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Optimized classification of
potato leaf disease using
EfficientNet-LITE and KE-SVM in
diverse environments
Gopal Sangar* and Velswamy Rajasekar

Department of Computer Science and Engineering,Faculty of Engineering and Technology, SRM
Institute of Science and Technology, Vadapalani, Chennai, India
Introduction: Potatoes are a vital global product, and prompt identification of

foliar diseases is imperative for sustaining healthy yields. Computer vision is

essential in precision agriculture, facilitating automated disease diagnosis and

decision-making through real-time data. Inconsistent data in uncontrolled

contexts undermines classic image classification techniques, hindering precise

illness detection.

Methods: We present a novel model that integrates EfficientNet-LITE for

enhanced feature extraction with KE-SVM Optimization for effective

classification. KE-SVM Optimization cross-references misclassified instances

with correct classifications across kernels, iteratively refining the confusion

matrix to improve accuracy across all classes. EfficientNet-LITE improves the

model's emphasis on pertinent features through Channel Attention (CA) and 1-D

Local Binary Pattern (LBP), while preserving computational economy with a

reduced model size of 12.46 MB, fewer parameters at 3.11M, and a diminished

FLOP count of 359.69 MFLOPs.

Results: Before optimization, the SVM classifier attained an accuracy of 79.38%

on uncontrolled data and 99.07% on laboratory-controlled data. Following the

implementation of KE-SVM Optimization, accuracy increased to 87.82% for

uncontrolled data and 99.54% for laboratory-controlled data.

Discussion: The model's efficiency and improved accuracy render it especially

appropriate for settings with constrained computational resources, such as

mobile or edge devices, offering substantial practical advantages for

precision agriculture.
KEYWORDS

EfficientNet-LITE, KE-SVM optimization, channel attention, 1-D local binary pattern,
Sobel edge augmentation, uncontrolled environment data, potato leaf disease
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1 Introduction

Crop and plant diseases lead to substantial revenue drops,

incurring elevated disease management expenses and financial

losses for farmers globally. Potatoes serve as a fundamental food

source in India, which ranks as the second-largest producer

globally, contributing over 15% to worldwide potato production.

In India, potatoes are grown on around 2 million hectares, yielding

56 million tons (Mishra et al., 2024), thereby playing a crucial role

in food security and the economy of agriculture. Potato crops

experience yield losses of 5% to 15% owing to leaf diseases

(Mishra et al., 2024), necessitating the implementation of effective

disease management methods. Precisely diagnosing and

categorizing diseases under diverse conditions is important for

effective disease management. Conventional methods (Singla

et al., 2024) necessitated manual field scouting, resulting in

delayed disease diagnosis. These approaches are both inefficient

and subjective, depending on visual evaluations conducted by

trained plant pathologists. Computer vision-based image analysis

(Gulame et al., 2023; Tholkapiyan et al., 2023) has been developed

to address these constraints, enabling rapid and precise disease

identification. However, initial solutions primarily focused on

feature engineering to define particular attributes for each illness,

which is unfeasible for the extensive variety of plant species and

diseases. This has concluded in increased dependency on deep

learning (DL) to provide more generalized and scalable options.

In recent years, deep learning has gained prominence because to

developments in Graphics Processing Units (GPUs), increased

storage space, and the availability of vast datasets. Convolutional

Neural Networks (CNNs) (Huang et al., 2023) have become highly

favored for the recognition and classification of plant diseases owing

to their capacity to independently extract and learn optimal features

from images. Although they perform well in controlled settings,

numerous models fail to reproduce these outcomes with field data

acquired under uncontrolled conditions (Shabrina et al., 2024). To

mitigate this deficiency, the EfficientNet-LITE model, based on

Convolutional Neural Networks (CNN) (Haque et al., 2022;

Khamparia et al., 2020; Nagaraju and Chawla, 2022; Thakur et al.,

2022), was utilized to extract pertinent and advanced features from

images, facilitated by the incorporation of Channel Attention (CA)

(Chen et al., 2021) and 1-D Local Binary Pattern (LBP) (Rachmad

et al., 2022) features. The incorporation of 1-D LBP for texture

analysis from feature maps is a distinctive method that markedly

improved the model’s capacity to identify complex patterns in

uncontrolled settings. Additionally, Sobel edge-detected samples

were incorporated into the improved dataset, providing an

innovative method to improve edge information during training.

Furthermore, KE-SVM Optimization (Deepti, 2023; Shrivastava et

al., 2023) was employed to enhance classification by optimizing

(Sorensen and Nielsen, 2018) SVM kernels and producing superior

prediction data. This integrated methodology attained elevated

precision in both regulated laboratory settings and demanding

outdoor environments. The primary contributions of the paper

are outlined below.
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• The EfficientNet-LITE model, with the innovative

incorporation of Channel Attention and the original

utilization of 1-D Local Binary Pattern features,

substantially enhanced the accuracy of plant disease

classification, especially in severe uncontrolled situations.

This distinctive integration enabled the model to

concentrate more efficiently on pertinent image attributes.

• The incorporation of Sobel edge-detected samples into the

supplemented dataset greatly enhanced the model’s

capacity to capture and leverage edge information,

consequently raising classification performance.

• The KE-SVM Optimization utilized a kernel ensemble and

presented an innovative method to enhance the confusion

matrix by revisiting misclassified samples and accurately

categorizing them with other kernels. This novel approach

successfully reduced the constraints of conventional SVMs,

resulting in enhanced classification efficiency across

various datasets.

• The integration of EfficientNet-LITE with KE-SVM

Optimization demonstrated a revolutionary methodology

that attained higher accuracy and resilience. The model

effectively generalized over both controlled and

uncontrolled datasets.

• This research introduced an innovative, rapid, precise, and

dependable approach for classifying plant diseases, thereby

enhancing agricultural disease management, potentially

reducing yield losses, and enabling informed decision-

making for farmers.
Effective management of plant diseases requires timely and

precise identification and classification. Development in artificial

intelligence and machine learning has resulted in substantial

enhancements in automated disease detection. This review

examines contemporary methodologies and technologies,

concentrating on image processing and deep learning models

applied to various crops, with the objective of summarizing

current achievements and pinpointing research opportunities.

Nabila Husna Shabrina et al. revealed shortcomings in the

PlantVillage dataset for the diagnosis of potato leaf diseases in

real-world scenarios. To resolve this, they presented a novel dataset

of 3,076 pictures obtained in uncontrolled settings, encompassing

seven disease varieties. This dataset offers a more precise depiction

of potato leaf conditions. Testing EfficientNetV2B3 (Shabrina et al.,

2024) resulted in 73.63% accuracy on the new dataset, in contrast to

98.15% on PlantVillage.

Aanis Ahmad et al. investigated (Ahmad et al., 2023) the

generalization capacity of deep learning (DL) models for

diagnosing corn diseases in field conditions using many datasets,

including PlantVillage, PlantDoc, Digipathos, NLB, and a

proprietary CD&S dataset. Five deep learning architectures—

InceptionV3, ResNet50, VGG16, DenseNet169, and Xception—

were trained utilizing diverse dataset pairings. DenseNet169

exhibited enhanced performance, achieving an accuracy of

81.60% using RGBA images from the CD&S dataset after
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g

https://doi.org/10.3389/fpls.2025.1499909
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sangar and Rajasekar 10.3389/fpls.2025.1499909
background removal. Furthermore, the amalgamation of field-

acquired and laboratory data, encompassing sources from

PlantVillage and CD&S, yielded an accuracy range of 77.50% to

80.33%, hence improving model generalization for field application.

Penghui Gui et al. tackled the issue of identifying plant diseases

in uncontrolled field environments. They proposed an enhanced

CNN model for field plant (Gui et al., 2021) disease identification

(FPDR), incorporating strategies such as backdrop substitution and

leaf resizing to optimize data augmentation. To improve feature

differentiation, they employed a channel orthogonal constraint and

utilized species categorization as a supplementary task. Utilizing the

proprietary Field-PlantVillage (Field-PV) dataset, comprising 665

field photos, the model attained an accuracy of 72.03%, representing

a substantial enhancement from 41.81%, despite being exclusively

trained on the PlantVillage dataset.

A. Ubaidillah et al. sought to improve the categorizing of corn

diseases using Random Forest, Neural Network, and Naive Bayes

(Ubaidillah et al., 2022) techniques. The study utilized a

compilation of corn leaf photographs obtained from agricultural

regions in the Madura Region, concentrating on four classifications:

healthy, gray leaf spot, blight, and common rust. The Neural

Network technique outperformed the alternatives, with an AUC

of 90.09%, a classification accuracy of 74.44%, an F1-score of

72.01%, precision of 74.14%, and recall of 74.43%, so establishing

it as the most effective model for detecting maize diseases.

Priyanka Sahu and associates proposed a Deep-Dream (DD)

architecture (Sahu et al., 2023) for Crop Leaf Disease Detection

(CLDD), amalgamating deep learning (DL) with machine learning

(ML) techniques. The study utilized the tomato crop dataset from

PlantVillage and created 24 Hybrid Deep Neural (HDN) models,

utilizing EfficientNet (B0-B7) as a feature extractor in conjunction

with classifiers such as Random Forest (RF), AdaBoost (ADB), and

Stochastic Gradient Boosting (SGB). The DD-EffiNet-B4-ADB

model achieved optimal accuracy, ranging from 84% to 96%.

Hieu Phan et al. presented a deep learning approach utilizing

Simple Linear Iterative Clustering (SLIC) segmentation (Phan et al.,

2022) to identify diseased regions on corn leaves. The study

employed five pre-trained models—VGG16, ResNet50,

DenseNet121, Xception, and InceptionV3—on the PlantVillage

and CD&S datasets, concentrating on super-pixel classes like

northern leaf blight, gray leaf spot, and common rust. One

hundred models were trained using diverse segments and split

ratios. DenseNet121 achieved a peak accuracy of 97.77% on the

CD&S dataset, employing five segments per image and an 80:20

split. Web and mobile applications were developed for disease

identification, demonstrating the effectiveness of automated

disease tracking relative to manual monitoring.

Mohit Agarwal et al. devised an efficient CNN model of 8

hidden layers (Agarwal et al., 2020) for the identification of tomato

illnesses, therefore alleviating the computational demands linked to

pre-trained models. Their approach, assessed with the PlantVillage

dataset, achieved an accuracy of 98.4%, surpassing traditional

machine learning methods (94.9% with k-NN) and pre-trained

models like VGG16 (93.5%). The research employed image pre-

processing techniques to enhance efficiency, achieving an accuracy
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of 98.7% on additional datasets. This study highlights the

effectiveness and efficiency of lightweight (Zhu et al., 2023) CNN

(Dai et al., 2023) models for disease detection in tomato crops.

Hasibul Islam Peyal and associates developed a lightweight 2D

CNN model employing deep learning for the categorization of

diseases in tomato and cotton plants. The algorithm, incorporated

into an Android application named “Plant Disease Classifier,”

(Peyal et al., 2023) proficiently categorized 14 classifications,

consisting of 12 diseased and 2 healthy categories. Despite having

fewer variables than pre-trained models like VGG16, VGG19, and

InceptionV3, it achieved an impressive average accuracy of 97.36%,

with precision, recall, and F1-scores around at 97%, and an Area

under Curve (AUC) score of 99.9%. The utilization of Grad-CAM

for visual interpretations and the model’s rapid classification time of

around 4.84ms highlight its efficiency and effectiveness in

disease detection.

Qiang Dai et al. created DATFGAN, a generative adversarial

network that employs dual-attention and topology-fusion

techniques to enhance the identification of agricultural disease

photos. DATFGAN (Dai et al., 2020) improves image clarity and

resolution, alleviating issues related to unclear images that hinder

identification accuracy. The network’s weight-sharing approach

reduces the parameter count, and actual evidence demonstrates

that DATFGAN produces visually superior results and significantly

outperforms existing methods in practical identification tasks.

Junde Chen et al. developed the Crop Disease Recognition

Model (CDRM), including the Location-wise Soft Attention

mechanism (Ubaidillah et al., 2022) into a pre-trained MobileNet-

V2 to enhance the detection of subtle lesion features. This model

addresses challenges associated with chaotic backgrounds and

variable lighting in crop disease images. The study’s experimental

results demonstrated an average accuracy of 99.71% on an open-

source dataset, with a 99.13% accuracy in challenging conditions.

The proposed method outperforms prior dominant techniques,

showcasing its effectiveness and robustness in detecting

agricultural illnesses.

Rabbia Mahum et al. proposed an enhanced deep learning

technique for the diagnosis and categorization of potato leaf

diseases. Unlike existing methods that categorize potato leaves

into two groups utilizing the Plant Village dataset, their approach

classifies leaves into five separate categories: Potato Late Blight

(PLB), Potato Early Blight (Feng et al., 2023) (PEB), Potato Leaf Roll

(PLR), Potato Verticillium Wilt (PVw), and Healthy (PH). Their

model achieved an accuracy of 97.2% by utilizing a pre-trained

Efficient DenseNet (Mahum et al., 2022) model, integrating an

additional transition layer, and implementing a reweighted cross-

entropy loss function. This method effectively tackles class

imbalance and overfitting, offering a robust solution for

comprehensive disease classification in potato leaves.

Zubair Saeed and associates developed a deep learning system

focused on computer vision for the early detection and classification

of potato leaf diseases. Utilizing deep convolutional neural networks

(Saeed et al., 2021), specifically ResNet-152 and InceptionV3,

trained on the Kaggle potato dataset, their methodology achieved

accuracies of 98.34% and 95.24%, respectively, with a learning rate
frontiersin.org
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of 0.0005. The method precisely classifies potato leaves into three

categories: healthy, early blight, and late blight. This method aims to

mitigate economic losses by enabling the prompt detection of

disease outbreaks through accurate image-based categorization.

Kashif Shaheed et al. developed EfficientRMT-Net, a novel

model that combines Vision Transformer (ViT) with ResNet-50

(Shaheed et al., 2023) for the automated detection and classification

of potato leaf diseases. This technology addresses the limitations of

traditional methods, such as labor-intensive procedures and

inadequate illness detection. EfficientRMT-Net utilizes CNN for

feature extraction, depth-wise convolution to reduce processing

demands, and a stage block architecture to enhance scalability and

sensitivity. The model, trained on bespoke datasets, achieved

accuracies of 97.65% on a generic dataset and 99.12% on a

tailored potato leaf dataset. EfficientRMT-Net offers a dependable

approach for accurate disease classification, consequently

improving crop yield and resource efficiency.

Mingjie Lv and associates devised a maize leaf disease

recognition method to tackle challenges including variable

lighting and complexities in feature extraction. Their

methodology integrates a maize leaf enhancement framework and

the DMS-Robust AlexNet, an advanced neural network (Lv et al.,

2020) based on AlexNet. This network incorporates dilated and

multi-scale convolutions to improve feature extraction. It utilizes

batch normalization to reduce overfitting, with the PReLU

activation function and Adabound optimizer to improve

convergence and precision. Experimental results demonstrate that

this technique significantly enhances disease identification in

complex scenarios, providing a dependable alternative for

advanced plant disease diagnostics.

Hatice Catal Reis and Veysel Turk developed the Multi-head

Attention Mechanism Depthwise Separable Convolution Inception

Reduction Network (MDSCIRNet) for the early identification of

potato leaf diseases. This deep convolutional neural network utilizes

depthwise separable convolutions and a multi-head attention

mechanism to enhance classification accuracy. MDSCIRNet (Reis

and Turk, 2024) achieved an accuracy of 99.33% by combining deep

learning with SVM, outperforming contemporary algorithms such

as Xception and MobileNet, as well as traditional methods like SVM

and Random Forest. The study highlights the effectiveness of

MDSCIRNet in improving early disease detection and reducing

financial losses for agricultural producers.

Xiangpeng Fan and Zhibin Guan address critical challenges in

maize disease identification with their proposed VGNet, a system that

employs a pretrained VGG16 model. VGNet incorporates batch

normalizing, global average pooling, and L2 normalization to enhance

performance. Utilizing transfer learning and the Adam optimizer, the

model achieves an accuracy of 98.3% with a learning rate of 0.001,

exhibiting remarkable precision and recall for nine maize diseases.

VGNet’s small architecture (Fan and Guan, 2023), requiring only 79.5

MB, enables efficient processing, demonstrating effective disease

recognition with a testing duration of 75.21 seconds for 230 images.

The reviewed literature demonstrates significant advancements

in plant disease classification learning models, (Saritha and

Thangaraja, 2023; Shahoveisi et al., 2023) using deep learning and
Frontiers in Plant Science 04
machine learning models, yet several limitations persist. Many

studies rely heavily on the PlantVillage dataset, which, while

comprehensive, is collected in controlled environments and lacks

diversity for real-world applications. For instance, Nabila Husna

Shabrina et al. and Penghui Gui et al. highlighted the challenges of

generalization in uncontrolled settings. Additionally, while methods

such as DenseNet and EfficientNet have been explored, the absence

of innovative feature extraction techniques, such as attention

mechanisms and edge detection, limits their performance in

detecting fine-grained features. Furthermore, traditional classifiers

like SVMs, as used by A. Ubaidillah et al., often suffer from

limitations in handling misclassified samples, reducing overall

efficiency. Despite efforts to enhance accuracy, many studies fail

to effectively combine lightweight models with robust optimization

techniques for scalable and practical applications.

The proposed methods address these gaps by introducing

EfficientNet-LITE with Channel Attention (Haider et al., 2024;

Kumar et al., 2023; Navrozidis et al., 2018) and 1-D Local Binary

Pattern (LBP) features, enabling precise focus on critical attributes

even in uncontrolled environments. The inclusion of Sobel edge-

detected samples enhances fine-detail recognition, while KE-SVM

Optimization revisits and corrects misclassified samples,

significantly improving classification efficiency. This integrated

approach achieves superior generalization across diverse datasets,

offering a fast, accurate, and reliable solution for real-world

agricultural disease management, ultimately empowering farmers

to reduce yield losses.

The remainder of the article is organized as follows: Section 2

outlines the structure of the feature extraction and classification

model. Section 3 examines the experimental findings and analysis,

while Section 4 presents the conclusions and future directions.
2 Materials and methods

The proposed approach initiates with image augmentation and

Sobel edge identification to improve and diversity the dataset. Figure 1

illustrates the application of an attention-based EfficientNet-LITE

model for feature extraction to identify essential leaf attributes,

succeeded by KE-SVM optimization for precise classification of

potato leaf diseases across diverse environments.
2.1 Dataset collection

This work utilized two datasets for the detection of potato leaf

diseases: one from an uncontrolled environment (Shabrina et al.,

2024) in Indonesia and the PlantVillage Dataset (Potato Species)

(Shaheed et al., 2023) from a controlled laboratory setting. The first

dataset, acquired from a Kaggle source, was compiled from multiple

potato farms throughout Java Island by teams from Universitas

Multimedia Nusantara and Universitas Gadjah Mada. It comprises

3,076 photos categorized into seven disease types: Figure 2 (a). virus,

(b). phytophthora, (c). nematode, (d). fungal, (e). bacteria, (f). pest,

and (g). healthy, taken under various settings. Figure 2 presents the
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FIGURE 1

Proposed methodology for potato leaf disease classification.
a) Virus b) Phytophthora c) Nematode 

d) Fungi e) Bacteria f) Pest 

g) Healthy

FIGURE 2

Samples of the seven categories in the potato leaf disease dataset: (a) Virus, (b) Phytophthora, (c) Nematode, (d) Fungal, (e) Bacteria, (f) Pest, and
(g) Healthy.
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sample photographs for each class. Each image possesses a

resolution of 1500 × 1500 pixels and is stored in.jpg format for

accessibility and compatibility with image-processing software.

The second dataset, PlantVillage (potato species), has 2,152

photos categorized into three classes: Healthy, Potato Late Blight,

and Potato Early Blight, captured under uniform lighting

circumstances with a resolution of 256 x 256 pixels. Both datasets

provide a significant contrast between real-world and controlled

settings for assessing model efficacy in disease diagnosis.
2.2 Preprocessing

Use bilinear interpolation (cv2.INTER_LINEAR) (Shabrina et al.,

2024) to resize 1500x1500 potato leaf disease images to 224x224

pixels for machine learning models. This scaling was necessary to

match image dimensions to models. We picked bilinear interpolation

because it smoothed images while maintaining crucial characteristics

and particulars from the high-resolution originals. Preprocessing the

potato leaf disease images reduced computational effort and memory

utilization, optimizing model performance and preparing the dataset

for training and evaluation.
2.3 Data augmentation strategy

A complete data augmentation technique was applied to expand

the training dataset of potato leaf disease image and improve the

performance and resilience of the machine learning model. The
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initial dataset consisted of 3,076 pictures, with 2,460 allocated for

training and 616 left aside for testing. Various augmentation

strategies were employed to generate a more diverse and

comprehensive training dataset, substantially enhancing the

quantity of training samples.

Multiple fundamental augmentation methods were employed

(Shabrina et al., 2024) to synthetically enlarge the training dataset.

Rotation within a 20-degree range was implemented to imitate

diverse viewing angles, enhancing the model’s capacity to generalize

across multiple orientations. Width and height adjustments of up to

20% of the image dimensions were executed to simulate differences

in image positioning. Furthermore, shear transformations with a

magnitude of 0.2 were implemented to produce tilting effects,

facilitating the model’s ability to manage images with perspective

deviations. Zoom changes, with modifications of up to 20%,

emulated various focal lengths and scales. Horizontal flips were

utilized to mirror pictures and augment the model’s resilience to

variations in orientation.

Sobel edge detection was employed to enhance the edges and

transitions in the potato leaf disease images. Employing the

OpenCV library, Sobel filters calculated gradients in both the x

and y directions, yielding edge-detected representations of the

source images. This technique enhanced texture and boundary

information, which was integrated into the training dataset. The

edge-detected images were merged with the augmented versions

generated through fundamental changes, enhancing the dataset

with intricate edge information.

The enhancing method was efficiently performed by processing

images of potato leaf disease in phases. Each image in a batch was
a) Original Image b) Rotate c) Flip d) Left Shift 

e) Sobel edge sample f) Sobel zoom g) Sobel Flip h) Zoom 

FIGURE 3

Sample images demonstrating original and augmented versions using various techniques: (a) Original Image, (b) Rotate, (c) Flip, (d) Left Shift, (e)
Sobel Edge Sample, (f) Sobel Zoom, (g) Sobel Flip, and (h) Zoom.
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initially converted to float32 format and augmented to incorporate

a batch dimension. Six specific augmentations were done to each

image with Keras’s ImageDataGenerator class, enabling

transformations including rotation, shifting, shearing, zooming,

and flipping. Furthermore, Sobel edge detection was executed to

produce further variations. Figures 3a–h illustrates the modified

photos, accompanied by their respective labels, image names, and

class names, which were subsequently gathered and preserved for

model training.

This augmentation method led to a significant increase in the

quantity of training samples. The initial training dataset of 2,460 photos

was enlarged to 14,760 augmented samples (Xiong et al., 2020),

incorporating those enhanced by Sobel edge detection. The quantity

of original testing samples stayed at 616 and was not increased. The

augmentation of the training dataset yielded a more varied collection of

images, markedly improving the model’s capacity to generalize and

excel in multiple circumstances.
2.4 Feature extraction

EfficientNet-LITE is an enhanced version of the basic

EfficientNetB0 (Upadhyay et al., 2024) design, specifically

engineered to improve feature extraction through the strategic

integration of a Channel Attention (CA) mechanism and 1-D

Local Binary Pattern (LBP) for features. The improvements

implemented post-Global Average Pooling layer are designed to
Frontiers in Plant Science 07
augment the model’s capacity to concentrate on pertinent features

in images of diseased potato leaves, thus improving performance

while preserving computational efficiency.

EfficientNet-LITE preserves the key principles of

EfficientNetB0, which optimizes network depth, width, and

resolution for enhanced accuracy with reduced parameters and

FLOPs, while incorporating an attention mechanism for more

targeted feature extraction. Figure 4 (Reproduced from

(Upadhyay et al., 2024)) shows the combination of EfficientNetB0

with Channel Attention mechanism. In contrast to EfficientNetB0,

which depends exclusively on convolutional processes and

depthwise separable convolutions (Reis and Turk, 2024),

EfficientNet-LITE’s incorporation of Channel Attention and 1-D

LBP enables the network to dynamically emphasize significant

features. This produces a model that is both efficient and

proficient at identifying nuanced patterns and details in potato

leaf images, rendering it especially suitable for jobs demanding high

accuracy with constrained computational resources.

The incorporation of the Channel Attention mechanism with 1-

Dimensional LBP in EfficientNet-LITE tackles certain issues in

feature extraction.

2.4.1 Channel Attention (CA)
Channel Attention operates by initially condensing the spatial

dimensions of the input tensor into a channel descriptor by global

average pooling. This description encapsulates the overall context

for each channel, succinctly conveying its significance.
FIGURE 4

The architecture of EfficientNet-LITE Model with channel attention mechanism.
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zc =
1

H*W
o
H

h=1
o
W

w=1
Xb,c,h,w   (1)

In Equation 1, zcthe global average is pooled value for channel c,

Xb,c,h,w is the value of the input tensor at batch b, channel c, height h,

and width w.

The two completely connected layers subsequently convert this

description into a series of attention weights. The initial fully

connected layer diminishes the descriptor’s dimensionality,

whereas the subsequent fully connected layer reverts it to the

original channel dimension. The ReLU activation introduces non-

linearity, while the sigmoid activation guarantees that attention

weights remain constrained between 0 and 1.

The vector z is then passed through two fully connected (FC)

layers to generate channel attention weights:

First FC Layer :      y1 = ReLU(W1z + b1) (2)

In Equation 2, W1 is the weight matrix of the first fully

connected layer, b1 is the bias vector of the first fully connected

layer, ReLU is the Rectified Linear Unit activation function.

Second FC Layer :      y2 = W2y1 + b2 (3)

In Equation 3, W2 is the weight matrix of the second fully

connected layer, b2 is the bias vector of the second fully

connected layer.

Apply a sigmoid activation function to obtain the channel

attention weights:

ac = s (y2) (4)

In Equation 4, s is the sigmoid function, a2 is the attention

weight of channel c.

Ultimately, these attention weights are employed to scale the

original input tensor, accentuating channels with greater weights

and reducing the influence of channels with lesser weights. This

approach allows the model to concentrate on the most pertinent

aspects, enhancing its capacity to derive significant information

from the incoming data.

2.4.2 1-D Local Binary Pattern (1D LBP):
1-D Local Binary Pattern (1-D LBP) is a method for identifying

textural features from one-dimensional data, such sequential signals

or feature vectors obtained from photographs. It operates by

juxtaposing each data point with its adjacent counterparts to

produce a binary pattern, subsequently transformed into a

decimal code. The codes are compiled into a histogram that

illustrates the distribution of local textures within the data points.

This approach is resilient to periodic changes and effectively

identifies critical local structures, including edges and peaks. The

1-D LBP (Algorithm 1) histogram offers a concise and distinctive

feature descriptor that is efficient for signal classification and texture

analysis tasks.
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Input: 1D signal X = {X1,X2,…,Xn}, Number of neighbors P

Output: LBP codes for each point in the signal

1 Step 1: Initialize Parameters

2 P ← Number of neighbors;

3 Step 2: Compute LBP Codes for Each Point in the Signal;

4 for each point i from P + 1 to N - P do

5 LBPi ← 0;

6 for each neighbor j from 1 to 2P do

7 if j ≤ P then

8 Xj ← Xi–P +j–1;

9 else

10 Xj ← Xi+j–P;

11 if Xj ≥ Xi then

12 S (Xi, Xj) ← 1;

13 else

14 S (Xi, Xj) ← 0;

15 LBPi ← LBPi + S (Xi, Xj) • 2j–1;

16 Step 3: Return LBP Codes;

Output: LBPi for each i
Algorithm 1. 1–D Local Binary Pattern (1–D LBP).

2.4.3 Model Structure:
The Table 1 below summarizes the modified structure of

EfficientNet-LITE, detailing the input and output shapes at each

stage, along with the expansion factors, repeat times, and strides.

The proposed EfficientNet-LITE model was meticulously

engineered with a systematic arrangement of layers to attain a

compromise between computing efficiency and performance. The

input layer received potato leaf pictures measuring 224×224×3,

which were subsequently processed through a Conv2D layer that

downsampled the input to 112×112×32 with a stride of 2, thus

diminishing the spatial dimensions while augmenting the channel

depth. Batch Normalization and Swish Activation are utilized to

stabilize and non-linearly activate the refined feature maps, priming

them for the ensuing MBConv blocks.

The Swish activation function is defined Equation 5 as:

Swish(x) = x · s (x) (5)

where s (x) is the sigmoid function, given by Equation 6:

s (x) =
1

1 + e−x
(6)

The MBConv layers facilitate effective feature extraction by

gradually diminishing spatial dimensions while augmenting the

amount of channels, culminating in a dense and compact feature

representation. The model subsequently employed a 1x1 convolution

to refine the features, followed by global pooling and a Channel

Attention mechanism, which improved the model’s capacity to

concentrate on the most pertinent channels. This was succeeded by
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a 1-D Local Binary Pattern (LBP) layer that expanded the feature

vector to 1290 dimensions by integrating texture features.

2.4.4 Performance Comparison: EfficientNet-LITE
vs EfficientNet-B0

In deep learning, determines like Floating Point Operations

(FLOPs), parameter count, model size, and depth are essential for

evaluating the performance and efficiency of neural network

models. FLOPs measure a model’s computational complexity,

whereas the parameter count reflects its ability to learn and

express intricate aspects. The model’s size pertains to storage

demands, whereas depth frequently associates with the model’s

capacity to discern complex patterns within the data.

EfficientNet-LITE had 359.69 MFLOPs, somewhat less than

EfficientNet-B0 ’s 390. EfficientNet-LITE required fewer

computational resources due to its lower FLOPs, making it ideal

for mobile or edge devices. Despite adding Channel Attention and

1-D LBP features, EfficientNet-LITE maintained a computational

efficiency similar to EfficientNet-B0, demonstrating its design

efficiency. There are 3.11 million parameters in EfficientNet-LITE,

compared to 5.3 million in B0. EfficientNet-LITE’s reduced

parameters indicate a more streamlined architecture for memory-

constrained applications. EfficientNet-LITE’s 12.46 MB model size

was lower than EfficientNet-B0’s 20 MB due to fewer parameters.

The compactness of EfficientNet-LITE accelerated model loading,

memory usage, and inference times, making it better for real-time

applications. Table 2 shows the size of pre-trained network model.
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Also important is model depth, as deeper models can learn

complex representations. EfficientNet-LITE had 27 layers,

compared to 24 for EfficientNet-B0. This increased depth

suggested that EfficientNet-LITE could capture more complex

data characteristics, improving performance in sophisticated

feature extraction tasks. The comparable FLOPs show that the

extra depth did not reduce computing efficiency. EfficientNet-

LITE balanced computational efficiency with model capacity.

EfficientNet-LITE was ideal for mobile or embedded systems with

limited computational resources because to its low FLOPs,

parameter count, and model size. Despite being smaller, the

model’s depth let it accomplish complex tasks well.

Finally, EfficientNet-LITE has fewer parameters (3.11 million)

and a smaller model (12.46 MB vs. 20 MB) (Ubaidillah et al., 2022)

than EfficientNet-B0. It has more layers (27 vs. 24) but fewer FLOPs

(359.69 vs. 390), requiring fewer computations. EfficientNet-LITE

was more resource-efficient and performed well.
2.5 KE-SVM optimization (kernel ensemble
SVM optimization)

SVMs were widely employed in image classification and

machine learning to define class boundaries. By translating input

information into high-dimensional spaces, SVM classifiers

(Sorensen and Nielsen, 2018) accurately handled complex and

non-linear patterns in many applications.
TABLE 1 Structure of the proposed model.

Operators (modules) Input shapes Expansion factor Output shapes Repeat times Strides

Input Layer 224 × 224 × 3 – 224 × 224 × 3 1 –

Conv2d 224 × 224 × 3 – 112 × 112 × 32 1 2

BatchNorm 112 × 112 × 32 – 112 × 112 × 32 1 –

Swish Activation 112 × 112 × 32 – 112 × 112 × 32 1 –

MBConv1 112 × 112 × 32 1 112 × 112 × 16 1 1

MBConv6 112 × 112 × 16 6 56 × 56 × 24 2 2

MBConv6 56 × 56 × 24 6 28 × 28 × 40 2 2

MBConv6 28 × 28 × 40 6 14 × 14 × 80 3 2

MBConv6 14 × 14 × 80 6 14 × 14 × 112 3 1

MBConv6 14 × 14 × 112 6 7 × 7 × 192 4 2

MBConv6 7 × 7 × 192 6 7 × 7 × 320 1 1

Conv2d 1 × 1 7 × 7 × 320 – 7 × 7 × 1280 1 1

Globalpool 7 × 7 × 1280 – 1 × 1280 1 –

Channel Attention 1 × 1280 1 × 1280 1 –

1-D LBP 1 × 1280 1 × 1290 1

Dropout 1290 – 1290 1 –

Output Layer 1290 – num_classes 1 –
frontiersin.org

https://doi.org/10.3389/fpls.2025.1499909
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sangar and Rajasekar 10.3389/fpls.2025.1499909
However, datasets from uncontrolled environments with

different backdrops, perspectives, and lighting conditions were

difficult. Inconsistencies in image acquisition caused SVM kernels

to struggle. Ensemble approaches (Sorensen and Nielsen, 2018) in

machine learning improve performance by combining different

models. This helped classify potato leaf diseases, where the

dataset’s unpredictability required a more robust technique.

Kernel-Ensemble SVM (KE-SVM) Optimization used Linear,

Polynomial, Radial Basis Function (RBF), and Sigmoid SVM

kernels to address these issues. KE-SVM Optimization enhanced

classification accuracy and discussed dataset variability by capturing

different data features and integrating their predictions. KE-SVM

Optimization improves classification by combining SVM kernel

strengths. Figures 5, 6 shows the work flow of KE-SVM method.

This method compares misclassified instances in one kernel against

proper classifications in others. The optimum confusion matrix is

iteratively adjusted using this ensemble technique to optimize

classification accuracy across all classes.
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The novelty of this work lies in the application of Kernel-

Ensemble SVM (KE-SVM) Optimization (Algorithm 2) to

substantially improve classification efficacy by harnessing the

advantages of several SVM kernels. Misclassified samples from

the kernel exhibiting the highest accuracy were verified against

predictions from alternative kernels, with those accurately classified

by other kernels deemed as True Positives. The iterative

modification process persisted until all classes were sufficiently

addressed , resu l t ing in s ignificant enhancements in

classification performance.

The potato leaf disease dataset, obtained from uncontrolled

conditions, demonstrated that the SVM RBF kernel initially gave

the highest performance among the kernels, attaining an accuracy

of 79.38%. The Linear kernel achieved an accuracy of 72.89%,

followed by the Polynomial kernel at 71.27%, and the Sigmoid

kernel at 64.12%. The classification metrics and confusion matrix

indicated a necessity for enhancement owing to the dataset’s

h e t e r o g en e i t y , i n c l ud i n g d i ff e r i n g b a ckd rop s and

lighting conditions.
1 Result: Optimized confusion matrix and evaluation

metrics (accuracy, precision, recall, F1 score)

2 initialization;

3 confusion matrices ← [];

4 csv files ← [];

5 kernels ← {‘linear’,’poly’,’rbf’,’sigmoid’};

6 while each kernel k ∈ kernels do

7 svm classifier ← SVC (kernel = k, probability =

True);

8 svm classifier.fit (Xtrain resampled, Ytrain resampled);

9 ypred ← svm classifier.predict (Xtest features);

10 predictions df ← {Xtest features, Class Name, True

Label, Predicted Label};

11 csv filename ← base path + ‘predicted labels’ + k +

‘.csv’;
TABLE 2 The model size of the main networks.

Networks Model size Parameters Depth

VGG16 528 MB 138 million 23

Inception V3 92 MB 23.8 million 159

ResNet50 98 MB 25.6 million –

DenseNet121 33 MB 8.1 million 121

MobileNet-V1 16 MB 4.2 million 88

MobileNet-V2 14 MB 3.5 million 88

NASNetMobile 23 MB 5.2 million –

EfficientNet-B0 20 MB 5.3 million 24

EfficientNet-LITE 12.46 MB 3.11 million 27
Bold values indicate the best performance.
FIGURE 5

Block diagram of KE-SVM optimization.
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Fron
12 save (predictions df, csv filename);

13 csv files.append (csv filename);

14 Evaluate the Model;

15 accuracy ← accuracy score (ytest, ypred);

1 6 p r e c i s i o n ← p r e c i s i o n s c o r e ( y t e s t ,

ypred,’weighted’);

17 recall ← recall score (ytest, ypred, ‘weighted’);

18 f1 ← f1 score (ytest, ypred,’weighted’);

19 cm ← confusion matrix (ytest, ypred);

20 confusion matrices.append (cm);

21 end while

22 Determine the best kernel;

23 best index ← argmax ({accuracy (cm) for each cm ∈

confusion matrices});

24 best matrix ← confusion matrices [best index];

25 optimized matrix ← copy (best matrix);

26 while each sample with (true label ≠ best pred label)

in csv files [best index]do

27 for each i ≠ best index in csv files do

28 if other preds [i] = true label for sample then

29 optimized matrix [true label, best pred

label]

← optimized matrix [true label, best pred

label] – 1;

30 optimized matrix [true label, true label]

← optimized matrix [true label, true

label] + 1;

31 break;

32 end if
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33 end for

34 end while

35 Compute and print optimized metrics;

36 (accuracy, precision, recall, f1–score) ← calculate

metrics (optimized matrix);

37 print (optimized matrix);

38 print (accuracy, precision, recall, f1–score);
Algorithm 2. KE–SVM Optimization.

The SVM classifiers with different kernels attained good

accuracy on the lab-controlled dataset from PlantVillage (potato

species). The Polynomial kernel attained the maximum accuracy of

99.07%, succeeded by the RBF kernel at 98.84%, the Linear kernel at

98.38%, and the Sigmoid kernel at 96.06%. The classification report

indicated an exceptional performance, with an overall accuracy of

1.00. The precision, recall, and F1-scores were remarkably elevated

across all categories, indicating the consistent conditions of the

dataset. The confusion matrix revealed minimal misclassifications,

illustrating the effectiveness of the SVM Polynomial kernel in

controlled laboratory circumstances.

The EfficientNet-LITE + SVM model demonstrated

higher performance on datasets from both controlled

and uncontrolled settings. Following KE-SVM optimization, the

accuracy on the PlantVillage dataset rises to 99.54%, while on the

uncontrolled environment dataset, it dramatically climbs to 87.82%,

showing the model’s improved capacity to manage intricate,

uncontrolled conditions.
FIGURE 6

Misclassified samples re-evaluate with other kernels.
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3 Result and discussions

This study’s results are structured into three primary stages: (1)

results before augmentation, (2) results before optimization, and (3)

results after KE-SVM optimization. These stages comprehensively

illustrate the progression in performance of the SVM classifiers

when applied to controlled (PlantVillage) and uncontrolled

environment datasets for diagnosing potato leaf diseases. The

evaluation metrics employed include accuracy, precision, recall,

F1-score, and other relevant measures to validate the model’s

effectiveness. Equation 7, Equation 8, Equation 9, Equation 10

employed to calculate these measures were included to clarify the

evaluation procedure.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)
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Recall =
TP

TP + FN
(9)

F1   Score =
2*Precision*Recall
Precision + Recall

(10)

Accuracy evaluated overall correctness, whereas precision and

recall examined the management of false positives and negatives.

The F1-score offered a comprehensive assessment of the model’s

classification performance, as illustrated in Table 3 below.

The initial experiments were conducted using the raw dataset

without applying Sobel edge filtering or augmentation techniques.

The SVM classifier’s performance in uncontrolled and controlled

environments revealed significant room for improvement. In the

uncontrolled environment dataset, the accuracy was 75.62%, while

in the lab-controlled dataset, the accuracy was 98.62%. These results

underscore the challenges posed by the inherent variability in the

uncontrolled environment dataset.

The lab-controlled dataset demonstrated high accuracy due to

reduced variability and noise. Following data augmentation with
            

(a)                                              (b)                                                 (c) 

                  

                       (d)                                                 (e)                                                   (f) 

0 1 2 3 4 5 6
0 107 4 1 1 2 1 18
1 1 96 3 0 23 11 18
2 1 0 28 0 4 0 2
3 0 3 1 6 3 0 0
4 3 12 11 0 66 7 21
5 0 8 0 0 3 51 1
6 2 4 4 0 2 2 85

0 1 2 3 4 5 6
0 113 6 1 1 3 2 8
1 1 84 8 3 29 19 8
2 0 0 29 0 4 0 2
3 0 4 0 7 2 0 0
4 6 17 22 1 48 12 14
5 0 10 3 1 4 45 0
6 7 5 10 0 5 3 69

0 1 2 3 4 5 6
0 128 3 0 0 1 0 2
1 1 122 4 0 11 7 7
2 0 2 28 0 3 0 2
3 0 8 1 4 0 0 0
4 4 16 5 1 76 5 13
5 0 11 0 0 3 47 2
6 2 6 2 0 3 2 84

0 1 2 3 4 5 6
0 117 5 1 0 1 2 8
1 1 112 4 0 15 13 7
2 0 4 30 0 1 0 0
3 0 0 0 10 2 1 0
4 6 23 10 2 58 4 17
5 0 9 0 1 3 50 0
6 3 5 15 0 4 0 72

FIGURE 7

Confusion matrices of SVM kernels, AUC-ROC curve, and learning curve for the kernel with maximum accuracy (RBF). (a) Linear, (b) Polynomial, (c)
Sigmoid, (d) AUC-ROC Curve, (e) Learning Curve, (f) RBF.
TABLE 3 Shows the results of both datasets before optimization.

Model Dataset Accuracy Precision Recall F1-score

EfficientNet-LITE + SVM Potato Leaf Disease in Uncontrolled Environment 79.38% 80% 79% 79%

EfficientNet-LITE + SVM PlantVillage (Potato Species) 99.07% 99% 99% 99%
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Sobel edge filtering to enhance feature extraction, the performance

of the SVM classifiers was evaluated before applying the KE-SVM

optimization technique. The augmented samples contributed to

improved classification, particularly in uncontrolled environments.

A comprehensive examination of the SVM model was

performed on the uncontrolled environment dataset utilizing four

distinct kernels: Linear (Figure 7a), Polynomial (Figure 7b), RBF

(Figure 7f), and Sigmoid (Figure 7c). Confusion matrices were

produced for each kernel, offering insights into the model’s

classification proficiency across diverse categories: 0: Virus, 1:

Phytophthora, 2: Nematode, 3: Fungi, 4: Bacteria, 5: Pest, 6:

Healthy. Visual representations of these matrices are provided to

illustrate the model’s performance.
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The overall effectiveness was evaluated by plotting the AUC-

ROC curve (Figure 7d) and learning curves (Figure 7e) for the

kernel exhibiting the highest accuracy. These visuals facilitated

awareness of the model’s capacity to generalize to unfamiliar data.

To test the model’s dependability, 5-fold cross-validation was

employed. Table 4 results demonstrated constant performance

across the folds, signifying the resilience of the SVM with RBF

kernel, which attained the best accuracy.

The SVM model utilizing the RBF kernel exhibited robust

performance, attaining an average training accuracy of 99.32 and

a validation accuracy of 96.94. The minor discrepancy between

these metrics signified effective generalization throughout the

sample. The uniformity of results over the five folds further
 

                             

(a)                                                    (b)                                              (c) 

                     

                        (d)                                                     (e)                                               (f) 

0 1 2
0 195 0 1
1 0 26 0
2 1 5 203

0 1 2
0 194 0 2
1 0 23 3
2 1 5 203

0 1 2
0 192 0 4
1 0 26 0
2 2 4 203

0 1 2
0 195 0 1
1 0 25 1
2 0 2 207

FIGURE 8

Confusion matrices of SVM kernels, AUC-ROC curve, and learning curve for the kernel with maximum accuracy (Polynomial). (a) Linear, (b) RBF, (c)
Sigmoid, (d) AUC-ROC Curve, (e) Learning Curve, (f) Polynomial.
TABLE 4 5-Fold cross validation for potato leaf disease in uncontrolled environment dataset.

Fold Training Accuracy Validation Accuracy Training Loss Validation Loss

Fold 1 0.993 0.9656 0.0796 0.4502

Fold 2 0.9932 0.969 0.0726 0.3942

Fold 3 0.9933 0.9736 0.0705 0.302

Fold 4 0.9936 0.9702 0.0626 0.3604

Fold 5 0.993 0.9686 0.0757 0.3837

Average 0.9932 0.9694 0.0722 0.3781
Bold values indicate the best performance.
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emphasized the model’s resilience, even in an uncontrolled setting.

The RBF kernel effectively captured intricate correlations within the

data, demonstrating its appropriateness for the dataset’s inherent

unpredictability. The model’s excellent accuracy underscored its

efficacy in classifying leaf diseases.

In the lab-controlled dataset, identical SVM kernels were

utilized, and confusion matrices were produced for each kernel:

Linear (Figure 8a), Polynomial (Figure 8f), RBF (Figure 8b), and

Sigmoid (Figure 8c). It offers insights into the model’s

categorization proficiency across different categories: 0: Early

Blight, 1: Healthy, 2: Late Blight. The findings from this dataset

exhibited remarkably high accuracy owing to the controlled

environment, which minimized data fluctuation.

The model’s performance was additionally assessed by plotting

the AUC-ROC curve (Figure 8d) and the learning curve (Figure 8e)

for the optimal kernel. These curves demonstrated nearly flawless

generalization. Consistent with the uncontrolled dataset, 5-fold

cross-validation validated the model’s reliability, with Table 5

indicating minimal variance among the folds.

The SVM model utilizing a polynomial kernel was assessed on

laboratory-controlled data, demonstrating superior performance

across all five folds. The model attained an average training

accuracy of 99.96 and a validation accuracy of 99.84. The training
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loss of 0.0004 and validation loss of 0.0024 signify little error and

robust generalization in a regulated environment. The results

highlight the efficacy of the polynomial kernel in managing clean,

organized data, exhibiting little variability relative to

uncontrolled contexts.
3.1 After optimization

After implementing KE-SVM Optimization, the model’s

performance on the uncontrolled environment dataset shown

significant enhancement. The optimal accuracy increased to

87.82%, accompanied by enhancements in precision to 86.77%,
              

(a)                                                               (b) 

0 1 2 3 4 5 6
0 130 3 0 0 0 0 1
1 1 131 2 0 8 5 5
2 0 0 33 0 2 0 0
3 0 1 1 11 0 0 0
4 4 5 5 1 88 4 13
5 0 6 0 0 1 56 0
6 0 1 2 0 2 2 92

0 1 2
0 195 0 1
1 0 26 0
2 0 1 208

FIGURE 9

Optimized confusion matrices for both datasets: (a) Uncontrolled data and (b) Laboratory-controlled data.
TABLE 5 5-Fold cross validation for PlantVillage dataset (potato species).

Fold Training Accuracy Validation Accuracy Training Loss Validation Loss

Fold 1 0.9996 1.0000 0.0004 0.000

Fold 2 0.9997 0.9972 0.0003 0.0028

Fold 3 0.9997 0.9986 0.0003 0.0024

Fold 4 0.9996 0.9979 0.0004 0.0031

Fold 5 0.9996 0.9983 0.0004 0.0038

Average 0.9996 0.9984 0.0004 0.0024
Bold values indicate the best performance.
TABLE 6 Optimized results for both lab and uncontrolled dataset.

Model Dataset
No. of
Classes

Accuracy

EfficientNet-
LITE + SVM

Potato Leaf Disease in
Uncontrolled Environment

07 87.82%

EfficientNet-
LITE + SVM

PlantVillage(Potato Species) 03 99.54%
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recall to 88.18%, and F1-score to 87.19%. The lab-controlled dataset

has been somewhat enhanced to 99.54%. (Figure 9a) presents the

optimized confusion matrix for uncontrolled data, while (Figure 9b)

displays the matrix for the laboratory-controlled dataset.

The optimization approach improved classification by cross-

validating misclassified examples from the most effective kernel

with predictions from other kernels, resulting in a more precise and

balanced confusion matrix. Table 6 presents the optimal outcomes

of the KE-SVM optimization technique.
3.2 Comparative performance

The proposed model (EfficientNet-LITE + KE-SVM

Optimization) exhibited substantial enhancements in accuracy

relative to previous models utilized on comparable datasets. Prior

to optimization, the model attained an accuracy of 79.38%, which

rose to 87.82% post-optimization. This performance surpassed

those of models like DenseNet121, ResNet50, and MobileNetV3-

Large, which exhibited accuracies between 59.16% and 73.63%. This

significant enhancement can be ascribed to the ensemble SVM

kernel methodology and improved feature extraction with

EfficientNet-LITE.

In the lab-controlled PlantVillage dataset, the suggested model

attained nearly flawless accuracy both prior to and subsequent to

KE-SVM Optimization. The model initially achieved an accuracy of

99.07%, which then increased to 99.54% during optimization. This

performance surpassed other prominent models, including

ResNet152, InceptionV3, and VGNet, which exhibited accuracies
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between 95.24% and 98.34%. The substantial enhancement upon

optimization is attributable to the improved feature extraction and

the strong classification capabilities of KE-SVM.

An optimized version of EfficientNetB0, EfficientNet-LITE,

integrated Channel Attention (CA) and 1D Local Binary Pattern

(LBP) features to increase feature extraction. This model prioritized

potato leaf traits while being computationally efficient, making it

ideal for resource-constrained mobile devices. KE-SVM

Optimization used linear, polynomial, RBF, and sigmoid kernels

to overcome typical SVM constraints. With SMOTE and confusion

matrix optimization, classification accuracy improved, handling

class imbalance and data variability.

The strengths of EfficientNet-LITE and KE-SVM Optimization

were combined. EfficientNet-LITE’s superior feature extraction and

KE-SVM Optimization’s classification created a model that could

handle complex datasets. This collaboration produced high

accuracy and reliable performance in all settings. The combined

model exceeded expectations in early illness identification and

uncontrolled environment management to satisfy research

objectives. The results confirmed the model’s efficacy and

versatility in solving research problems.

Tables 7 and 8 highlight the superior performance of our

proposed EfficientNet-LITE + KE-SVM Optimization model

compared to existing methods. Notably, the model achieved an

accuracy of 87.82% on uncontrolled datasets and 99.54% on the

PlantVillage dataset, surpassing models such as DenseNet121 and

ResNet50. These results underscore the robustness of our approach

in handling variability and improving classification accuracy. The

enhanced classification accuracy of our model has significant

implications for agricultural diagnostics. By addressing challenges

posed by uncontrolled environments, our model paves the way for

reliable and resource-efficient solutions applicable in real-world

farming scenarios. This contributes to the broader goal of

precision agriculture and early disease detection.
TABLE 8 To compare the results with existing state-of-art-methods
with PlantVillage(Potato) dataset.

Author
& Year

Model Name Dataset Accuracy

Saeed Z
et al., 2021

ResNet152 PlantVillage
(Potato)

98.34%

InceptionV3 95.24%

Rabia M
et al., 2022

ResNet-202
PlantVillage
(Potato)

97.2%

Shabrina
et al., 2024

EfficientNetV2B3
PlantVillage
(Potato)

98.15%

Jain J
et al., 2024

EfficientNetB0
PlantVillage
(Potato)

99.05

Proposed
Model

EfficientNet-LITE
(Before Optimization)

PlantVillage
(Potato)

99.07%

Proposed
Model

EfficientNet-LITE
(After Optimization)

PlantVillage
(Potato)

99.54%
Bold values indicate the best performance.
TABLE 7 To compare the results with existing state-of-art-methods for
uncontrolled dataset.

Author
& Year

Model Name Dataset Accuracy

Penghui Gui,
et al., 2021

CNN Field-PV 72.03%

A Ubaidillah,
et al., 2022

ANN
Cotton Disease
(Field Data)

74.44%

AANIS
AHMAD,
et al., 2023

DenseNet169(RGBA) Field-PV 77.50%

Shabrina,
et al., 2024

EfficientNetV2B3

Potato Leaf Disease
in Uncontrolled
Environment

73.63%

MobileNetV3-Large 72.03%

VGG-16 59.81%

ResNet50 68.17%

DenseNet121 59.16%

Proposed
Model

EfficientNet-LITE
(Before
Optimization)

Potato Leaf Disease
in Uncontrolled
Environment

79.38%

Proposed
Model

EfficientNet-LITE
(After Optimization)

Potato Leaf Disease
in Uncontrolled
Environment

87.82%
Bold values indicate the best performance.
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4 Conclusion

In conclusion, our research revealed the effectiveness of

combining EfficientNet-LITE with KE-SVM Optimization for the

classification of potato leaf diseases. Initially, SVM classifiers

demonstrated disparate performance, with the RBF kernel

achieving 79.38% accuracy on uncontrolled data and the sigmoid

kernel reaching 99.07% accuracy on laboratory-controlled data.

Subsequent to KE-SVM Optimization, the accuracy on the

uncontrolled dataset markedly increased to 0.8782, with precision

at 86.77%, recall at 88.18%, and F1-score at 87.19%. Conversely, the

accuracy on the lab-controlled dataset exhibited a minor

enhancement to 99.54%. This integrated model adeptly tackles

issues associated with early disease classification, dataset

variability, and model robustness, demonstrating its versatility

and dependability across many settings. Future work could

explore integrating more comprehensive datasets that combine

image data with clinical parameters such as plant height, size,

irrigation schedules, and expert farmer insights. Additionally,

leveraging generative AI techniques could provide holistic

solutions for farmers, enhancing decision-making and improving

crop management practices.
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