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Tropical karst habitats host a rich plant diversity, of which many species are edaphic

specialists with narrow distribution ranges. Many of these plants are expected to be

highly vulnerable to global climate change as a consequence of the substantial

fragmentation of karst formations in combination with edaphic preferences and

dispersal limitations. In recent years, the application of species distributionmodels to

predict range under future climate scenarios has increasingly become a popular tool

to guide conservation management approaches. Here, we examined the impact of

climate change on the genus Begonia in Thailand using an ensemble modelling

approach. The models incorporated climatic data and the geological characteristics

of karst formations to reliably predict the distribution of species that reside within

karst habitats. Our results revealed that the diversity of Begonia species in karst

environments is primarily influenced by key climatic factors, including the mean

temperature of thewettest quarter and annual precipitation, alongwith geographical

features such as karst formations. Together, these elements significantly shape the

distribution patterns of Begonia diversity in these unique habitats. Under current

climatic conditions, clusters of suitable habitats for Begoniawere found in Northern,

South-Western, and Southern Thailand. The employed scenarios for future warmer

climates converged to predict a substantial loss of currently suitable habitats.

Applying the moderate SSP245 scenario, the model predicted range losses of

32.46% in 2050 that accumulate to 38.55% in 2070. Notably, more worrying

predictions were obtained by applying the worst-case (SSP585) scenario, which

projected a range loss of 37.73% in 2050 and increasing to 62.81% in 2070. In turn,

the gain by areas becoming suitable was much lower than the loss. These results are

highly consistent with the predicted high vulnerability of karst plants to global

climatic change. Conservation efforts require taking into account these predictions

by focusing on two key actions. Firstly, protecting areas where occurrences of
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Begonia are predicted to be less affected by climate change. The assignment of

these areas to national parks thus far has not been achieved yet. Secondly,

establishing practical conservation strategies for Begonia species occurring

preliminary or even exclusively in karst landscapes.
KEYWORDS

climate change, conservation, ensemble model, habitat preferences, plant species with
extremely small populations, species distribution model
1 Introduction

Karst formations formed on soluble rocks such as limestone and

marble (Clements et al., 2006) are known to be home to a diverse

range of ecological specialists and consequently many endemic

species with extremely small populations (Clements et al., 2006;

Geekiyanage et al., 2019; Hughes, 2017). Furthermore, karst

habitats are key examples of the growing body of evidence

supporting the crucial role of edaphic properties, alongside

climatic conditions, in shaping the spatio-temporal patterns of

plant diversity (Rajakaruna, 2004, 2018; Hulshof and Spasojevic,

2020). In turn, karst ecosystems are considered extremely fragile

ecosystems that are highly vulnerable not only to loss of habitat as a

consequence of mining activities and other human- or natural-

induces calamities (Veni et al., 2001; Zhao and Hou, 2019; Zhang

et al., 2021). In particular, tropical karst habitats have arguably not

received the urgently required attention in conservation efforts

(Xiao and Weng, 2007; Zhu et al., 2017; Hughes, 2017). The

diverse microhabitats of karst ecosystems foster a high degree of

species endemism (Du et al., 2017; Meng et al., 2024). Many plant

species found in karst landscapes have small populations and often

exhibit highly fragmented distribution ranges as a consequence of

the topographic structuring of karst formations (Du et al., 2017; Hu

et al., 2023). Plant species that occur preferably or exclusively in

karst habitats are expected to be especially vulnerable to global

climate change because of the high fragmentation of karst

landscapes (Enquist et al., 2019; Hannah et al., 2020; Urban,

2015). Monitoring the plant diversity of these habitats is crucial

to achieving the target of zero plant extinction (Corlett and

Tomlinson, 2020; Geekiyanage et al., 2019; Hulshof and

Spasojevic, 2020; Radbouchoom et al., 2024), which requires

substantial improvement of the quantity and quality of species

records as well as the analytical procedures to be utilized to predict

the extinction threats under current and future climatic conditions

which are in turn urgently needed to prioritize conservation areas

and measurements to protect these threatened plant species and

their vulnerable habitats (Xu et al., 2021).

Species Distribution Modelling (SDM) are now widely utilized to

predict the distribution ranges of plant species by focusing on the

relationship between species and abiotic environment factors by

focusing on the Hutchinsonian niche occupation (Guisan and
02
Thuiller, 2005). Therefore, SDMs are expected to enhance our

capacity to elucidate species distribution patterns and their responses

to current and future environmental changes with climate data as

predictors (Elith and Leathwick, 2009; Wiens et al., 2009) and are

subsequently employed in a wide range of applications (Pearson, 2010),

including the establishment of conservation management plans

targeting threatened species or vulnerable habitats (Wang et al., 2016;

Spiers et al., 2018; Chavy et al., 2019; Sofaer et al., 2019; Supsup et al.,

2023; Stas et al., 2020; Parveen et al., 2022), biodiversity assessment

predicting future species’ distributions under climate change (Liu et al.,

2021; Soilhi et al., 2022), and management of invasive species (Panda

and Behera, 2019; Zhang et al., 2021). Whereas the vast majority of

studies employing SDMs still used exclusively or predominantly

climatic factors, the incorporation of edaphic data into plant species

distribution models has proven to improve the predicting power of

SDMs for plant species (Beauregard and de Blois, 2014; Bertrand et al.,

2012; Roe et al., 2022; Obico et al., 2023). The improved accuracy

achieved by including both climatic and edaphic predictor variables is

particularly important for studies focusing on plant species with limited

geographic ranges at finer spatial scales (Austin and Van Niel, 2011).

The mega-diverse genus Begonia L. comprises about 2,151

species distributed across tropical and subtropical regions of the

world, with the exception of Australia where this genus is missing

(Hughes et al., 2015; http://padme.rbge.org.uk/Begonia). Begonias

can thrive in a wide range of habitat types, while the occurrence of

the majority species is arguably restricted to a narrow geographical

range as a consequence of highly specialized environmental

preferences in particular adaptation to edaphic conditions (Chung

et al., 2014; Goodall-Copestake et al., 2009; Kiew, 1998; Kiew et al.,

2015; Phutthai et al., 2009, 2014, 2019). Therefore, many species

belonging to this genus are expected to be highly vulnerable to

extinction threats due to their ecological specialization (narrow

Hutchinsonian niche occupation) and often extremely small

population size (Pimm, 2021). Conversely, plant species with a

small distribution range are often overlooked, resulting in a general

trend to underestimate their contribution to the regional or global

species diversity. To overcome these challenges, it is necessary to

enhance our efforts to document the spatial distribution of these

plants, their ecological preferences, and population sizes through

enhanced research efforts. Improving our understanding of the

influence of edaphic factors such as karst landscapes on Begonia
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distribution patterns is urgently needed but hampered by the

restricted efforts to study the ecological preferences of these plants.

The Begonia diversity of Thailand is arguably an outstanding

example of addressing this research gap because this diversity is

extremely well-documented as a consequence of research efforts in

recent years. Currently, 61 species of Begonia have been reported to

occur in Thailand (Hughes et al., 2015; Phutthai et al., 2019;

Radbouchoom et al., 2023), of which 40% are considered country

endemics. In the context of this study, over 70% of Thailand’s

Begonia occurs on karst formations (Phutthai et al., 2009). Utilizing

the well studied Begonia diversity of Thailand as a case study, this

study aims to elucidate the role of the edaphic preferences to karst

formations in the context of their vulnerability to extinction threats,

especially to anthropogenic-induced climate change. By doing so,

we established clear evidence for using Begonia as a case study to

investigate and forecast the future of high-habitat preference plants

in karst regions by employing an ensemble distribution model to

determine the environmental factors that affect the distribution of

Begonia. Furthermore, through future forecasting predictions, we

were able to assess preliminary conservation efforts for Begonia

species. As a consequence, this study highlights the importance of

understanding the impact of karst landscapes as a meaningful factor

limiting the distribution range of Begonia under current and future

climate scenarios. In particular, this study aimed to: 1) identify the

environmental variables that shape the Begonia diversity occurring

on karst formations in Thailand; 2) predict the current and future

distributions of Begonia under two CMIP6, the socioeconomic

narratives or “Shared Socioeconomic Pathways” (SSP245 and

SSP585) for the 2050s and 2070s; and 3) identify high-priority

conservation areas and enhance the understanding of the ecological

adaptations, ranges, and conservation status of the diverse

genus Begonia.
2 Materials and methods

2.1 Study area

Thailand is situated in the Asia-Tropical vascular plant diversity

dark spot because of the Linnean andWallace shortfalls to document

the rich diversity of this area (Ondo et al., 2024). More specifically,

Thailand is part of the Indochinese subdivision of Southeast Asia,

with the Peninsula forming a bridge between Indochina and the

Malay Archipelago (de Bruyn et al., 2014). Thailand boasts a rich

flora of approximately 12,500 known plant species (Trisurat et al.,

2011). Considering the known plant diversity, the ongoing Flora of

Thailand project has divided the phytogeography of Thailand into

seven distinct regions: Northern, North-Eastern, Eastern, South-

Western, Central, South-Eastern, and Peninsular (Supplementary

Figure S1; Middleton, 2003; Phutthai et al., 2019). The country

hosts a notable uniqueness with approximately 800 endemic plant

species. Plant diversity assessment of karst formation in Thailand

reported about 180 species (22.5%) occurring exclusively in limestone

karst areas (Santisuk et al., 2006).
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2.2 Collection of occurrence data

A total of 2,681 voucher specimens from 61 Begonia species

occurring in Thailand were compiled through several data

collection processes. First, data were gathered from voucher

specimens deposited in various herbaria, including AAU, ABD,

BM, BK, BKF, E, K, KUN, L, P, PE, QBG, and SING

(Supplementary Table S1). Physical examination of vouchers was

conducted at the AAU, ABD, BKF, BK, BM, E, K, L, PSU, and SING

herbaria by TP, with updated information from BK, BKF, and QBG

provided by SR. Second, occurrence data were also obtained

through the field survey observation from citizen science. While

this data source has the potential to improve the precision of spatial

occurrences used in the analysis, it introduced some taxonomic

uncertainties, as species identification was not always verified by

taxon experts. Third, occurrence data were sourced from online

databases, including the Begonia Resource Center (https://

padme.rbge.org.uk/Begonia/home; Hughes et al., 2015), Global

Biodiversity Information Facility (GBIF: https://www.gbif.org) and

iNaturalist (https://www.inaturalist.org). Finally, data from relevant

publications and field surveys were incorporated (Peng et al., 2017;

Phutthai et al., 2009, 2012, 2014, 2019, 2021; Phutthai and Hughes,

2016, 2017a, b; Phutthai and Sridith, 2010; Radbouchoom et al.,

2023). Erroneous coordinates obtained via human observation,

botanic gardens, and unreasonable sites were excluded from the

analysis. The majority of occurrences were selected based on the

available GPS data from several sources to ensure the accuracy of

the data points. In cases of species lacking GPS records, we assigned

the nearest location indicated on the specimen labels. Additionally,

all species identifications used in this study were checked and

updated by SR and TP according to the currently accepted names

(Hughes, 2008; Moonlight et al., 2018).

The number of occurrences per species was limited for many

species as a consequence of their small distribution ranges and

ecological specialization, which challenged access to these locations.

This characteristic presents significant challenges in creating species

distribution models (SDMs) that reliably predict species distributions

(Thomas et al., 2024), given that only seven species have over ten

occurrences available from GPS records following the data cleaning

process. Furthermore, studies using species-level models tend to ignore

the contribution of local adaptive responses by assuming that a species’

present distribution reflects the entire range of suitable conditions,

meaning the fundamental niche versus the realized niche (Smith et al.,

2019). To address this limitation, we implemented a lumping strategy,

pooling the presence records of the 41 selected species with shared

habitat preference in karst formation into a single class. In this study,

species with shared habitat preferences serve as surrogates for other

species with similar ecological conditions but insufficient occurrence

data (Ferrier, 2002; Ferrier and Guisan, 2006). To ensure the inclusion

of species with shared habitat preferences, we established the following

criteria for selection: i) Herbarium specimens labelled with specific

occurrences in karst regions, supported by publications and field

surveys. ii) A spatial overlay of Begonia occurrence records with a

karst formation map, confirming their distribution in these areas. iii)
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Expert evaluation to validate the presence of Begonia species in karst

landform. The results were thus interpreted as representative of

Begonia species with a high preference for karst habitats rather than

a representation of the genus.
2.3 Data preparation

Occurrence records were filtered by thinning duplicate records

within 1 km2 using “spThin” package in R version 4.3.0 (Aiello-

Lammens et al., 2015; R Core Team, 2023). After the cleaning process,

a total of 214 occurrences from 41Begonia species were used in analyses

(Supplementary Tables S2, S3). These records were utilized to generate

SDMs that identify the probability of habitat suitability for Begonia

under the current climate conditions.Twodatasetswereutilized to relate

the current presence ofBegonia species to various environmental factors

by combining different predictors that affect the model’s performance

(Velazcoetal., 2017).Thefirstdataset comprised19bioclimatic variables

that were obtained from the WorldClim database version 2.1 (https://

www.worldclim.org/data/worldclim21.html) (Fick and Hijmans,

2017), which covered the average climatic conditions for the years

1970-2000. The second data set consisted of the world karst aquifer

map, a categorical environmental variable obtained from the

World-wide Hydrogeological Mapping and Assessment

Programme (WHYMAP) (https://www.whymap.org; BGR, 2016).

The nineteen bioclimatic variables, along with the geological data

(karst landform) were tested for multicollinearity using Pearson’s

correlation coefficient (r > 0.70) with “raster” and “terra” packages

in R (Fournier et al., 2017; Brun et al., 2020; de Lima et al., 2022).

Furthermore, potential multicollinearity issues were addressed

using the “usdm” package in R (Naimi, 2017), and variables with

a VIF greater than 10 were excluded (Supplementary Figure S2;

Supplementary Table S4). The final environmental factors were

selected based on their ecological relevance and ability to enhance

model performance. This process resulted in the inclusion of six

environmental variables, namely: mean diurnal range (BIO2), mean

temperature of wettest quarter (BIO8), annual precipitation

(BIO12), precipitation seasonality (BIO15), precipitation of

warmest quarter (BIO18) and karst landform.
2.4 Species distribution model

Species distribution models were generated using ensemble model

approach as implemented in the “biomod2” package in R version 4.3.0

(Thuiller et al., 2009; 2024; R Core Team, 2023). The ensemble model

approach was employed by considering its potential to enhance the

accuracy of the model prediction as compared to a single-model

approach (Araújo and New, 2006; Harris et al., 2023). The employed

ensemble modelling approach incorporated five statistical approaches,

namely Classification Tree Analysis (CTA), Generalized Additive

Model (GAM), Generalized Boosting Model (GBM), Random

Forests (RF), eXtreme Gradient Boosting Training (XGBOOST).

Absence data were generated using pseudo-absence points, with a

ratio of five to one compared to the presence points. A total of 45
Frontiers in Plant Science 04
models were generated, resulting from 3 iterations of models, 3 sets of

pseudo-absences, and five unique models (de Lima et al., 2022). The

data was split randomly into calibration (80%) and evaluation (20%)

for each model iteration and pseudo-absence set. Following the

arguments of Konowalik and Nosol (2021), the performance of

each model and ensemble model was assessed by calculating the

area under the receiver operating characteristic (ROC) curve (AUC)

and true skill statistic (TSS) (Hanley and McNeil, 1982; Allouche

et al., 2006). The model ensembles were required to meet a threshold

of AUC ≥ 0.9 (with a range of 0-1, where 1 is considered the best and

0.5 is as good as random) and TSS ≥ 0.7 (with a range of -1 to 1,

where 1 indicates perfect agreement and values less than 1 indicate

less than perfect agreement). The variable importance analysis was

conducted using six iterations, which yielded importance scores

ranging from 0 (no impact) to 1 (highest importance) (Stankovic

et al., 2022). The results were presented as average values and their

standard deviation (Average ± SD). Response curves were generated

for the most important predictors identified by the ensemble models

to enhance the evaluation of how each species responds to the

environmental space. These curves depict the relationship between

the probability of occurrence and one predictor variable while

averaging the effects for each unique prediction value. The

probability of habitat suitability maps was divided into four levels

of potentially suitable areas according to the predicted probabilities of

presence between 0 and 1, unsuitable habitats (0.0–0.2), habitats of

low suitability (0.2–0.4), habitats of medium suitability (0.4–0.6), and

habitats of high suitability (0.6–1.0) (Xiao et al., 2022).

Ensemble forecasting of species distribution model was employed

to evaluate the vulnerability of plant species to climate change

resulting from anthropogenic activities. The analysis was conducted

for future climate scenarios in 2050 and 2070, considering two

distinct socioeconomic narratives or Shared Socioeconomic

Pathways (SSP). The two scenarios were based on the Coupled

Model Intercomparison Project (CMIP6). The Intergovernmental

Panel on Climate Change (IPCC) recommended the Shared Socio-

Economic Pathways (SSPs) as a means of modelling future climate

change because this approach was found to be more robust than the

four Representative Concentration Pathways (RCPs) utilized in AR5

(IPCC, 2023). Conservation decisions based on CMIP6 projection

were considered to have a higher degree of confidence in the

Southeast Asian region (Hamed et al., 2022). This study explored

the climatic conditions, specifically focusing on SSP245, and SSP585.

These scenarios were determined based on socioeconomic factors

and greenhouse gas emissions projections for the year 2100, with

SSP245 representing medium emissions or middle of the road

scenario (4.5 W/m²) and SSP585 representing high emissions or

worst-case scenario (8.5 W/m²) (IPCC, 2023). The climate scenarios

were obtained from the Model for Interdisciplinary Research on

Climate v6 (MIROC6; Tatebe et al., 2019) and included 19

bioclimatic variables (BIO1–BIO19) (Supplementary Table S5). The

environmental variables were clipped based on Thailand’s extent and

projected using CSR (WGS84). Afterwards, they were resampled at a

spatial resolution of 30 arc seconds (~1 km2) for each period using

QGIS version 3.28.2 and the “Raster” package in R version 4.3.0

(Hijmans, 2023; QGIS.org, 2021; R Core Team, 2023).
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3 Results

3.1 Habitat suitability and the current and
warmer global climates

According to the assessed model performance, Generalized

Boosting Model (GBM) model exhibited the best performance

followed by Random Forests (RF) and eXtreme Gradient Boosting

Training (XGBOOST) (Table 1). In general, the ensemble models

yielded high values for AUC (0.94), TSS (0.71), sensitivity (93.06),

and specificity (77.50), indicating the reliability of the prediction

results (see Table 1). The most influential abiotic factors shaping the

distribution of these Begonia species were identified as mean

temperature of wettest quarter (BIO8: 48.92%), followed by annual

precipitation (BIO12: 22.70%) and karst landform (9.77%). Other

variables such as precipitation of warmest quarter (BIO18: 7.4%),

precipitation seasonality (BIO15: 5.62%) and mean diurnal range

(BIO2: 5.59%) contributed less (Table 2). The relationship between

bioclimatic and habitat variables affecting the current distribution of

Thailand’s karst Begonia species was detected in the ecological

thresholds for the main contributing environmental factors, namely

mean temperature of wettest quarter (BIO8: 18.42-28.6°C/quarter),

annual precipitation (BIO12: 781-4,302 mm/month), karst landform,

precipitation of warmest quarter (BIO18: 154-1,850 mm/quarter),

precipitation seasonality (BIO15: 35.78-108.7) and mean diurnal

range (BIO2: 6.63-12.77°C) (Table 2; Supplementary Figure S3).
3.2 Models’ performance and
variable contribution

Occurrence records (Figures 1A, B) and distribution predictions

revealed that Thailand’s karst Begonia species occurred primarily along

continuousmountain ranges inNorthern and South-WesternThailand,

and Peninsular region. Scattered suitable habitats were predicted to

occur in North-Eastern, Central, and South-Eastern Thailand. The total

predicted suitable habitat area spanned 224,594 km2, with the Northern

region boasting the highest concentration of highly suitable habitats in

Chiang Mai, Chiang Rai, Lampang, Lamphun, Mae Hong Son, Tak,

Prayao, Prae, and Nan. In the South-Western region, highly suitable
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habitats were predominantly found in Kanchanaburi, Tak, and Uthai

Thani. Notably, Thung Yai Naresuan, Um Phang, and Khao Laem

exhibit the greatest habitat suitability within designated protected areas.

In Northern Thailand, significant protected sites included Hui Nam

Dang, Doi Phu Ka, and Lum Nam Pai, while in the Southern, Khao

Banthat, Khao Sok, and Khlong Saeng were identified as highly suitable

habitat areas. These protected areas have been recognized as important

conservation areas for undiscovered species and may serve as critical

refuges for Begonia in the future (Supplementary Table S6). In contrast,

Eastern and Central Thailand were dominated by a large area of low

suitability, covering 113,082 km2.

The predictive models of the distribution of suitable habitats for

Thailand’s karst Begonia species by utilizing SSP245 and SSP585 for

the years 2050s and 2070s identified stable (no change) areas

spanning from 51,044 km2 to 92,694 km2, the percentage of area

loss ranging from 32.46% to 68.81%, and area gain ranging from

0.98% to 9.82% (Table 3). The majority of the suitable habitat areas

along the border of Northern, South-Western, and Peninsular

Thailand were predicted to undergo range shift, especially in the

year 2070s under both scenarios (Table 3; Supplementary Figures

S4–S6). The stable areas in SSP245 were projected to decrease

significantly over the next few decades (Figures 2, 3). By the 2050s,

these areas were expected to be restricted to only 92,694 km2. While

there were some positive predictions with 9.82% gain offsetting

32.46% decline in habitat suitability, these findings suggested that

there was -22.64% total range change. The situation worsened in the

2070s model, with stable areas decreased to 84,341 km2 and habitat

suitability experienced 38.55% loss and only 7.90% gain. The overall

total range change observed was expected to be -30.65%.

Meanwhile, the habitat suitability area of Begonia expected to get

worse in SSP585 with the high emission of greenhouse gases. By the

2050s, the stable areas measured 85,471 km2, with 37.73% loss in

habitat suitability and 9.43% gain. The total range change was

-28.29%. Fast forward to the 2070s, and the stable areas had

decreased to 51,044 km2, with a significant 62.81% loss in habitat

suitability, the highest among different periods and scenarios.

However, there was only 0.98% gain, resulting in a total range

change of -61.83%. These findings indicated major threats to

Thailand’s Begonia diversity as a consequence of global warming

enforced major shifts in the suitable habitat ranges (Table 3).
TABLE 1 Mean validation scores of the methods utilized to generate species distribution models for Thailand’s Begonia species found on
karst formation.

Models AUC
(mean ± SD)

TSS
(mean ± SD)

Sensitivity
(mean ± SD)

Specificity
(mean ± SD)

Generalized Boosting Model (GBM) 0.99 ± 0.00 0.98 ± 0.01 87.40 98.16

Random Forests (RF) 0.978± 0.00 0.89 ± 0.01 98.52 90.63

eXtreme Gradient Boosting Training (XGBOOST) 0.98 ± 0.00 0.86 ± 0.01 95.98 89.98

Classification Tree Analysis (CTA) 0.82 ± 0.03 0.59 ± 0.05 88.57 70.45

Generalized Additive Model (GAM) 0.86 ± 0.01 0.61 ± 0.02 87.40 73.36

Ensemble model 0.94 ± 0.01 0.71 ± 0.03 93.06 77.50
Reported statistics: AUC, Area under the receiver operating characteristic curve; TSS, True skill statistic scores based on single and ensemble models; Sensitivity; and Specificity. each value was
given as a mean plus standard deviation. In total, five statistical approaches (CTA, GAM, GBM, RF and XGBOOST) plus one ensemble model were recorded.
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4 Discussions

4.1 The current habitat suitability and the
effect of environmental variables on
Begonia diversity in Thailand

This study marks the first investigation into utilizing karst

landform to forecast suitable habitats for Begonia species by

generating species distribution models under current and future
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climate scenarios. The results demonstrate that both climatic and

geographical factors significantly influence the distribution of

Begonia. Among these factors, temperature emerged as the most

influential, consistent with its role as a critical determinant of plant

distributions globally (Moles et al., 2009). Temperature fluctuations

have profound impacts on plant physiology and ecological

interactions, shaping global plant distributions (Kerbler and

Wigge, 2023). Regions with higher temperature variability tend to

support distinct plant groups (Huang et al., 2021). Even small shifts

in temperature can have disproportionate impacts on tropical plant

species compared to substantial changes in temperate zones

(Doughty et al., 2023). These findings underscore the importance

of temperature as a pivotal abiotic factor influencing Begonia

distribution. In addition to temperature, annual precipitation

(BIO12) was identified as another critical variable affecting the

distribution of Begonia species. This aligns with previous studies

indicating that Begonia species exhibit strong edaphic specialization

and are significantly influenced by interactions between edaphic

and climatic conditions (Phutthai et al., 2009; Thomas et al., 2012).

Future climate scenarios predict changes in precipitation patterns,

particularly in tropical regions (Afreen et al., 2019), which may

further impact habitat suitability and may drive habitat loss or gain

for Begonia populations in Thailand. Karst landforms emerged as

another key factor shaping the distribution of selective species

included in this model. Limestone karst regions in Southeast Asia

provide optimal edaphic conditions and are renowned for their

diverse Begonia flora (Cannon et al., 2009; Thomas et al., 2012). The

unique microhabitats within these karst formations contribute to
TABLE 2 Estimated contribution and suitable threshold of the six abiotic
environmental factors to the predicted occurrence of Thailand’s karst
variable importance of Begonia species.

Environmental variable Variable relative
contribution (%)

Suitable
threshold

Mean Temperature of Wettest
Quarter (BIO8)

48.92 18.42-28.6°C

Annual precipitation (BIO12) 22.70 781-
4,302 mm

Karst landform 9.77

Precipitation of warmest
quarter (BIO18)

7.4 154-
1,850 mm

Precipitation Seasonality (Coefficient
of Variation) (BIO15)

5.62 35.78-108.7

Mean Diurnal Range [Mean of
monthly (max temp - min
temp)] (BIO2)

5.59 6.63-12.77°C
FIGURE 1

Recorded distribution and predicted distribution of Thailand’s karst Begonia species under the current climatic condition using an ensemble model.
(A) Recorded distribution of Thailand’s karst Begonia species visualized against the elevation distribution. (B) Predicted distribution of habitats with
high, medium, low suitability and unsuitable as produced in the ensemble model for the current climatic conditions.
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the species’ diversity, although the lack of comprehensive data on

karst ecosystems presents a limitation in fully understanding their

role. Further research into the interactions between Begonia species

and their karst microhabitats is needed to refine our predictions and

conservation strategies.
4.2 The potential distribution of Begonia in
the future and range change

Climate change is one of the major factors contributing to

changes in global biodiversity (Suggitt et al., 2023). Future

projections indicate that this trend would continue, especially

under medium to high greenhouse gas emission scenarios. These

changes are expected to take place across various regions, with the

most vulnerable habitats being in the Northern and South-Western

regions, as well as Peninsular areas in Thailand. By 2070s, the

reduction of potential suitability area was expected to be at its

highest under the high greenhouse gas emission scenarios (SSP585).

This loss was set to occur across the country, particularly in

Northern and Western region. Under these conditions, many

high suitability areas were expected to transition to medium

suitability areas, resulting in net loss of habitat suitability for

Begonia species. Under medium greenhouse gas emission

scenarios (SSP245) in the 2050s, the potential suitability area is

predicted to increase by approximately ten percent. However,

Begonia experienced a range decrease due to the present loss of

potential suitability area outweighing the gain. Begonia dispersed

over long distances, resembling an archipelago-like pattern, this

might make it even more challenging when facing the shift of

suitable habitat (Thomas et al., 2012). This study highlighted the

impact of climate change on edaphic species found in karst regions,

revealing that the more greenhouse gas emissions, the greater the

future loss of potential suitability areas. Nevertheless, this study also

demonstrated the limitations of forecasting species distributions

based on the currently available global climatic data and karst
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landform map. This data set has not integrated additional factors

that may impact plant distribution, such as physiological tolerances,

dispersal abilities, genetic diversity, and ecological interactions (Lee-

Yaw et al., 2022), due to data availability constraints. Furthermore,

conducting thorough ground surveys according to habitat

suitability maps and incorporating other ecological factors would

enhance our capacity to develop effective conservation strategies.
4.3 Conservation implications

Recent plant inventories conducted on the limestone karst have

revealed limestone to be a biodiversity gem, with numerous species

awaiting description (Gale et al., 2014; Phutthai et al., 2009, 2019;

Puglisi et al., 2016; Radbouchoom et al., 2023; Sae Wai and Hu, 2020;

Suddee et al., 2014; Triboun and Middleton, 2012). Notably, Begonia

holds a significant position among the flourishing species of these

regions, particularly in the karst region of the Malesia Peninsular,

where it was regarded as a flagship species (Kiew, 1998; Nabila et al.,

2011). We also highlighted the importance of considering plants with

edaphically specialized plants in conservation planning efforts. These

species were restricted to specific types of habitats and were therefore

at risk of habitat loss and degradation. However, several of these vital

habitat sites have not been fully documented, making them more

susceptible to potential harm (Xu et al., 2021). In this study, we

identified highly suitable habitats for Begonia in the karst region in

each protected area in Thailand. In total, 80 protected areas hold the

highest evaluation values consisting of high, medium, and low habitat

suitability (Supplementary Table S6). Although protected areas in

Thailand have been well-established, the potential suitable habitat for

Begonia can also be found scattered outside these areas. It is

imperative that we broaden our focus beyond protected areas and

consider a new strategy to safeguard biodiversity and ensure the

sustainability of our ecosystems effectively. When devising protection

strategies for the future, it is imperative to take into account the

impact of climate change on plant species, particularly those with
TABLE 3 Summary of species range change statistics.

2050s-SSP245 2070s-SSP245 2050s-SSP585 2070s-SSP585

Loss 44,556 52,909 51,779 86,206

Stable0/No Occupancy 473,199 475,838 473,735 485,340

Stable1/No Change 92,694 84,341 85,471 51,044

Gain 13,484 10,845 12,948 1,343

Percent Loss 32.46 38.55 37.73 62.81

Percent Gain 9.82 7.90 9.43 0.98

Species Range Change -22.64 -30.65 -28.29 -61.83

Current Range Size 137,250 137,250 137,250 137,250

Future Range Size0/No migration 92,694 84,341 85,471 51,044

Future Range Size1/Migration 106,178 95,186 98,419 52,387
Stable/No Occupancy represents the count of pixels currently unoccupied and not expected to be occupied in the future, whereas Stable/No Change represents the count of pixels that are
presently occupied and are predicted to remain occupied in the future.
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specific habitat preferences and limited dispersal abilities. It is likely

that plant species that have specific habitat preferences and limited

ability to disperse, such as those that exist in karst substrates, are at a

greater risk of extinction (Corlett and Tomlinson, 2020; Geekiyanage

et al., 2019). The conservation of plant species with extremely small

populations (PSESP) was a pressing issue in Thailand, given the rapid

loss of habitat and degradation of ecosystems. Addressing practical

conservation planning is essential to ensure the long-term viability of

Begonia and its habitats. One of the key priorities is to identify local
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conservation areas capable of supporting the specific ecological

requirements of Begonia with habitat preference on karst

formation. Model predictions indicated that the total suitable

habitat for Begonia is predominantly concentrated in the Northern,

South-Western, and Southern regions of Thailand, where the highest

habitat suitability was observed. Conversely, the Central and Eastern

regions demonstrated lower habitat suitability due to limited

ecological resources, extensive human land use, and less diverse

topography such as karst landform. Notably, regions with high
FIGURE 2

The distribution of Begonia in Thailand across different periods and climate scenarios. The visualization illustrates the projected changes, indicating
areas predicted to be lost (orange), gained (green), remain occupied (yellow), and unoccupied (grey) as determined by the model.
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habitat suitability were closely associated with areas of elevated

species richness, particularly in the South-Western, Northern, and

Southern parts of the country (Radbouchoom et al., 2024). Despite

Thailand’s well-established network of protected areas, conservation

gaps persist. Plant species endemic to karst habitats have received

inadequate attention. Thung Yai Naresuan, Um Phang and Khao

Laem have been identified as critical conservation areas, exhibiting

high habitat suitability for Begonia species inhabiting karst

environments, with Thung Yai Naresuan Wildlife Sanctuary

showing the highest suitability. However, suitable habitats in

Northern and Southern Thailand should also be prioritized, as they

support distinct Begonia diversity. Additionally, significant habitat

suitability extends beyond protected areas, underscoring the need for

targeted field surveys and strategic conservation planning to ensure

the protection of these unprotected karst ecosystems.
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4.4 Future research

This study acknowledged several limitations that merit

consideration. A significant limitation is the accuracy and

availability of GPS data for certain specimens. Many species lack

precise geographic coordinates, and numerous historical specimens

lack GPS information (Anderson et al., 2016). In this study, we

minimized the bias by primarily utilizing most specimens with

available GPS data, supplemented by human observation, and

ensured data quality through expert validation by taxonomic

specialists. We recommended that future research prioritize the

collection of high-precision GPS data at collection sites, combined

with detailed habitat documentation and photographic records.

Another limitation raised from the inadequacy of the available

maps of karst landforms and soil types, which lack sufficient detail.
FIGURE 3

The potential future distribution of suitable areas for Begonia in the 2050s and 2070s under shared socioeconomic pathway (SSP) scenarios. The
outcomes for two different SSP scenarios are represented by the medium greenhouse gas emissions concentration (SSP245) and the high
greenhouse gas emissions concentration (SSP585). The color codes in the bar chart indicate the percentage of areas loss, gain and species
range change.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1496040
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Radbouchoom et al. 10.3389/fpls.2025.1496040
We have identified several species reported from karst regions;

however, their occurrences were not reflected on the karst landform

map. The application of remote sensing techniques may enable the

generation of high-resolution, fine-scale karst maps (Qi et al., 2019;

Theilen-Willige, 2024). While each karst region may have unique

properties, the lack of extensively documented soil properties adds

to another limitation. Furthermore, the inclusion of microclimatic

data is essential to improve our understanding of how

environmental conditions influence living organisms (Bramer

et al., 2018; Marta et al., 2023). Future research direction could

build upon the findings of this study to further advance our

understanding of the ecological systems in this region. Another

issue that urgently needs to be addressed is our limited

understanding of the migration capacities of Begonia species.

Improving or understanding the processes shaping the migration

of Begonia species and the limited ranges observed for most species

is essential to support conservation management. Given the

fragmentation of karst landscapes, high dispersal capacities are

expected to be needed to enable the plants to respond to climate

change. However, alternative scenarios may consider much higher

tolerances of the plant species to climate change than those

predicted in this study.
5 Conclusion

While human activities are recognized as the major driver of

plant diversity loss, our understanding of how plant species react to

global climate change remains insufficient, especially in the context

of species with edaphic specialization such as plants growing

predominately or exclusively on karst formations. This study

emphasized Begonia found in the karst formations of Thailand,

highlighting the vulnerability of such species to anthropogenic

climate change. Our findings reveal that the distribution of

Begonia is heavily influenced by the often fragmented and

topographic complex karst landform besides annual mean

temperature and annual precipitation. Future projections

recovered predictions of substantial shifts in habitat suitability for

Begonia under the influence of medium (SSP245) and high

(SSP585) greenhouse gas emissions scenarios. The escalation of

greenhouse gas emissions is therefore expected to lead to a severe

loss of suitable habitat for Begonia by the 2050s and 2070s and

subsequently enhance the vulnerability of these species to other

anthropomorphic extinction threats. To address these challenges,

conservation strategies must consider the edaphic specialization of

plants under current and future climatic conditions, with a

particular focus on karst specialists restricted to specific habitats.

Incorporating geoconservation in conservation strategies matters

for all organisms (Gordon et al., 2021). Further comprehensive field

surveys are essential to capture the full diversity of Begonia species

and improve the data foundation to advance conservation planning.

The additional approach included training programs for

conservation officers to enhance their knowledge on prioritizing

key species for effective monitoring and protection; engaging local

communities through education and stewardship initiatives can
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further support conservation efforts, complemented by evaluating

existing protected areas as climatic refuges for species with small

populations. In situ conservation and habitat restoration efforts

should focus on high-risk species with restricted ranges.

Additionally, future research on plant communities in karst

landforms can provide valuable insights into how to manage

these unique ecosystems.
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