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Hang Ye2, Li Liu1, Min Chai1* and Yiling Wang1*

1School of Life Science, Shanxi Normal University, Taiyuan, China, 2Key Laboratory of Resource
Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences,
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The TCP gene family plays pivotal roles in the development and abiotic stress

responses of plants; however, no data has been provided for this gene family in

Opisthopappus taihangensis. Based on O. taihangensis genome, 14 TCP genes

were identified and divided into two classes (I and II). After tandem and segmental

duplication/whole-genome duplication (WGD), more loss and less gain events of

OtTCPs occurred, which might be related with the underwent purifying selection

during the evolution. The conserved motifs and structures of OtTCP genes

contained light response, growth and development, hormone response, and

stress-related cis-acting elements. DifferentOtTCP genes, even duplicated gene

pairs, could be expressed in different tissues, which implied that OtTCP genes

had diverse function. Among OtTCPs, OtTCP4, 9 and 11 of CYC clade (Class II)

presented a relative wide expression pattern with no or one intron. The three TCP

genes could be regarded as important candidate factors for O. taihangensis in

growth, development and stress response. These results provided some clues

and references for the further in-depth exploration of O. taihangensis resistance

mechanisms, as well as those of other unique eco-environment plants.
KEYWORDS
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1 Introduction

Transcription factors are one kind of proteins that play essential roles in the growth and

development of plants by binding to specific gene promoters or enhancer regions (Katagiri

and Chua, 1992). Based on the characteristics of their structural domains, transcription

factors may be classified as WRKY (WRKYGQ), SPL (SQUAMOSA promoter-binding

protein-like), NAC (NAM, ATAF, and CUC), AP2/ERF (Apetala2/Ethylene Responsive

Factor), TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PCF), and various other families
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(Lehti-Shiu et al., 2017). Among them, TCP transcription factors

are specific to plants, cell growth, and cell proliferation (Zhan et al.,

2023). Every TCP member has an atypical basic helix–loop–helix

(bHLH) secondary structure that made up of two hydrophilic a-
helices, a disordered loop, and about 60 amino acid residues (Cubas

et al., 1999). This conserved domain is essential for DNA binding,

protein interactions, and the regulation of downstream gene

expression in the biological processes of plants (Martıń-Trillo and

Cubas, 2010; Manassero et al., 2013).

As ancient transcription factors that appeared ~650–800

million years ago (Navaud et al., 2007), the genes of TCP family

are primarily categorized Class I and II, due to the deletion of four

amino acids in the basic domain of Class II (Martıń-Trillo and

Cubas, 2010). Class I (also referred to as the TCP-P class) contains

PCF genes (PCF1 and PCF2), can promote cell proliferation and

growth. Class II is TCP-C genes, divided into CYC/TB1 and CIN

branches. Different branches may have diverse function. The TB1

genes play an important role in inhibiting lateral branch growth and

male flower formation (Doebley et al., 1997; Dixon et al., 2018), the

CYC genes are generally involved in the expression of lateral regions

of early floral organs and regulates floral symmetry (Luo et al., 1999;

Hileman, 2014). Whereas the CIN genes are mainly related to leaf

morphogenesis (Nath et al., 2003; Palatnik et al., 2003; Crawford

et al., 2004; Walcher-Chevillet and Kramer, 2016). At the structure

of Class II, some members contain an arginine-rich R domain with

an unknown biological function aside from the TCP domain. Most

CYC/TB1 members possess a conserved and functionally

uncharacterized ECE motif (a sequence of glutamic acid-cysteine-

glutamic acid) (Howarth and Donoghue, 2006; Martıń-Trillo and

Cubas, 2010). From the evolutionary viewpoint, the CYC/TB1 genes

have not been discovered in lycophytes or other early-diverging

land plants (Horn et al., 2015). Thus, CIN genes might have arisen

earlier than CYC/TB1 genes (Palatnik et al., 2003; Koyama et al.,

2007; Horn et al., 2015).

TCP genes typically form homodimers or heterodimers with

each other to regulate the expressions of target genes (Li et al.,

2017). All target genes of TCPs contain a highly conserved DNA

motif (G(T/C) GGNCCCAC), specifically the core motif

(TGGGCC, GCCCR, GG(A/T) CCC) (Kosugi and Ohashi, 2002;

Li et al., 2005; Schommer et al., 2008; Aggarwal et al., 2010; Viola

et al., 2012; Danisman et al., 2013; Parapunova et al., 2014). Further,

TCPs engage with various other transcription factors, such as

DELLAs, AS2, ABI4, MYBs, and bHLHs, that can promote

flavonoid biosynthesis, trigger effector immunity, respond to

abiotic stress, and mediate salicylic acid (SA), jasmonate (JA),

auxin, cytokinin (CK), abscisic acid (ABA), and gibberellin (GA)

responses (Pruneda-Paz et al., 2009; Li et al., 2012; Steiner et al.,

2012; Li and Zachgo, 2013; Tao et al., 2013; Chen et al., 2014;

Davière et al., 2014; Marıń-De-La-Rosa et al., 2014; Mukhopadhyay

and Tyagi, 2015). In Arabidopsis, TCP20 interacts with NIN-like

proteins NLP6 and NLP7 to modulate signal transduction

pathways, as well as to control root growth (Guan et al., 2017).

AtTCP5, AtTCP13, and AtTCP17 positively regulate the responses

of Arabidopsis under high-temperature stress (Han et al., 2019;

Zhou et al., 2019). In maize, the natural variation in the ZmTCP42

promoter is significantly related to drought tolerance. The
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overexpression of ZmTCP42 can increase the sensitivity of

transgenic Arabidopsis to abscisic acid (ABA) and increase its

tolerance to drought stress (Ding et al., 2019). In moso bamboo,

PeTCP10 enhances the salt stress tolerance (Xu et al., 2022).

Nonetheless, these studies primarily concentrated on the functions

and molecular mechanisms of TCPs in model plants (such as

Arabidopsis thaliana) and agricultural species. Limited researches

would be performed on wild and/or non-model plant species.

Opisthopappus taihangensis belongs to the family Asteraceae, it is

endemic to the Taihang Mountains that span Henan and Shanxi

Provinces and typically grows within steep cliff crevices, or on slopes

up to ~1000meters above sea level (Chai et al., 2018; Zhou et al., 2024).

Being a cliff species, O. taihangensis exhibits good cold and drought

resistance and has high ecological and ornamental value, with a large

number of flowers and lengthy flowering period (Chen et al., 2022;

Han et al., 2024; Zhang et al., 2024c). During drought stress, O.

taihangensis presents decreased relative water and chlorophyll

contents although having a high degree of proline accumulation (Gu

et al., 2019). Under longer salt stress exposure times and at higher salt

concentrations, O. taihangensis survives by engaging redox-regulated

antioxidant enzyme mechanisms, including superoxide dismutase

(SOD), peroxidase (POD), and catalase (CAT) (Zhou et al., 2024).

More, the upregulated genes under salt stress are primarily

participated in the processes related to amino acid metabolism, the

regulation of transcription factors, ABA signaling pathway, osmolyte

metabolism, and antioxidant enzyme activities (Gu et al., 2019; Yang

et al., 2020). However, the roles of the transcription factors involved in

these responses (e.g., TCPs) are unknown when O. taihangensis is

under abiotic stress.

For this study, the characteristics of the TCP gene family,

including their evolution and diversification in O. taihangensis were

initially explored using bioinformatics and comparative analyses

based on its whole genomics data. Subsequently, the expression

levels of O. taihangensis TCP genes in distinct tissues under abiotic

stress were investigated using RNA-seq data and qRT-PCR. Finally,

the potential roles and regulatory pathways of TCP genes in response

to abiotic stress for O. taihangensis were elucidated. The results

provided important clues for the further investigation of the

endurance mechanisms of O. taihangensis in cliff environments,

which are foundational for the study of other unique cliff plant species.
2 Materials and methods

2.1 Identification of TCP genes in
O. taihangensis

With the O. taihangensis genome database obtained by our

previous study (Ye et al., 2024; Zhou et al., 2024), various strategies

were adopted to ensure the integrity (as much as possible) of the TCP

gene family in O. taihangensis. Firstly, the protein sequences of TCP

genes in A. thaliana were downloaded from TAIR website as queries,

the O. taihangensis protein sequences were from its genome database.

These protein sequences then were used to identify O. taihangensis

TCP genes by BLAST programwith an e value of 1 × 10-5, whereas the

other parameters were set to default values (NumofThreads: 2,
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NumofHits: 500, NumofAligns: 250) in TBtools (Chen et al., 2020).

After which, the TCP domain was retrieved based on the hidden

Markovmodel (HMM) (PF03634) with Simple HMMSearch. Finally,

all TCP genes were analyzed by the NCBI Batch-CDD tool (Wang

et al., 2023b) (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/

bwrpsb.cgi) combining the BLAST and HMM search results, and

the genes containing the entire TCP domain were retained.

The identified TCPs were designated as OtTCP + numbers

(Table 1). Subsequently, the ExPASy (ProtParam) (Duvaud et al.,

2021) (http://www.expasy.org/tools/protparam.html) tool was used

to evaluate the physicochemical characteristics of the OtTCP

proteins, including the number of amino acids (aa), isoelectric

point (pI), and molecular weights (MW). And then, the

subcellular locations of the OtTCP proteins were predicted using

WoLF PSORT (Horton et al., 2007) (https://wolfpsort.hgc.jp/).
2.2 Phylogenetic relationships, gene
structures, and conserved motifs
of OtTCPs

Using the Clustal X in MEGA (Kumar et al., 2018) with

defaulted parameters, multiple sequence alignment (MSA) was

conducted by the protein sequences of TCPs in O. taihangensis,

A. thaliana and Oryza sativa. The conserved regions of the obtained

sequences were subsequently trimmed using trimAl in TBtools

(Chen et al., 2020). Then, the rootless phylogenetic tree was

constructed using IQ-TREE 2 software (Nguyen et al., 2014) with

the maximum likelihood (ML) method and the bootstrap validation

parameter 1000. All TCP proteins’ conserved domains and amino

acid sequences were compared and examined using the GeneDoc

program (Nicholas and Nicholas, 1997).
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MEME tool in the MEME SUITE (https://meme-suite.org/

meme/tools/meme) online website (Bailey et al., 2009) was

employed to examine the motifs (number =10) of the TCP

protein sequences of O. taihangensis. The relative genetic

structural data was obtained from the O. taihangensis genome

database (GFF file) based on our laboratory. The protein motifs

and intron/exon organization were visualized using Gene Structure

View (Advanced) in TBtools (Chen et al., 2020).
2.3 Gain and loss of TCP genes
in Asteraceae

NOTUNG software (Chen et al., 2000; Stolzer et al., 2012) was

used to perform the gene gain and loss events of TCP gene family in

Asteraceae. The genomic data of other Asteraceae species was

downloaded from NCBI (https://www.ncbi.nlm.nih.gov/).

A species tree was from the TIMETREE (http://www.timetree.org/)

online website (Kumar et al., 2017), while the gene phylogenetic tree

was developed utilizing IQ-tree software (Nguyen et al., 2014). The

tree species and gene tree were imported into the NOTUNG

software and analyzed by the Reconciliation Mode function of

NOTUNG, in which A. thaliana and O. sativa were employed as

an outgroup.
2.4 Chromosomal localization and
duplication events of OtTCP genes

The chromosomal locations of OtTCP genes were visualized

with TBtools software, using the GFF file of the O. taihangensis

genome database.
TABLE 1 Predicted TCP protein data in O. taihangensis.

Gene
Name

Amino
acids

Mol.
Wt (Da)

Isoelectric
Point (pI)

Instability
Index (II)

Aliphatic
Index

Hydropathicity
(GRAVY)

Subcellular
Localization

OtTCP1 384 41937.36 8.99 47.14 59.51 -0.723 nucleus

OtTCP2 335 38198.39 8.05 51.03 55.01 -0.957 nucleus

OtTCP3 384 43636.82 8.49 70.39 65.55 -0.857 nucleus

OtTCP4 390 43796.8 5.39 49.71 69.03 -0.658 nucleus

OtTCP5 426 45725.23 6.36 56.33 53.47 -0.784 nucleus

OtTCP6 375 41276.05 5.95 43.93 54.29 -0.848 nucleus

OtTCP7 376 40804.91 7 46.02 55.59 -0.675 nucleus

OtTCP8 397 44602.9 6.31 42.28 50.1 -0.906 nucleus

OtTCP9 386 43868.06 6.44 58.74 56.11 -0.998 nucleus

OtTCP10 370 39747.78 6.7 54.81 59.41 -0.638 nucleus

OtTCP11 335 38378.86 9.08 43.54 62.03 -0.855 nucleus

OtTCP12 318 36234.54 9.23 41.56 65.03 -0.803 nucleus

OtTCP13 241 26398.93 6.7 45.55 56.27 -0.776 nucleus

OtTCP14 297 33705.2 9.74 44.16 58.42 -0.884 nucleus
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To explore the potential evolutionary relationships of TCP genes,

the collinearity analysis among A. thaliana, O. sativa and Asteraceae

species (Helianthus annuus, Arctium lappa, Cynara cardunculus,

Cichorium intybus, Centaurea solstitialis, Erigeron canadensis,

Lactuca saligna, Lactuca virosa, Smallanthus sonchifolius, Mikania

micrantha, and Tagetes erecta) were investigated using the Multiple

Collinearity Scan Toolkit (MCScanX) in TBtools (Chen et al., 2020).

The genomic data of A. thaliana (TAIR 10),O. sativa (IRGSP-1.0),H.

annuus (HanXRQr2.0-SUNRISE), A. lappa (ASM2352574v1), C.

cardunculus (CcrdV1.1), C. intybus (ASM2352571v1), C. solstitialis

(ASM3016916v1), E. canadensis (C_canadensis_v1), L. saligna

(Lactuca_saligna), L. virosa (Lvir_assembly_v4), S. sonchifolius

(ASM2352597v1), M. micrantha (ASM936387v1), and T. erecta

(ASM3086718v1) was downloaded from NCBI (https://

www.ncbi.nlm.nih.gov/).

Gene repetition events (such as tandem replication and

fragment replication) were performed using MCSCANX in

TBtools (Wang et al., 2012; Chen et al., 2020). The TCP protein

sequences of these species were aligned using Blastp program in

TBtools (Chen et al., 2020), with an e value of 1 × 10−10, other

parameters set to default values.

The Ka (nonsynonymous substitution per site) and Ks

(synonymous substitution per site) (Zhang et al., 2006) between

segmental and tandem duplicate gene pairs were calculated by the

simple Ka/Ks Calculator in TBtools (Chen et al., 2020). The Ka/Ks value

was further utilized to identify the selection mode of OtTCP genes.
2.5 Secondary and tertiary structures of
OtTCP proteins

The secondary and tertiary structures of OtTCP proteins were

predicted and modelled using the SOPMA (https://npsa-

prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)

(Geourjon and Deléage, 1995), SWISS MODEL (https://npsa-

prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)

servers (Waterhouse et al., 2018), while the tertiary structures were

examined by PyMOL (Rosignoli and Paiardini, 2022) (http://

www.pymol.org/pymol).
2.6 Cis-acting elements and gene
expressions of OtTCP genes

The cis-acting elements were predicted using 2000 bp

sequences upstream of OtTCP genes in PlantCARE (https://

bioinformatics.psb.ugent.be/webtools/plantcare/html/) online

website (Lescot et al., 2002), the relative results were visualized

with GSDS online website 2.0 (Hu et al., 2015).

The transcriptome data (PRJNA400848, PRJNA437359) of O.

taihangensis under drought treatments were downloaded from

NCBI (Gu et al., 2019; Yang et al., 2020). And the transcriptome

sequencing data of O. taihangensis different tissues under salt stress

were from our laboratory. Under 500 mM/L salt treatment, O.

taihangensis individuals were treated for 0, 6, 24 and 48 h

respectively. While under 24 h treatment, the sampled individuals
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were treated with 0 mM/L, 100 Mm/L, 300 Mm/L and 500 Mm/L

salt respectively. Three replicates were set up for each treatment.

After treatments, the sampled leaves from the same sites of each

individual were frozen in liquid nitrogen for transcriptome

sequencing (Han et al., 2024; Ye et al., 2024; Zhang et al., 2024c;

Zhou et al., 2024). Based on the above, an expression heatmap of O.

taihangensis under different treatments was generated using

TBtools (Chen et al., 2020).
2.7 Expression validation by qRT-PCR

Finally, qRT-PCR was conducted to validate the expression

patterns of randomly selected TCP genes of O. taihangensis.

According to Peng et al (Peng et al., 2024), the internal reference

genes were selected for evm. TU. Chr8.13443 (Han et al., 2024;

Zhang et al., 2024c) and evm. TU. Chr8.39 (Zhou et al., 2024).

Three technical replicates were performed for each selected gene.

The PCR primers were designed using PRIMER 5.0 software

(Supplementary Table S1), and the primer efficiency was

evaluated from the amplification of three replicates based on

Bello et al (Bello et al., 2017).

The qRT-PCR was performed with the UltraSYBR mixture

(TaKaRa, Dalian, China) using an ABI7500 RT-PCR system.

Reactions were done in 20 ml volume, the following qRT-PCR

program was used: the template denaturation at 95°C for 3 min;

followed by amplification for 40 cycles with a melting temperature of

95°C for 10s and an annealing temperature of 68°C for 15s. After 40

cycles, the melting curve analysis ranged from 60°C to 95°C, and the

amplification efficiency was determined from the slope of the

standard curve linear-log of target genes. All relative gene

expression levels were calculated using 2−DDCT (Penfield et al., 2001).
3 Results

3.1 Identification and physicochemical
properties of OtTCPs

A total of 14 TCP genes with conserved domains were identified

inO. taihangensis, which were designated OtTCP1 -OtTCP14 based

on their locations on the chromosomes (Table 1).

As shown in Table 1, OtTCP proteins varied in their lengths,

molecular weights, theoretical isoelectric points, and so on. Sequence

analyses revealed that the 14 OtTCP proteins ranged from 241

(OtTCP13) to 426 amino acids (OtTCP5), with average lengths of

358 amino acids. The molecular weights ranged from 26398.93 to

45725.23 Da. For the theoretical pI, significant differences between

the OtTCP proteins suggested that they might function under various

acidic and basic conditions. The lowest (5.39) and highest (9.74) pI

were OtTCP4 and OtTCP14, respectively. Thereinto, there were 7

OtTCP proteins (50%) with pI values of < 7.0, which indicated that

they contained an abundance of acidic amino acids. All OtTCP

proteins were unstable with a values of over 40 instability index

(Guruprasad et al., 1990). More, almost all of the OtTCP proteins

were hydrophilic that had a negative grand average of hydropathicity
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(GRAVY) values. Furthermore, all 14 OtTCP proteins were located

within the nucleus.
3.2 Phylogenetics, gene structures, and
conserved motifs of OtTCPs

A total of 70 complete protein sequences, including 33 AtTCPs

(A. thaliana), 23 OsTCPs (O. sativa), and 14 OtTCPs, were used in

the phylogenetic analysis. Based on a phylogenetic tree, all analyzed

TCP genes were segregated into two main classes: Class I (PCF) and

Class II (CIN and CYC/TB1) (Figure 1). Class I was the largest

group, which contained five OtTCPs, ten OsTCPs, and fifteen

AtTCPs. While class II included eight OtTCPs, three OsTCPs,

and five AtTCPs. Interestingly, the CIN group in Class II

contained only one OtTCP member (OtTCP6).

Conserved domain sequence alignment analysis was conducted to

gain further insights into the evolutionary relationships and structural

characteristics of OtTCP genes. The results (Figure 2) revealed that all

14 OtTCPs possessed a conserved domain of 60 amino acid residues.

This conserved domain included a primary region at the N-terminus

and a HLH (helix–loop–helix) motif at the C-terminus, which was

consistent with the TCPs’ structure observed in other plant species
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(Liu et al., 2022a; Jiang et al., 2023; Wu et al., 2023). Notably, the

primary regions of Class I of OtTCPs contained four fewer amino acid

residues than that of Class II (Figure 2).

Regarding the OtTCPs exons and introns, six genes (42.8%)

contained introns, while the remaining 8 TCP genes (57.2%) had

none. The OtTCP genes of Class I possessed more introns than did

Class II. Of the OtTCP genes, five possessed a single intron, whereas

only one gene (OtTCP14) had two (Figure 3C).

Ten conserved motifs were identified and designated as motifs

1 - 10. In the CYC/TB1 group of Class II, most genes contained ten

motifs except for OtTCP14. The CIN group of Class II did not

include motifs 8 and 9, while in the PCF group of Class I, three

OtTCPs contained all ten motifs. Further, OtTCP5 did not contain

motif 8 and OtTCP13 did not include motifs 4 and 8. Overall, the

genetic structures and conserved motifs of most OtTCPs within the

same class were similar.
3.3 Chromosomal location, collinearity,
and evolution of OtTCPs

The locations of OtTCP genes on chromosomes were relatively

dispersed (Figure 4). Chromosome 1 contained the most OtTCP
FIGURE 1

The constructed phylogenetic tree based on the TCP proteins of O. taihangensis (Ot), Arabidopsis thaliana (At), and Oryza sativa (Os). The TCP gene
family was mainly divided into two clades: Class I (PCF) and Class II with possessing two subclades (CYC/TB1 and CIN).
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genes (4 genes, ~28.6%), followed by chromosome 6 (3 genes,

~21%), while chromosomes 2, 3, and 5 had the least (1 gene,

~7%). Chromosomes 4 and 9 held the same number ofOtTCP genes

(2 each, ~14%), while chromosomes 7 and 8 had no OtTCP genes.

The duplication events of OtTCP genes were analyzed, showing

that only one tandem repeat gene pair (OtTCP3-OtTCP4) was

found on chromosome 1. Three segmental duplication events

(OtTCP8-OtTCP11, OtTCP2-OtTCP11 and OtTCP4-OtTCP9)

were detected to be scattered across four chromosomes. These
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results suggested that tandem and segmental duplication events

may play key roles in the OtTCP gene family.

The substitution Ka/Ks ratio was used to elucidate OtTCPs

evolutionary processes and selection pressures, where a Ka/Ks value

of 1 indicated neutral selection, < 1 denoted purification selection,

and Ka/Ks > 1 signified positive selection. The Ka/Ks value for

tandem duplication was 0.31778, while that for segmental

duplication varied from 0.2681 to 0.3804 with a mean value

0.3292 (Supplementary Table S2). The Ka/Ks value for all
FIGURE 2

Multiple sequence alignment of OtTCP protein was divided into an alkaline region basic and Helix I–Loop–Helix II.
FIGURE 3

(A) Phylogenetic tree of the OtTCPs with two classes. (B) Conserved motifs of the OtTCP proteins. Different color represented different motif.
(C) Exon-intron organization of OtTCP genes. Yellow boxes represented exons (CDS), green boxes represented UTR, and grey lines represented
introns. The scale was the sizes of exon or intron.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1499244
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gao et al. 10.3389/fpls.2025.1499244
duplication events was < 1, which implied thatOtTCP genes evolved

under the effects of purifying selection.

To further illustrate the potential evolutionary relationships of the

OtTCP gene family, the comparative collinearity relationships were

identified between O. taihangensis and the other 13 species (Figure 5).

To further illustrate the potential evolutionary relationships of

the OtTCP gene family, the comparative collinearity relationships

were identified between O. taihangensis and the other 13 species

(Figure 5). The collinear revealed that there were 3 collinear gene

pairs between O. taihangensis and A. thaliana, no collinear genes

were found in O. sativa. In Asteraceae, 9, 15, 18, 17, 13, 38, 22, 17,

14, 5, and 22 of collinear gene pairs were identified in O.

taihangensis with L. virosa, L. saligna, C. intybus, E. canadensis,

M. micrantha, S. sonchifolius,H. annuus, T. erecta, C. cardunculus,

C. solstitialis, and A. lappa, respectively. The large number of

collinear pairs between O. taihangensis and S. sonchifolius

indicated a closely relationship among them. Notably, some

OtTCP genes were found to have at least three collinear pairs

(particularly between O. taihangensis and H. annuus), such as

OtTCP2, OtTCP3, OtTCP6, and OtTCP8 (Supplementary

Table S3).

A gene gain and loss analysis revealed that TCP genes

underwent a dramatic dynamic change in Asteraceae (Figures 6;

Supplementary Figure S1), as 103 gain and 243 loss events occurred

(Figure 6). Differentiation from the outgroups, the common

ancestor of Asteraceae TCPs underwent duplication (+31).

Subsequently, loss events during Asteraceae evolution occurred

that resulting in the TCP gene family continuously contracted.
Frontiers in Plant Science 07
The most loss occurred in T. erecta (-22), followed H. annuus (-15)

and E. canadensis (-12), while the lowest in L.virosa (-1), L. saligna

(-2) and C. cardunculus (-3). For O. taihangensis, TCP genes

underwent one duplication events and six loss events.
3.4 Secondary and tertiary structures of
OtTCP proteins

The results of investigations into the secondary structures of

OtTCP proteins (Supplementary Table S4) indicated that they were

primarily comprised of a-helices (12.27%–34.03%), extended

strands (8.36%–16.60%), b-turns (1.19%–9.13%), and random

coils (2.05%–73.33%). The tertiary structures contained a-helices,
b-turns, and random coil structures (Supplementary Figure S2),

which translated to distinct OtTCP protein conformations and

implied their functional differentiation.
3.5 Cis-elements of OtTCP genes

In total, 305 cis-acting elements attributed to 22 types were

identified in OtTCP genes (Figure 7; Supplementary Table S5).

These elements were segregated into four categories (light response,

growth and development, hormone response, and stress-related cis-

acting elements).

All OtTCP genes had light responses. However, the types and

quantities of each OtTCP gene varied, which suggested that light
FIGURE 4

Replication events of OtTCP genes. Gray lines represented the duplicated genes, while the red lines represented the segmental duplicate TCP gene
pairs. Additionally, the red lines connecting genes outside the chromosome represented the tandem duplicated pairs. Box with red line graph
showed the gene densities. Gray rectangles represented the chromosomes, the corresponding names displayed externally for each chromosome.
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signals may positively impact transcriptional regulation processes.

Twelve OtTCP genes contained cis-acting elements related to

growth and development, including the CGN4-motif, CAT-box,

and O2-site. Hormone-responsive elements, such as ABRE (ABA-

responsive element), TGA elements, CGTCA motifs, and TGACG

motifs (elements involved in MeJA responsiveness), and Gibberellic

acid-responsive elements (GAREs), were also screened. ABA-
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responsive elements (ABREs) were identified in 12 (86%) OtTCP

genes (save for OtTCP6 and OtTCP9). Further, stress-related cis-

regulatory elements including MBS (drought-induced response

element), LTR (low-temperature response element), ARE

(anaerobically induced response element), and TC-rich (defense

and stress response element), were identified in the promoter

regions of 14 OtTCP genes.
FIGURE 5

The collinearity analysis among A. thaliana, O. sativa and 11 Asteraceae species. The red line represents TCP collinear gene pairs in O. taihangensis
and other genomes.
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3.6 Expressions of OtTCP genes in
response to abiotic stress

Using the download and our previous transcriptomic datasets

(Ye et al., 2024), we analyzed the expressions of 14 OtTCP genes in

differentO. taihangensis tissues, including stems, leaves, roots, buds,

and flowers (Gu et al., 2019; Yang et al., 2020) (Figure 8A;
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Supplementary Table S6). Tissue-specific expressions were

predominantly observed for 8 OtTCP genes (OtTCP1, OtTCP7,

OtTCP8, OtTCP9, OtTCP11, OtTCP12, OtTCP13, and OtTCP14) in

stems; 4 OtTCP genes (OtTCP1, OtTCP3, OtTCP6, and OtTCP10)

overrepresented in leaves; 3 OtTCP genes (OtTCP5, OtTCP7, and

OtTCP14) highly expressed in roots; OtTCP2 mainly expressed in

buds, and OtTCP4 primarily expressed in flowers.
FIGURE 7

Cis-acting elements in the OtTCP promoter regions. Different colors represented various elements.
FIGURE 6

The gain and loss events of TCP genes in the Asteraceae. The numbers at the branch nodes represented the gained and lost genes. The blue nodes
represented the possible common ancestor of the Asteraceae.
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To further explore the roles of these OtTCP genes under

drought and salt stress, we compared the expression patterns

across various treatments (Figure 8; Supplementary Tables S7,

S8). The expression levels of OtTCP genes were diverse, with 12

genes being highly expressed in leaves, and seven being highly

expressed in roots at 0h under a 20% PEG6000 treatment. All genes

showed a downward trend when subjected to different levels of

drought stress. Overall, the TCP genes showed high expression

levels in leaves, but not in roots, which presented tissue-specific

expression patterns.

The expressions of most OtTCP genes were altered under

increasing salt concentrations (Figures 8C, D). Under the 100

mM and 300 mM treatments, the expressions of most genes were
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rapidly induced in the early stages (e.g., OtTCP1, OtTCP2, OtTCP3,

OtTCP4, OtTCP5, OtTCP7, and OtTCP14). The expressions of

OtTCP5, OtTCP8, OtTCP9, OtTCP13, and OtTCP14 peaked at

500 mM/L. Meanwhile, half of the OtTCP gene expressions

increased over time gradients (Figure 8D).
3.7 qRT-PCR quantitative verification

The qRT-PCR showed the relative genes were significant

induced or inhibited under various salt treatments, with their

expression levels consistent with the previous results. These

verified the precision of our analyses (Figure 9).
FIGURE 8

Expression patterns of OtTCPs. (A) Expression profiles of the OtTCPs in different tissues. (B) Leaves treated with 20% PEG6000 for 3.5 hours or
untreated (0 hours); Roots treated with 20% PEG6000 for 9 hours or untreated (0 hours). (C) 100 Mm/L, 300 Mm/L, and 500 Mm/L mixed salt
solution for 24h treatment. (D) 500 Mm/L mixed salt solution in leaves for 6h, 24h, and 48h treatment. The different colored boxes indicated the
different log2 (FPKM) values, the red blocks indicated high relative expression levels and blue blocks indicated low relative expression levels.
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4 Discussion

Multiple studies have established that TCP genes play a

widespread role in diverse physiological and biological processes,

encompassing plant growth and abiotic stress responses (Huo et al.,

2019; Liu et al., 2022a; Panzade et al., 2024). In this study, we

performed the whole genome and transcriptomic data to explore

the TCP gene family in O. taihangensis.
4.1 Gene structures and characteristics
of OtTCPs

A total of 14 identified TCP genes (OtTCP) in O. taihangensis

were classified into two main clades (Class I and Class II) and three

subfamilies (PCF, CIN, CYC/TB1). Within each subfamily, the TCP

gene members were fromO. taihangensis, A. thaliana, andO. sativa.

This suggested that these genes originated from the common

ancestors, which was consistent with preceding studies on other

species (Jiang et al., 2023).

Gene structures and conserved motifs provide clues for the

prediction of the evolution of genes and their corresponding

proteins (Cao et al., 2019). The TCP genes in O. taihangensis

lacked introns or had only single or two introns (Figure 3). This

structural feature was also found in Camellia sinensis (Shang et al.,

2022), Cymbidium goeringii (Liu et al., 2022b), and Dactylis

glomerata (Wang et al., 2023a). With fewer introns, genes can
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rapidly generate more proteins and quickly respond to abiotic

stresses (Ma et al., 2021). For OtTCP genes, the lack of introns

might be a strategy for responding to abiotic stresses.

Previous studies revealed that the CIN clade was relatively

ancient in the TCP gene family. In this study, the CIN clade

contained only one gene (OtTCP6) that possessed one intron

(Figure 3). OtTCP genes gradually lose introns during evolution,

which might be due to inversion or homologous recombination

with intron-containing genes (Wu et al., 2005). OtTCP1, OtTCP4,

OtTCP7, OtTCP10, and OtTCP13 had no introns; thus, they could

rapidly express under abiotic stress (Figures 7C, D). Smaller genes

(such as OtTCP14) that contained more introns might be involved

in biological processes such as mRNA output and alternative

splicing, which could modify their functionalities to a certain

extent (Roy and Gilbert, 2006).

Meanwhile, in terms of structure, ancient OtTCP6 contained no

motifs 8 or 9. This suggested that certain members of Class I (PCF)

and Class II (CYC/TB1) eventually experienced increases in motifs

8 and 9. These structural changes may either support original

functionality or induce increased functional diversity.
4.2 Evolution of TCPs

In contrast to other plants, the number of TCP genes in O.

taihangensis was lower than that in Chrysanthemum lavandulifolium

(39) (Wu et al., 2023), Chrysanthemum nankingense (23) (Yu et al.,
FIGURE 9

Expression patterns of OtTCP genes under qRT-PCR. (A) represented the treatment of 0h, 6h, 24h, and 48h of 500 Mm/L salt stress. (B) represented
CK, 100 Mm/L, 300 Mm/L, and 500 Mm/L salt stress for 24h treatment. Vertical bars represented the mean ± SD of three biological replicates.
Statistical significance was determined using one-way ANOVA (**** p < 0.0001 *** p < 0.001 ** p < 0.01* p < 0.05).
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2022b), A. thaliana (33) (Yu et al., 2022a) and O. sativa (23)

(Li et al., 2017).

Generally, there were 14 to 38 TCPs found in angiosperms (Liu

et al., 2019). Moreover, the TCP gene number was increased with

the evolution of species from early-diverging to later-diverging

(Martıń-Trillo and Cubas, 2010; Shang et al., 2022). For example,

Amborella trichopoda (belonging to Amborella of Amborellaceae)

was a species of basic angiosperm group and had 15 TCP genes.

Some eudicots, such as Aquilegia coerulea (14), Citrus sinensis (15),

Eucalyptus grandis (16), and Vitis vinifera (15), also had less TCP

genes (Liu et al., 2019). In Asteraceae, Opisthopappus genus was

regarded as a relative close ancestral group of Ajania (Zhao, 2007).

O. taihangensis possessing 14 TCP genes may be related with its

phylogenic position (Shen et al., 2021).

Through chromosome localization analysis, it was found that

OtTCP genes were unevenly distributed across nine chromosomes

in the O. taihangensis genome. The uneven distribution of genes in

genomic chromosomes was closely related to extensive gene loss,

which is pervasive in angiosperm (Sun et al., 2023).

As know, whole genome duplication (WGD) is one of the most

important driving forces for genome evolution (Magadum et al.,

2013). Large number of duplicated genes would be produced after

WGD (Chen et al., 2023). Here, we identified OtTCP genes

experienced by tandem and segmental duplication (Figure 4). In

our other study (unpulished), O. taihangensis genome was detected

undergone WGD event at 59 Mya. However, more loss (-6) and less

gain (+1) events of OtTCP genes occurred during the evolution

(Figures 4 and Supplementary Figure S1). Some studies showed that

the frequency of gene loss is up to three times higher than the rate of

gene gain (Koskiniemi et al., 2012; Puigbò et al., 2014; Nelson-Sathi

et al., 2015). After WGD, some functionally important gene copies

can be retained, whereas some functionally redundant gene copies

would be lost or pseudogenized (Duan et al., 2014; Liang et al.,

2016). For O. taihangensis TCP genes, the loss events should be post

whole genome duplication, and only keep some important copies

(Li et al., 2024). Based on Zhang et al. (2024a), CYC2 genes of TCP

family were experienced the duplications that predated their gains

during the evolution of florets and floral symmetry in Asteraceae.

More, the loss of CYC2d were found in the formation of ligulate

florets (Chen et al., 2018; Zhang et al., 2024a). These may support

our results at a certain extent.

Gene loss can contribute to species’ adaptive evolution,

particularly in response to environmental challenges (Albalat and

Cañestro, 2016). Under selection, positive selective pressure

facilitates gene expansion or functional differentiation, whereas

purifying selective pressure often renders more conservative genes

(Song and Nan, 2014). Indeed, purifying selection occurred during

the evolution of OtTCP genes (with Ka/Ks values consistently < 1).

This selective pressure may have ultimately led to the contraction or

loss of OtTCPs (Wu et al., 2022). The gene loss in the OtTCP family

might be an adaptive strategy for O. taihangensis on the

cliff habitats.

On the other hand, the high collinearity (38 syntenic blocks)

occurred between O. taihangensis (one member of Asterodae) and

S. sonchifolius (one member of Helianthodae) in the studied

Asteraceae species (Figure 5). It indicated that these genes located
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in corresponding syntenic blocks occurred before the divergence of

O. taihangensis and S. sonchifolius. Asterodae and Helianthodae

both were the members of Asteroideae and diverged about 57.71

Mya after ancient WGD event (Zhang et al., 2024a). High

collinearity among the two species should be happened before

57.71 Mya.
4.3 Role of OtTCPs under abiotic stress

As pivotal molecular switches, cis-regulatory elements

participate in the transcriptional regulation of genes and control a

variety of biological processes (Huang et al., 2021). OtTCPs were

found that enriched with cis-regulatory elements associated with

growth and development, hormone signaling, and stress

responses (Figure 7).

All TCP genes of O. taihangensis possessed photonically

responsive elements, indicating that OtTCP genes responded to

light for the regulation of growth and development in O.

taihangensis, which aligned with the results of C. goeringii (Liu

et al., 2022b). A dozen of 14 OtTCP genes contained ABRE cis-

regulatory elements associated with ABA responsiveness. ABRE-

binding protein/ABRE-binding factor (AREB/ABF) can positively

regulate the plant responses and enhance tolerance (Fujita et al.,

2013; Yang et al., 2024), while the ABA signaling pathway is crucial

for abiotic stress resistance. Plants challenged by water deficits,

salinity, cold, or pathogen attacks induce the accumulation of ABA,

which translates to gene expression via ABRE cis-acting elements to

defend against these stresses (Dar et al., 2017). OsTCP19 gene from

rice, which activated by salt, drought, and cold stresses, enhances

ABA signal transduction by promoting the expression of ABA

INSENSITIVE4, which interacts directly with relative encoded

proteins (Tatematsu et al., 2008; Rueda-Romero et al., 2012). The

TCP10 gene of Moso bamboo positively regulates early tolerance by

regulating the ABA signaling pathway, which negatively regulates

lateral root growth via the methyl jasmonate (Me-JA)-mediated

signaling pathway (Xu et al., 2022). In A. thaliana, the TCP14 gene

interacts with the DNA BINDING WITH ONE FINGER 6

transcription factor, inhibiting the activation of the ABA

biosynthetic gene ABA DEFICIENT1 and other ABA-related

stress genes, and then promoting the germination of Arabidopsis

seeds (Tatematsu et al., 2008; Rueda-Romero et al., 2012).

Conversely, MBS (MYB binding site) is renowned for its key

roles in stress signaling transduction and drought stress responses

(Guo et al., 2023). TC-rich repeats are involved in defense and stress

responses, while LTR elements engage low temperature stress

responses. Six OtTCP genes (OtTCP2, OtTCP3, OtTCP4, OtTCP7,

OtTCP9, and OtTCP10), five OtTCP genes (OtTCP4, OtTCP6,

OtTCP8, OtTCP10, and OtTCP13), and four OtTCP genes

(OtTCP3, OtTCP6, OtTCP8, and OtTCP14) contained MBS, TC-

rich, and LTR cis-regulatory elements, respectively. This indicated

that OtTCPs might utilize differential regulatory pathways to

counter abiotic stresses.

It is widely recognized that the expression profiles of genes are

intimately linked with their functionalities to a large extent. TCP

genes in O. taihangensis exhibit significantly different expression
frontiersin.org

https://doi.org/10.3389/fpls.2025.1499244
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gao et al. 10.3389/fpls.2025.1499244
patterns in different tissues and treatments (Figure 7). Generally,

CYC members in TCP family regulate branching, such as TB1 in

maize and BRC1 in Arabidopsis (Cubas et al., 1999; Aguilar-

Martí nez et al., 2007); and some involved in flower development

(Balsemão-Pires et al., 2013). OtTCP2, 3, 4, 8, 9, 11, 12, 14 all were

the genes of CYC clade. OtTCP2 up-expressed in bud, OtTCP3 in

leaf, OtTCP4 in flower, OtTCP8, 9, 11, 12 in stem, and OtTCP14 in

stem, root and flower (Figure 8A). The members in PCF clade of

TCP family Class I also are involved in plant development (Liu

et al., 2019). OtTCP1, 5, 7, 10 and 13 (PCF genes) mainly expressed

in stem, root and leaf. Recently, PCF genes were demonstrated to

participate in abiotic stresses (Liu et al., 2019). OtPCF genes high

expressed under different salt treatments in this study (Figures 8C,

D). OtTCP genes expression profiles indicated that their diverse

functions, which may play important roles in the growth and

development of O. taihangensis.

Additionally, some pairs of duplicate genes revealed similar or

distinct expression patterns (Zhang et al., 2024b). For example,

OtTCP8 and OtTCP11 exhibited a negative expression trend under

drought treatments. However, under salt stress, OtTCP11 showed

an upward trend, while OtTCP8 showed the converse. Duplicate

genes responded to different stresses through functional diversity.

Gene replication can drive the development of new biological

functions, which was supported by the tertiary structures of

OtTCP genes (Supplementary Figure S2).

Within different tissues and under salt stress and drought,

OtTCP4, 9 and 11 presented a relative wide expression (such as

OtTCP4 up-expressed in flower, R-9h, T-100 and T-6h, Figure 9).

These three genes all were the member of CYC clade and had no or

one intron, which contained ABRE and/or MYC/MYB cis-acting

elements with the capacity to rapidly respond to stressors. Thus,

OtTCP4, 9 and 11 could be considered as the candidates for the

development, growth and responding to stresses of O. taihangensis,

although further detailed research is necessary.
5 Conclusion

In O. taihangensis, 14 TCP genes were identified. Compared with

other species, relative less TCP genes might be accsioated with its

ancestral phylogenic position. The OtTCP gene family mainly

underwent gene loss events after duplication, which could induce

adaptive genetic changes. When challenged the stressors, those

OtTCPs that lack introns can quickly respond primarily through

different cis-regulatory elements. More, OtTCP genes exhibit different

expression patterns in different tissues and treatments. Thereinto,

OtTCP4, 9 and 11 could be recognized as important candidates for

O. taihangensis with a wide expression model. These data may provide

clues for the further exploration of the potential resistance mechanisms

of O. taihangensis in the cliff environments of the Taihang Mountains.
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