances genomic

breeding value predictions. Although multi-trait analysis did not

consistently outperform single-trait analysis for uncorrelated traits,

its effectiveness in leveraging trait correlations makes it valuable for

breeding programs targeting interrelated traits.

Akdemir et al. (2019) advanced this by incorporating multi-

objective optimization frameworks, such as the MOOB approach, to

achieve sustainable gains across multiple traits. Their method

showed 20–30% higher long-term gains compared to traditional

approaches like tandem and index selection. While Hayashi and

Iwata focused on trait correlations, Akdemir et al. highlighted the

importance of maintaining genetic diversity and optimizing

parental contributions to ensure breeding population viability.

The MOOB framework balances genetic variance, accuracy, and

gains, addressing practical challenges such as the difficulty of

assigning economic weights in index selection.
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Both studies emphasize strategies that accommodate the

complexities of multi-trait breeding. Hayashi and Iwata’s findings

align with Akdemir et al.’s conclusion that methods exploiting trait

interdependence or optimizing multiple objectives outperform

traditional single-trait approaches. Moreover, the MOOB

framework’s focus on genetic diversity preservation complements

Hayashi and Iwata’s emphasis on accurate prediction, offering a

comprehensive approach for breeding programs targeting long-

term sustainability and trait improvement. Together, these

approaches demonstrate the potential of advanced genomic tools

and optimization techniques to address the multi-dimensional

challenges of modern breeding.
9 Inbreeding, heterosis and epistasis

Studies highlight the challenge of balancing genetic gain with

inbreeding in genomic selection, emphasizing the need for refined

approaches. Beukelaer et al. (2017) found that genomic optimal

contribution selection (GOCS) and genomic selection (GS) offer

comparable long-term gains but struggle with inbreeding control.

GOCS fails to achieve an optimal trade-off, while Goiffon et al.

(2017) showed that weighted genomic selection (WGS)

better controls inbreeding by targeting rare favorable alleles,

offering a better balance. However, methods like GOCS and IND-

OC lead to higher long-term gains but incur short-term penalties

on progress.

Sabadin et al. (2022) noted that GS accelerates inbreeding in

self-pollinated crops, depleting genetic variance more quickly

than phenotypic selection. These findings underscore the need

for updated training sets and strategies to preserve diversity

while maximizing gains. GOCS and WGS each offer benefits

but need continuous refinement to optimize long-term

genetic improvement.

Advancements in genomic prediction models for hybrid

breeding highlight the impact of marker density. De Jong et al.

(2023) reported that high-density SNP markers generated 1.72

times more heterosis than low-density markers and 2.06 times

more than QTL genotypes. Moreover, initial germplasm grouping is

unnecessary to achieve high heterosis (Cowling et al., 2020). Models

incorporating dominance effects improved heterosis by 1.44 times,

emphasizing the value of capturing dominance interactions.

Combining high-density markers with dominance-inclusive

models enhanced prediction accuracy and genetic progress.

Additionally, optimizing tester selection from previous cycles

advanced genetic composition, complementing heterotic patterns

(Melchinger and Frisch, 2023b).

Epistatic genetic architectures also affect selection strategies. Ali

et al. (2020) showed that, under additive models, GS outperformed

phenotypic selection (PS), but PS was more effective under epistatic

models. Wang et al. (2004) found that dominance and epistasis slow

genetic progress in wheat breeding, as epistasis stabilizes variance

but hinders allele fixation. This suggests breeders should balance

genomic and phenotypic approaches, integrating genetic

architecture insights to optimize long-term selection outcomes.
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10 Cost analysis

Hospital and Charcosset (1997) emphasized the benefits of

combining foreground and background selection in marker-

assisted backcross programs for introgressing quantitative trait

loci (QTL). Pyramidal designs, where QTL are monitored

sequentially, optimize genomic similarity with the recipient

parent while minimizing costs when paired with appropriate

population sizes. Kuchel et al. (2005) demonstrated the economic

advantage of integrating marker-assisted selection (MAS) at the

BC1F1 and haploid stages in wheat breeding, showing a 40% cost

reduction and greater genetic gain compared to phenotypic

methods. These findings highlight the importance of aligning

genotyping and phenotyping for maximum efficiency.

In genomic selection, Lorenz (2013) and Hickey et al. (2014)

focused on maximizing genetic gain through effective resource

allocation. Lorenz ’s simulations showed that increasing

population size and phenotyping all DH lines maximized genetic

gain under constrained heritability and genotyping costs. Hickey

et al. suggested that combining phenotypic data from related

populations improves prediction accuracy while reducing time

and cost penalties. Recent advancements in low-density

genotyping and imputation, as demonstrated by Gorjanc et al.

(2017), can reduce genotyping costs by up to 87% with minimal

loss in prediction accuracy. Using as few as 50 segregating markers

per genome can yield a high return on investment (5.67 times the

baseline), making genomic selection more accessible for early-

generation selection.
11 Genotype-by-
environment interaction

Studies by Buntaran et al. (2022) and Li et al. (2022) emphasize

the need for refined selection strategies to address genotype-by-

environment (GxE) interactions in genomic selection. Buntaran

et al. showed that adjusting selection to environmental factors like

drought or excess rainfall is critical for maintaining genetic

progress, especially when environmental fluctuations bias

breeding value estimates. Li et al.’s simulations focused on

complex traits, such as grain yield and disease resistance, where

GxE plays a significant role.

The impact of model parameters, selection intensities, and

breeding strategies on long-term outcomes is further explored by

Silva et al. (2021) and Covarrubias-Pazaran et al. (2022). Silva et al.

highlighted GxE variance as a source of non-heritable variation,

stressing the need for precise GS model parameterization to prevent

genetic erosion. Covarrubias-Pazaran et al. simulated genotype-by-

year and genotype-by-location interactions, offering valuable

insights for improving program efficiency. However, better

representation of GxE, particularly interactions across years, is

still needed in simulation studies.

GxE models significantly impact genetic progress by enabling

the use of environment-specific genetic performance. In the short

term, they enhance trait prediction and optimize selection strategies
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for specific environments. In the long term, they support developing

resilient germplasm with stability across diverse conditions.

Strategies to leverage GxE include using selection indices tailored

to environments, prioritizing traits with moderate to high

heritability, incorporating genomic predictions, and conducting

multi-environment trials to align GxE insights with breeding goals.
12 Software tools

Simulations are crucial in breeding programs, with several R

packages offering comprehensive solutions for various needs.

AlphaSimR is highly cited for its flexibility in modeling complex

genetic architectures, selection schemes, and long-term strategies.

Adam is essential for studies involving structured populations,

tracking genetic inheritance in crossing programs. Synbreed

excels in genomic prediction and analysis using SNP data.

MoBPS is a modular and versatile tool for accurately simulating

hybrid and genomic breeding programs. QU-LINE, a pioneer in

simulating quantitative traits, remains valuable for modeling

additive and epistatic effects in classical genetics. PedigreeSim

specializes in simulating crosses and genetic recombination in

structured populations, often used for inheritance and lineage

management studies.
13 Conclusion and prospect

In plant breeding and genetics, simulations serve as

mathematical models that replicate real-world biological

conditions to address specific challenges and phenomena. Their

growing importance stems from the necessity to optimize resource

use in relation to program scale and genetic gains. The complexities

of multi-trait selection make simulations crucial and challenging, as

breeding pipelines are dynamic, influenced by business decisions,

advancements in genotyping technologies, and fluctuations in

resource allocation from year to year.

Simulations offer significant advantages by allowing researchers

to explore diverse scenarios, genetic models, and methodologies,

helping them identify the most effective strategies for developing

target cultivars. These models facilitate the evaluation of genetic

gain under various conditions, simulating entire or partial breeding

programs. This capability enables comparisons of different breeding

strategies by integrating genetic data, crossing schemes, propagation

methods, population sizes, selection intensities, and the number of

generations involved.

As breeding programs evolve and adopt new methodologies, the

demand for simulations to assess their benefits and explore

alternatives remains critical. Future research in this area is likely

to focus increasingly on genetic diversity, pre-breeding efforts, and

advances in genomic selection strategies. Simulations will continue

to play a pivotal role in shaping the future of plant breeding by

providing insights that help refine breeding pipelines and maximize

genetic gains.

Studies highlight the need to align breeding strategies with trait

heritability, selection timing, and genetic diversity, while accounting
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for genotype-environment interactions to minimize bias in early

selection. Genomic selection enhances genetic gains by accelerating

breeding cycles and optimizing parent selection, particularly for

traits with low heritability and complex genetic structures. Regular

updates to training sets are essential, irrespective of the genetic

architecture. Bayesian methods are effective in early breeding stages

with fewer genes, while BLUP is more suitable for traits with

multiple QTL, and RR-BLUP offers flexibi l i ty across

varying conditions.

Larger populations yield greater gains when clear objectives and

appropriate germplasm are present. Updating with top-performing

parentals improves accuracy and gains. Low-density genotyping,

combined with imputation, provides a cost-effective alternative to

high-density genotyping with comparable results. Evaluating

genomic selection requires balancing short-term gains with long-

term potential. Rapid-cycling programs are particularly effective.

Future research in plant breeding and genetics using

simulations is poised to explore several promising avenues to

enhance models and their applications. One key focus area may

involve refining simulations to better capture genotype-

environment interactions, particularly in the context of

climate challenges.

Another potential direction for research is the expansion of

simulations to support multi-genomic selection frameworks. As

omics technologies continue to advance, future studies may aim to

integrate multiple layers of data, such as epigenetics and

transcriptomics, into simulations. This approach would establish

a connection with the previously mentioned genotype-environment

enhancement opportunity, while also contributing to a more

comprehensive understanding of the mechanisms through which

genetic networks influence trait expression.

There is significant potential in combining simulation models

with artificial intelligence and machine learning algorithms. These

technologies could be harnessed to optimize breeding pipelines by

automatically identifying patterns, predicting outcomes, and

dynamically adjusting selection criteria in real time. This

approach would allow breeding programs to become increasingly

adaptive and data-informed, facilitating faster genetic gains and

greater breeding efficiency, with the primary focus on delivering

value to farmers and consumers.

Finally, another critical focus is expanding simulations to

support multi-trait selection frameworks, while refining key
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breeding parameters such as parental number, population size,

and selection timing in both phenotypic and genomic programs.

It is worth noting that the exploration of various genomic selection

strategies remains a relevant and continually evolving area of

research, as this approach becomes increasingly routine in

breeding programs.
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