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Fine-grained crop pest
classification based on multi-
scale feature fusion and mixed
attention mechanisms
Yiheng Qian, Zhiyong Xiao* and Zhaohong Deng

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
Pests are a major cause of crop loss globally, and accurate pest identification is

crucial for effective prevention and control strategies. This paper proposes a

novel deep-learning architecture for crop pest classification, addressing the

limitations of existing methods that struggle with distinguishing the fine details

of pests and background interference. The proposed model is designed to

balance fine-grained feature extraction with deep semantic understanding,

utilizing a parallel structure composed of two main components: the Feature

Fusion Module (FFM) and the Mixed Attention Module (MAM). FFM focuses on

extracting key fine-grained features and fusing them across multiple scales, while

MAM leverages an attention mechanism to model long-range dependencies

within the channel domain, further enhancing feature representation.

Additionally, a Transformer block is integrated to overcome the limitations of

traditional convolutional approaches in capturing global contextual information.

The proposed architecture is evaluated on three benchmark datasets—IP102, D0,

and Li—demonstrating its superior performance over state-of-the-art methods.

The model achieves accuracies of 75.74% on IP102, 99.82% on D0, and 98.77%

on Li, highlighting its robustness and effectiveness in complex crop pest

recognition tasks. These results indicate that the proposed method excels in

multi-scale feature fusion and long-range dependency modeling, offering a new

competitive approach to pest classification in agricultural settings.
KEYWORDS

crop pest classification, deep learning, attention, multi-scale feature fusion,
Convolutional Neural Network
1 Introduction

Due to the increasing global population, ensuring an adequate supply of global crops

has become a top challenge. However, pests have a major impact on the yield reduction of

commercial crops. Therefore, accurate identification of pests and timely intervention are

crucial to mitigate their adverse effects on crop productivity. Pest classification is a

challenging task due to the complex structures of insects and the similarities between
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different insect species (Ayan et al., 2020). Traditionally, pests are

usually classified manually, which is time-consuming and inefficient

(Dawei et al., 2019). With the development of artificial intelligence,

machine vision-based pest detection equipment has been initially

applied in agriculture and has replaced the traditional naked eye

identification to some extent (Liu and Wang, 2021).

While traditional machine learning approaches, such as

Decision Trees and Support Vector Machines, have been applied

to pest classification, they are hindered by several limitations. These

methods often require manual feature extraction and are highly

dependent on the quality and consistency of the dataset, limiting

their ability to generalize across varying conditions. The advent of

Convolutional Neural Networks (CNNs) has significantly advanced

the state of pest classification by enabling end-to-end learning of

features directly from raw images. However, CNNs primarily excel

in capturing local features and are limited by their inability to

capture long-range dependencies within the image, which are

essential for robust classification in complex environments.

Recent efforts (Peng and Wang, 2022; Xia et al., 2023) have

integrated Vision Transformers (ViTs) into pest classification tasks

to overcome the limitations of CNNs, benefiting from their self-

attention mechanism to capture global contextual information.

While these hybrid models have shown promise, they still face

critical challenges when deployed in real-world agricultural settings:

(1) In complex field environments, pest images obtained are often

accompanied by high-level interference, such as uneven lighting,

high similarity between pest colors and background colors, and

partial occlusion of pest bodies. Therefore, an effective method is

needed to suppress interference features. (2) Many pests have small

body sizes and are very similar between different species, making it

difficult to distinguish them. The spatial resolution size of feature

maps in deep CNN architecture is limited. The details required for

the precise identification of pests may be lost or become difficult to

recognize at lower resolutions. Furthermore, traditional hybrid

architectures often rely on the serial integration of CNN and

Transformer blocks, which can result in the loss of fine-grained

details during the downsampling process, especially for small pests.

Due to these practical issues, researchers have spent a lot of

effort addressing the practical needs of pest detection in complex

scenarios. Liu and Wang (2024) proposed a multimodal detection

framework for pest targets with small proportions, diverse shapes

and sizes, complex imaging backgrounds, and similarity to the

background. This method can effectively distinguish subtle local

differences between similar objects, thereby achieving fine-grained

mapping from language to vision in complex scenes. The

integration of multiple modes helps solve real-world challenges

such as occlusion, low lighting, and cluttered backgrounds.

However, the reliance on multimodal data collection poses

potential challenges in data synchronization, which may

complicate the deployment of the system in large-scale

agricultural environments. In addition, the cost of data

annotation needs to be considered.

Motivated by these challenges, this paper presents a novel deep-

learning architecture designed to address these gaps by integrating

the advantages of both CNNs and Transformers through a parallel
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structure. The proposed model introduces two key components: the

Feature Fusion Module (FFM) and the Mixed Attention Module

(MAM). FFM adaptively filters key features and fuses multi-scale

information to preserve fine-grained details, while MAM builds

long-range dependencies in the channel domain through a self-

attention mechanism, effectively enhancing the model’s ability to

capture high-level semantic features. By incorporating these

components, the proposed architecture not only prevents the loss

offine-grained features during downsampling but also improves the

model’s ability to suppress interference and background noise. The

main contributions of this paper are summarized as follows:
1. The proposed Feature Fusion Module helps capture fine-

grained features and perform multi-scale feature fusion and

addresses the challenges of fine-grained feature loss

during downsampling.

2. The proposed Mixed Attention Module helps build long-

range dependencies in the channel domain via self-

attention mechanisms and addresses the challenges of

interference from complex backgrounds.

3. The proposed deep-learning architecture that integrates the

strengths of both CNNs and Transformers includes two key

modules and allows for the preservation of fine-grained

details while also capturing deep semantic features,

improving pest detection accuracy in complex

field environments.
The rest of the paper is organized as follows. Section 2 reviews

relevant literature on pest classification and deep learning. Section 3

describes the implementation of the proposed multi-scale feature

fusion architecture. Section 4 discusses the experimental results.

Section 5 discusses the limitations, applications, and future

directions of the proposed method. Section 6 concludes this paper

with a summary.
2 Related works

2.1 Research developments on pest
classification

In the field of pest classification in the past two years,

mainstream research has proposed CNN based methods (Nanni

et al., 2022; Bollis et al., 2022; Zhang et al., 2022; Peng et al., 2023a;

Ayan, 2023; Chen et al., 2023), Transformer-based methods (Liu

et al., 2022a; Guo et al., 2023; Hechen et al., 2024), and methods

based on a combination of CNN and Transformer (Peng andWang,

2022; Xia et al., 2023). Nanni et al. (2022) proposed two new adam

algorithms for deep network optimization based on DGrad that

introduce a scaling factor in the learning rate. Bollis et al. (2022)

proposed an attention-based activation map approach developed to

improve the classification of tiny regions called two-weighted

activation mapping, which produces locations using feature map

scores learned from class labels. Zhang et al. (2022) proposed a low-

energy consumption hybrid ResNet structure to reduce the energy
frontiersin.org
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burden of network computing. They presented an optimal AM-

ResNet design method through a detailed experimental analysis of

the performance differences between building blocks in two typical

ResNet variants, ResNet-20 and ResNet-32. Peng et al. (2023a) built

a pest dataset named HQIP102 and proposed a pest identification

model named MADN based on DenseNet. Ayan (2023) proposed a

new hyperparameter optimization strategy based on a genetic

algorithm for pre-trained CNN models in pest classification. The

proposed method was tested with three CNN models (MobileNet-

V2, DenseNet-121, and InceptionResNet-V2). Chen et al. (2023)

proposed a multi-image fusion recognition method to perform

fusion recognition on multiple images of the same pest instead of

the conventional single image. Liu et al. (2022a) proposed a self-

supervised Transformer-based pre-training method using latent

semantic masking auto-encoder (LSMAE) and a feature

relationship conditional filtering (FRCF) based on k-NN graph to

enhance global information interaction and discriminative feature

representation in models. Guo et al. (2023) considered the class

ambiguity problem and converted the conventional one-label pest

classification task into a multi label one. Hechen et al. (2024)

established a novel Dilated-Windows-based Vision Transformer

with Efficient-Suppressive-self-attention (DWViT-ES) architecture

to confine the range of self-attention within a local region to reduce

the computation complexity. Peng and Wang (2022) designed the

Transformer as the classification head of CNN to balance accuracy

and efficiency. Xia et al. (2023) proposed a new pest classification

method based on a DenseNet and an improved Vision Transformer

in response to the problems of low efficiency and inadaptability to

the large-scale environment of existing pest classification methods.

CNN has the advantages of strong local perception, robustness, and

scalability, but it also has some limitations. For example, the lack of

perception of global information leads to poor processing of long

sequences; CNN uses convolutional operations to extract features,

which can result in the loss of positional information in the input

data. Transformer can capture long-distance dependencies through

its self-attention mechanism and has excellent global modeling

ability. However, its limitations are as follows: due to the lack of

inductive bias characteristics similar to CNN, Transformer lacks

sufficient generalization ability in the case of insufficient data,

making it difficult to achieve ideal results; Due to the high

computational complexity of the attention mechanism and the

fact that its computational rate is the second power of the

increase in image size, it requires very high hardware

requirements; Lack of spatial induction bias and insensitivity to

spatial information. Table 1 illustrates the differences between the

various studies. Compared with other studies, the contribution of

this paper is to propose a hybrid architecture and introduce multi-

scale information of pests into the architecture.
2.2 Hybrid of CNN and transformer

Transformer was originally proposed as a sequence-to-sequence

model for machine translation (Lin et al., 2022). Transformer has

not only shined in the field of NLP but has also achieved
Frontiers in Plant Science 03
outstanding performance in areas such as computer vision.

Research has shown that Transformer-based pre-trained models

can achieve state-of-the-art in most computer vision tasks (He et al.,

2023). In recent years, Transformer architecture has become a

research hotspot in computer vision due to its outstanding

performance. The Vision-Transformer (Dosovitskiy et al., 2020)

has been proven to outperform the best CNN classification

networks (Han et al., 2023). However, its weaker inductive bias is

generally found to cause an increased reliance on model

regularization or data augmentation when applied to smaller

datasets (Steiner et al., 2021), which means that the pure ViT

network is not the best choice when applied to a specialized smaller

dataset. Due to the significant covariance within the local

neighborhood and the gradual stabilization of the image, CNN

can effectively process the image with the help of bias. However,

strong bias also limits CNN when sufficient data is available (Liu

et al., 2023). Therefore, many studies have attempted to introduce

the locality of CNN into Transformers and have achieved good

results (D’Ascoli et al., 2021; Yuan et al., 2021; Li et al., 2021; Xiao

et al., 2021; Dai et al., 2021; Xiao et al., 2022; Peng et al., 2023b; Gao

et al., 2024; Xiao et al., 2024; Ji et al., 2023), demonstrating the

effectiveness of combining CNNs and Transformers.
3 Materials and methods

3.1 Data collection

The first insect dataset in the experiment is collected from the

Insect Pest dataset (IP102) (Wu et al., 2019), which includes 75222

images and 102 classes of crop insect pests. In a dataset, the

imbalance in the number of samples between different categories

often leads to classifiers tending toward categories with more
TABLE 1 Different studies on pest classification.

Study Architecture
Single-scale or
Multi-scale

Ren et al. (2019) CNN Single-scale

Nanni et al. (2020) CNN Single-scale

Ayan et al. (2020) CNN Single-scale

Yang et al. (2021) CNN Single-scale

Nanni et al. (2022) CNN Single-scale

Zhang et al. (2022) CNN Single-scale

Ayan (2023) CNN Single-scale

Chen et al. (2023) CNN Single-scale

Guo et al. (2023) Transformer Single-scale

Hechen et al. (2024) Transformer Single-scale

Peng and Wang (2022) CNN & Transformer Single-scale

Xia et al. (2023) CNN & Transformer Single-scale

Ours CNN & Transformer Multi-scale
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samples and performing poorly on categories with fewer samples.

The problem of sample imbalance often occurs in data with a long-

tail distribution. The degree of long tail distribution can be

measured by the imbalance ratio (IR), which is the number of

samples in the class with the most and divided by the number of

samples in the class with the least. The larger the IR value, the

higher the degree of imbalance in the dataset. IP102 contains images

of pests in various environments, with varying quality, and some

even contain noise and watermarks. This simulates the complex

background, changing lighting conditions, and different

perspectives in the real world, consistent with the natural

shooting environment of farmland. Therefore, it has good

representativeness. IP102 is also a large-scale pest dataset with a

severe long-tail distribution and an IR value of 82. The largest class

contains 3444 images, while the smallest class contains 42 images,

which may lead to some potential biases. The dataset is split into

45095 images for training, 7508 for validation, and 22619 for the

classification task. There are challenges when applying the dataset

to practical use. Primarily, the dataset retains images covering

different life cycles of insects, which can hardly be classified into

the same category. Figure 1a shows different pests in IP102

containing egg, larva, pupa, and adult. Additionally, there are

images of different species that are similar and difficult to

distinguish, as shown in Figure 1b. Finally, samples from different

categories are imbalanced.

The other two datasets (D0 (Xie et al., 2018) and Li (Li et al.,

2020)) are used to test the generalization ability of the proposed

model. The D0 dataset contains a total of 4508 images with 40

categories. Before the training process, the dataset is split into two

groups: training and testing. Randomly, 75% of images are selected

for training, and 25% are selected for testing (the reason for

choosing this ratio is discussed in Section 4.6). Li is a small
Frontiers in Plant Science 04
dataset presented in Li et al. (2020), which contains 5629 images

in 10 different classes. The same splitting strategy as D0 is used to

split Li.
3.2 The proposed model

A novel architecture is proposed to balance the ability to extract

fine-grained features and local deep semantic features

simultaneously while integrating advantages both from CNN and

Transformer. Below is an overview of the proposed model, as shown

in Figure 2. It consists of a feature enhancement module (MAM)

and a feature fusion module (FFM). As shown in the lower part of

Figure 2, MAM is applied to enhance the extracted deep semantic

features and suppress irrelevant features. In this stage, CNN is used

as the backbone network for feature extraction due to its excellent

ability to perceive local features. The pooling layer and classification

layer of the backbone network are removed to retain feature maps.

Then, the feature maps extracted by the backbone network are

processed through MAM. As shown in the upper part of Figure 2,

FFM extracts fine-grained features and fuses features from two

scales. Specifically, the original image is divided into patches, the

features of which are adaptively selected to obtain important fine-

grained features. The Transformer block is used after that to process

these fused features. Finally, a multilayer perceptron head is used

for classification. The detailed module design is presented in the

following text.

3.2.1 Mixed Attention Module (MAM)
The Squeeze-and-Excitation (SE) module proposed by Hu et al.

(2018) was designed to reduce the interference of irrelevant features

in the picture by explicitly modeling the interdependencies between
FIGURE 1

Samples in IP102 dataset. (a) Different forms of Naranga aenescens Moore that contain eggs, larvae, pupa, and adults. (b) Adults of different types of
pests, which are difficult to distinguish.
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the channels of its convolutional features. In this module, an input

image X ∈ RC0�H0�W 0
passes through the backbone network to be

transformed into a feature map U ∈ RC�H�W by convolutional

operations (Equations 1, 2), which refers to a transformation

composed of convolutional operations. The feature map U can be

expressed as:

uc = vc ∗X = o
C0

k=1

vkc ∗ x
k, (1)

U = ½u1, u2,…, uc�, (2)

where uc refers to a single channel of U, ∗ denotes convolution,

vc refers to a 3D spatial kernel, and k refers to the channel on which

the convolutional operations are located. To explicitly model the

interdependencies between the channels, global average pooling is

applied to squeeze global information into a channel (Equations 3,

4), which defines the squeeze operation to be:

zc = Fsq(uc) =
1

H �Wo
H

i=1
o
W

j=1
uc(i, j), (3)

z = ½z1, z2,…, zc�, (4)

where zc refers to the value of the channel into which uc is

squeezed. After that, an excitation operation is employed to capture

channel-wise dependencies fully (Equation 5):

s = Fex(z,W) = s(W2d (W1z)), (5)

where d refers to the ReLU (Nair and Hinton, 2010) function, s
refers to the Sigmoid function, W1 ∈ RC

r�C and W2 ∈ RC�C
r . The

excitation operation consists of two fully connected layers, where r

refers to the reduction ratio of the channel-reduction layer. Finally,
Frontiers in Plant Science 05
the output ~X ∈ RC�H�W is calculated by scaling U with s

(Equations 6–8):

s = ½s1, s2,…, sc�, (6)

~xc = Fscale(uc, sc) = scuc, (7)

~X = ½~x1, ~x2,…, ~xc�, (8)

where sc refers to one of the outputs of the fully connected layer.

The excitation operation based on fully connected layers can

perform well but may suffer from parameter redundancy and lack of

long-range dependency modeling. From this point of view, the

excitation operation is modified to obtain a more effective

implementation. The methodology is as follows:

3.2.1.1 Fully-connected replace

Self-attention mechanism is introduced to the excitation

operation, which adds long-range dependencies to channels and

reduces the number of parameters for the excitation operation. As

shown in Figure 3, the input tensor z ∈ RC�1 is transformed intoQ,

K, and V by linear transformations Wq, Wk, and Wv (Equations 9–

11), which can be expressed as:

Q = z · Wq, (9)

K = z · Wk, (10)

V = z · Wv , (11)

where Wq, Wk and Wv are learnable projection matrices, Wq,

Wk,Wv ∈ R1�dk and Q,K ,V ∈ RC�dk . Then, the weighted channel

information s0 can be calculated as (Equation 12):
FIGURE 2

Pipeline of the proposed model.
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s0 = softmax
QK⊤ffiffiffiffiffi

dk
p

 !
V , (12)

where dk refers to the length of channel features after linear

transformation (the value of this parameter is discussed in Section

4.3), that is, the number of columns of Q, K, and V. Finally, s0 is
divided into chunks, a linear transformation is then performed on

each chunk, and all these chunks are concatenated to obtain the

channel-wise dependencies (Equation 13–15), which can be

expressed as:

s0 = ½s01, s02,…, s0c�, (13)

sc = s (s0cwc), (14)

s = ½s1, s2,…, sc�, (15)

where s0c refers to one chunk, wcrefers to the weights of a linear

transformation for a specific chunk, and s refers to the Sigmoid

function. This module aims to build long-range dependencies in the

channel domain and balance accuracy and model parameters at the

same time.
3.2.1.2 Discussion

The Mixed Attention Module (MAM) builds upon the

foundation laid by the Squeeze-and Excitation (SE) module

proposed by Hu et al. (2018), which focuses on modeling the

interdependencies between the channels of convolutional feature

maps. The SE module employs a channel-wise excitation

mechanism via fully connected layers, effectively re-weighting

each channel based on its global average pooled features. While

this method has proven successful in improving model

performance, it has limitations that hinder its potential in certain

applications. Specifically, the fully connected layers used in the

excitation operation are prone to parameter redundancy and fail to

capture long-range dependencies within the channels, which may

be crucial for certain tasks, especially in high-dimensional feature
Frontiers in Plant Science 06
spaces. To address these limitations, the MAM introduces a novel

approach by replacing the traditional fully connected excitation

mechanism with a self-attention mechanism. Self-attention has the

distinct advantage of capturing long-range dependencies within the

input feature map by considering relationships between all

channels, irrespective of their spatial locations. This introduces

more flexible modeling of channel dependencies, enabling the

module to learn more complex, global relationships between

channels compared to the local, pairwise relationships modeled

by the fully connected layers in the SE module. In later experiments,

the effectiveness of MAM will be verified.

3.2.2 Feature Fusion Module (FFM)
The proposed FFM consists of three components: adaptive

filtering block, feature fusion block, and Transformer block.

Figure 4 shows the information flow between CNN, Transformer,

and FFM.

The function of the adaptive filtering block is to select key image

patches and filter out redundant information. As shown in Figure 2.

The input image x ∈ R3�224�224 is divided into patches,

representing different image regions. Since pests only occupy a

small portion of space, only a few important regions need to be

focused on. As a result, a projection is then performed on these

patches so that the model can learn which region plays a crucial role

in classification. Then, position embeddings are added to the

patches to fully utilize the images’ contextual and positional

information (Equations 16, 17). The process can be expressed as:

z = xclass; x
1
pE; x

2
pE;…; xNp E

� �
+ Epos, (16)

xp ∈ RN�3�P�P , E ∈ RN�3�P�P , Epos ∈ RC�(N+1), (17)

where xp refers to one patch of the image, xclass refers to the class

token which is appended to the patches as a specific feature for

classification, E is a convolutional kernel, Epos are learnable 1D

position embeddings, C refers to the number of channels, P refers to

the width of a patch, and N refers to the number of patches. It is
FIGURE 3

Excitation based on mixed-attention mechanism.
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worth noting that a convolution layer is used for projection instead

of a linear one to avoid parameter redundancy in the

practical operation.

The function of the feature fusion block is to fuse the fine-

grained features z and deep semantic features x0, which are obtained
by the other branch of the proposed model. To achieve this, a

feature alignment strategy is designed as the bridge. To align the

channel dimensions, FFM reshapes the feature maps and

concatenates a zero vector to the reshaped feature maps in the

corresponding position of the class token. The fused features can be

calculated as (Equations 18):

z0 = ½0; reshape(x0)� + z (18)

The function of the Transformer block is to integrate the

concepts of locality, inductive bias, and shift invariance from

CNN and overcome the inherent limitations of traditional

convolution. In our implementation, the fused features z0 are sent

into the Transformer block. The Transformer block comprises a

multi-head self-attention (MSA) block and an MLP block, both of

which are normalized using LayerNorm (LN). For an input

sequence z0, the self-attention mechanism calculates the weighted

sum of each element in the sequence. Multi-head self-attention is a

combination of several self-attention operations, which need to run

h self-attention mechanisms in parallel. Then, these outputs are

concatenated and transformed into the final output (Equation 19):

MSA(z) = concat(A1(z),A2(z),…,Ah(z))Wmsa, (19)

where Ah refers to the self-attention operation, Wmsa refers to

the weight matrix of linear transformation. The process of the

Transformer can be expressed as (Equations 20–22):

z
0
l = MSA(LN(zl−1)) + zl−1,  l = 1, 2,…, L, (20)

zl = MLP(LN(z
0
l )) + z

0
l ,  l = 1, 2,…, L, (21)

y = LN(zL), (22)

where zl refers to the output of the lth block, L refers to the

depth of the Transformer block.

3.2.2.1 Discussion

The design of FFM provides a balanced approach by focusing

on fine-grained feature extraction, multi-scale fusion, and long-

range dependency modeling, thereby overcoming the limitations of

traditional CNN architectures. The position Embeddings allow the

model to retain spatial relationships between different regions of the

image, which is crucial for pest classification, as the spatial

arrangement of pests can significantly impact their identification.

These improvements make the model more robust to disturbances,

more capable of handling small pests, and more efficient in feature

extraction, all of which are crucial for accurately classifying pests in

complex agricultural environments. The effectiveness of this

module will be verified in later experiments.
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3.3 Implementation details

In the proposed model, several design choices regarding the

input tensor dimensions, convolutional kernel size, stride, and

activation functions play a critical role in ensuring the module’s

effectiveness and computational efficiency.

3.3.1 Input Tensor Dimensions
The input image is represented as a tensor x ∈ R3�224�224,

where 3 denotes the color channels (RGB) and 224 × 224 is the

spatial resolution of the image. This resolution strikes a balance

between capturing sufficient detail in pest images and ensuring

computational efficiency. Given that pests occupy only a small

portion of the image, a resolution of 224×224 allows the network

to capture the necessary fine-grained features without incurring

excessive computational costs.

3.3.2 Convolutional Kernel Size and Stride
In the adaptive filtering block, a convolution layer is employed

for patch projection with a kernel size of 32. The stride is set to 32.

This ensures that spatial details important for pest identification are

retained during the patch extraction process. Furthermore, the use

of a convolution kernel instead of a fully connected layer avoids

parameter redundancy and enhances computational efficiency.

3.3.3 Activation Functions
MIM employs the Sigmoid activation function in the output of

the excitation operation. Sigmoid, defined as s (x) = 1
1+e−x , is

particularly well-suited for scenarios where the output needs to be

interpreted as probabilities or to emphasize the relevance of

individual features in a range between 0 and 1. In MAM, Sigmoid

operates on the attention scores to generate a soft attention map,

allowing the model to weigh the importance of different channels

adaptively. This probabilistic interpretation enables the network to

focus more on informative parts of the input, enhancing the feature

extraction process while suppressing irrelevant or noisy features.
4 Results

4.1 Experimental setup

4.1.1 Evaluation metrics
Considering that the quantities of different types of pests are

unbalanced in IP102, D0, and Li, two evaluation metrics are chosen,

namely accuracy and weighted-F1, where accuracy is the ratio of the

correctly classified samples to the total number of samples, and

weighted-F1 is a weighted average of F1 for each category, to measure

the precision and recall of a classification model. The evaluation

metrics are defined as follows (Equations 23–27):

Precisioni =
TPi

TPi + FPi
, (23)
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Recalli =
TPi

TPi + FNi
, (24)

F1i = 2 ·
Precisioni · Recalli
Precisioni + Recalli

, (25)

F1weighted =o
n

i=1
wi · F1i, (26)

Accuracy =
TP + TN

TP + TN + FP + FN
, (27)

where i refers to a specific category, TPirefers to the number of

samples correctly classified as i. FPi refers to the number of samples

incorrectly classified into other categories. FNi refers to the number

of samples that belong to other categories but are classified as i. TNi

refers to the number of samples that belong to other categories and

are not classified as i, and wi refers to the proportion of samples that

belong to i.

4.1.2 Hyperparameter settings
All modules for ablation analysis and comparison experiments

are implemented with the Pytorch library and trained on one

GeForce RTX 2080Ti GPU. All the parameters of the proposed

are randomly initialized except the backbone network. Standard

practices are followed, and data augmentation is performed with

random cropping using the scale to a size of 224 × 224 pixels. To

avoid overfitting, dropout (Srivastava et al., 2014) is employed in the

model and set to 0.1. AdamW is used as an optimizer when fine-

tuning the model. The batch size is set to 32, and the learning rate is

set to 5 × 10−5, the same linear scaling rule (lr × batchsize/256) is

used as Goyal et al. (2017) with base lr = 0.0004. The model is

trained for 150 epochs on IP102 and 10 epochs on D0 and Li. The

hidden dimensions dk in Equation 12 are set to 384 by default.
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4.2 Backbone networks

To select a suitable CNN as the backbone network and balance

accuracy and inference time for different model configurations,

experiments are conducted using several mainstream CNNs

combined with the proposed method. The experimental results

are shown in Table 2. All the models are trained, validated, and

tested on IP102 with an input image resolution of 224 × 224. As

seen in the table, using ConvNext-L as the backbone network of the

model has the best classification performance. Therefore, it is used

as the backbone network of the model.
4.3 Effectiveness of MAM

The value of dk: the hyperparameter dk introduced in

Equation 12 affects the complexity and prediction accuracy of the

model. To investigate the impact of this hyperparameter and to

determine its value, MAM is integrated into the backbone network,

and dk is set to a range of different values. As shown in Table 3,

setting dk = 384 achieves a good balance between accuracy and

complexity, while simply increasing model complexity does not

improve classification accuracy.

MAM aims to build long-range dependencies on channels so

that the model can learn more discriminative implicit features. Also,

it must offer a good balance between performance and model

complexity for practical use. To validate the effectiveness of the

proposed module, the SE module and MAM are integrated into the

backbone network, respectively, with the reduction ratio r set to a

range of different values for a more intuitive comparison. The

comparison result in Table 3 shows that setting dk = 384 in MAM

achieves the highest accuracy, higher than setting r = 16 in the SE

module, but with fewer parameters.
TABLE 2 Classification performance achieved by using different CNNs as
the backbone network of the proposed model.

Backbone
Network

Params
(M)

Inference
Time (ms)

Accuracy
(%)

EfficientNet-B0 27.754 18.68 70.59

VGG-16 19.496 17.99 67.69

VGG-19 24.806 18.07 68.30

ResNet-50 80.736 18.89 67.70

ResNet-101 99.368 19.92 67.66

ResNet-152 115.011 19.38 67.82

ConvNeXt-S 58.970 18.34 74.29

ConvNeXt-B 103.399 18.94 74.51

ConvNeXt-L 224.694 21.72 75.74
TABLE 3 Accuracy (%) on IP102 and parameter sizes for integrating the
SE module and MAM into the backbone network respectively with
different values of hyperparameters.

Method Hyperparameter Params (M) Accuracy (%)

SE

r = 16 196.655 75.26

r = 8 196.950 75.02

r = 4 197.540 75.24

r = 2 198.719 75.08

MAM

dk= 81 196.361 74.95

dk= 192 196.361 75.05

dk=384 196.363 75.41

dk= 768 196.365 74.97

ConvNeXt-L – 196.360 74.78
The bold values are the results obtained by our method, to emphasize.
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4.4 Effectiveness of FFM

In this paper, FFM is designed to utilize fine-grained

information from pest images to accurately classify pests with

small body sizes or similar shapes and colors. To further evaluate

the effectiveness of the proposed method, the method of Grad-CAM

(Gradient-weighted Class Activation Mapping) (Selvaraju et al.,

2017) is used and visualized to show how the model makes its

classification decisions. Specifically, Grad-CAM uses the gradient of

the classification score concerning the convolutional features

determined by the network to understand which parts of the

image are most important for classification. As shown in

Figure 5, the red area on the Grad-CAM heat map is what the

model is focusing on. The results show that in these images where

pests are small or easily confused, the region of interest for
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backbone only includes a small portion of pests, while the model

integrating backbone and FFM focuses on most of the body of pests,

which means through the method, the shape and category of pests

are more accurately identified using fine-grained information.
4.5 Ablation study

In this subsection, several ablation experiments are conducted

on the test dataset of IP102 to validate the effectiveness of each

component of the proposed model.

Firstly, the classification performance using the backbone

network is validated. It achieves 74.78% accuracy on IP102. Only

the backbone network and FFM are combined in the next ablation

experiment. The experimental data in Table 4 shows that the
FIGURE 5

Images of the Grad-CAM generated by each network. The first row of images consists of 5 original images of different pests. The images in the
second row are the GCAM images obtained by the backbone network. The images in the third row are the GCAM images obtained by the feature
fusion Module. Through the feature fusion module, the model can more comprehensively extract the features of pests.
FIGURE 4

Information flow between CNN, Transformer, and FFM.
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classification accuracy obtained by combining backbone and FFM is

0.32% higher than that of the backbone network. The reason for

such a result is that the proposed method is capable of using fine-

grained information to distinguish pests. In the third experiment,

the effectiveness of MAM is validated. As seen in the fourth row of

Table 4, the classification results have significantly improved

compared to the backbone network, with almost no increase in

model parameters. Finally, the full architecture is validated, which

achieves the best classification accuracy. Figure 6 shows the model

performance using different combination strategies of the proposed

method. It is observed that the learning capacity obtained from the

model is significantly more advantageous than others.

This trade-off between computational complexity and accuracy is

a critical consideration when deploying such models in resource-

constrained environments. As observed in Table 4, the introduction

of each module results in incremental changes in both the number of

parameters and accuracy. The inclusion of the FFM leads to an

increase in the number of parameters, from 196.360M to 224.692M,

reflecting the added complexity of this module. Despite this increase,

the accuracy improves marginally from 74.78% to 75.10%. This

suggests that while FFM introduces additional computational

overhead, it enhances the model’s ability to integrate features,

resulting in a small but noticeable performance gain. It also

indicates that simply increasing the number of parameters does not

necessarily lead to a significant improvement in model performance.

The introduction of the MAM also results in an increase in

parameters, albeit a minimal one (196.360M to 196.363M). Despite
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the marginal increase in computational complexity, the accuracy

improves more substantially, from 74.78% to 75.41%. This highlights

the effectiveness of MAM in capturing long-range channel

dependencies, contributing significantly to performance

improvement without adding a substantial computational burden.

When both modules are applied together, the model’s parameter

count increases to 224.694M, showing a combined effect on

computational complexity. However, the accuracy further improves

to 75.74%, indicating that the two modules complement each other,

with FFM enhancing feature integration and MAM refining channel-

wise attention, leading to a higher overall performance.
4.6 Generalization ability

Table 5 shows the classification performance of different methods

on IP102. To further test the generalization ability of the proposed

model, another experiment on two insect pest datasets (D0 and Li) is

conducted. Before that, the appropriate ratio needs to be chosen for

splitting the training and testing sets, as different ratios may have some

impact on the experimental results. As shown in Table 6, setting 75%

of the images as the training set and 25% of the images as the testing

set achieved the best classification results compared to the other two

methods of dataset partitioning. The proposed method is compared to

the state-of-the-art methods on D0 and Li and achieves accuracies of

99.82% and 98.77%, outperforming most methods on these two

datasets. Table 7 shows the classification performance of different

methods. The experimental results demonstrate that the proposed

model has good generalization ability.
5 Discussion

5.1 Model limitations

Although the proposed method achieves state-of-the-art

accuracy, there are still shortcomings, as listed below. Firstly, the
TABLE 4 Ablation experiments of different methods on IP102.

Backbone FFM MAM Params (M) Accuracy (%)

ConvNeXt-L

196.360 74.78

✓ 224.692 75.10

✓ 196.363 75.41

✓ ✓ 224.694 75.74
FIGURE 6

Validation accuracy under different training epochs.
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issue of imbalanced datasets mentioned earlier (in Section 3.1) has

not been resolved yet.

To evaluate the classification performance of the model on data

with different sample sizes, IP102 is divided into three groups: The

head group includes categories with more than 200 samples, the tail

group includes categories with less than 100 samples, and the medium
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group contains the remaining categories. As shown in Table 8, the

proposed model performed the best in the medium group but showed

a decrease in performance in the head and tail groups because

imbalanced data numbers across classes make deep models biased

to head classes and perform poorly on tail classes (Zhang et al., 2023).

However, the proposed model performed worse in the head group

than in the tail group. The possible reason is that the number of

samples in the head category of the dataset is too large compared to

the number of samples in the tail category. The excessive number of

samples in the head category leads to overfitting of the model, while

the insufficient number of samples in the tail category leads to

underfitting of the model; therefore, how to solve this problem is a

new research direction. The most common method is to resample the

training set to balance the distribution of sample sizes between

different classes (Zhang et al., 2020); another method is to add class

weights to the loss function of the model and set higher penalties for

the misclassification of minority class samples (Dang et al., 2021).
TABLE 6 Classification performance using different dataset
partitioning methods.

Method Acc. (%)

D0 Li

70% for training and 30% for testing 99.19 97.73

75% for training and 25% for testing 99.82 98.77

80% for training and 20% for testing 99.11 98.04
TABLE 5 Classification performance of different methods on IP102.

Method Backbone Inference Time (ms) Acc. (%) F1. (%)

ViT-B/16 (Dosovitskiy et al., 2020) Transformer 9.36 72.13 71.81

ViT-L/16 (Dosovitskiy et al., 2020) Transformer 18.16 69.53 69.01

DeiT-B/16 (Touvron et al., 2021) Transformer 8.83 71.11 70.72

DeiTV2-B/16 (Touvron et al., 2022) Transformer 11.13 71.82 71.42

DeiTV2-L/16 (Touvron et al., 2022) Transformer 21.47 72.64 72.32

SwinT-B (Liu et al., 2021) Transformer 45.17 74.17 73.96

SwinTV2-B (Liu et al., 2022b) Transformer 50.31 74.31 73.98

ResNet50 (He et al., 2016) CNN 11.46 68.50 68.02

ResNet152 (He et al., 2016) CNN 34.30 69.06 68.39

VGG-16 (Simonyan and Zisserman, 2014) CNN 2.06 66.44 66.01

ConvNeXt-B (Liu et al., 2022c) CNN 19.07 74.31 73.97

ConvNeXt-L (Liu et al., 2022c) CNN 19.34 74.78 74.54

FR-ResNets (Ren et al., 2019) CNN – 55.24 54.18

FusionSum (Nanni et al., 2020) CNN – 61.44 59.20

GAEnsemble (Ayan et al., 2020) CNN – 67.13 67.17

ResNet50+STN+ISAN (Yang et al., 2021) CNN – 73.29 –

CNNs+Exp+ExpLR (Nanni et al., 2022) CNN 62.31 74.11 73.00

CTF (Peng and Wang, 2022) CNN+Transformer 17.42 74.89 –

AM-ResNet (Zhang et al., 2022) CNN – 56.10 –

GAEnsemble (Ayan, 2023) CNN – 71.84 64.06

ResNet50+EFLM+AFFM (Chen et al., 2023) CNN – 73.90 73.60

Modified-SwinT (Guo et al., 2023) Transformer 12.21 74.15 60.83

MMALNet+DNVT+ResNet50 (Xia et al., 2023) CNN+Transformer – 74.20 67.79

DWViT-ES (Hechen et al., 2024) Transformer – 76.00 –

Proposed method CNN+Transformer 21.72 75.74 75.38
The bold values represent the optimal values for each column.
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Secondly, considering the complexity of the proposed model, it

is not easy to deploy it on edge devices. As shown in Table 2, the

proposed model achieves the best performance at the cost of almost

1 to 10 times more parameters compared to models using other

backbone networks. The main reason is that the backbone network

used has a large number of parameters. When deploying deep

learning models on resource-constrained devices, such as drones or
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mobile devices, reducing model complexity is crucial. Model

compression emerges as an effective solution for this challenge.

Model compression aims to reduce the storage and computational

requirements of the model while maintaining its performance.

Common compression techniques include weight pruning,

quantization, and low-rank decomposition, all of which reduce

redundant parameters and operations, making the model more

suitable for low-power devices. On the other hand, knowledge

distillation can be used to reduce the complexity of the model.

Knowledge distillation, a model compression technique, trains a

smaller “student”model to mimic the behavior of a larger “teacher”

model, thereby achieving a balance between performance and

efficiency. During the distillation process, the student model

learns not only from the hard labels but also from the soft labels

(i.e., the probability distributions) produced by the teacher model.

This allows the student model to capture more nuanced feature

representations and improve its generalization ability. In terms of

specific implementation, the model proposed in this article can be
TABLE 7 Classification performance of different methods on D0 and Li.

Method D0 Li

Acc. (%) F1. (%) Acc. (%) F1. (%)

ViT-B/16 (Dosovitskiy et al., 2020) 99.65 99.65 97.55 97.55

ViT-L/16 (Dosovitskiy et al., 2020) 99.65 99.65 97.82 97.82

DeiT-B/16 (Touvron et al., 2021) 99.65 99.64 98.09 98.09

DeiTV2-B/16 (Touvron et al., 2022) 99.38 99.38 97.96 97.95

DeiTV2-L/16 (Touvron et al., 2022) 99.73 99.73 98.70 98.70

SwinT-B (Liu et al., 2021) 99.73 99.73 98.50 98.50

SwinTV2-B (Liu et al., 2022b) 99.56 99.55 91.21 91.17

ResNet-50 (He et al., 2016) 98.14 98.13 97.21 97.19

ResNet-152 (He et al., 2016) 98.94 98.94 97.55 97.54

VGG-16 (Simonyan and Zisserman, 2014) 98.76 98.75 95.43 95.42

ConvNeXt-B (Liu et al., 2022c) 99.73 99.73 98.36 98.36

ConvNeXt-L (Liu et al., 2022c) 99.65 99.64 98.30 98.29

MLLF + MKB (Xie et al., 2018) 89.30 – – –

CNNs (Thenmozhi and Srinivasulu Reddy, 2019) 95.97 – – –

GAEnsemble (Ayan et al., 2020) 98.81 98.81 – –

GoogleNet (Li et al., 2020) – – 96.67 –

ResNet50+STN+ISAN (Yang et al., 2021) – – 96.78 –

CNNs+Exp+ExpLR (Nanni et al., 2022) 99.81 99.71 – –

CTF (Peng and Wang, 2022) 99.47 – 97.94 –

GAEnsemble (Ayan, 2023) 99.89 99.86 – –

ResNet50+EFLM+AFFM (Chen et al., 2023) 99.80 99.80 – –

MMALNet+DNVT+ResNet50 (Xia et al., 2023) 99.89 99.85 – –

Proposed method 99.82 99.82 98.77 98.77
The bold values represent the optimal values for each column.
TABLE 8 Classification performance of the method on data with
different sample sizes.

Groups Sample sizes Accuracy (%) F1. (%)

Head ≥ 200 72.87 79.63

Medium ≥ 100,< 200 77.29 82.11

Tail < 100 75.79 81.79

Overall 22619 75.74 75.38
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used as a teacher model to train a lightweight model such

as MobileNet.
5.2 Application deployment

Due to the limited computing resources and memory of

embedded devices, this paper demonstrates an implementation

approach to the personal computer. A desktop application called

Pest Classification has been developed, which can be used to load

trained model weights and identify pests, and Figure 7 shows the

application’s user interface. The pest classification software can be

divided into several areas. Model weights and pest images can be

customized for loading in the above area. Then, the recognition

result, including the pest category name and possibility, will be

displayed in the image display area after pressing the predict

button. Finally, the result will be saved after pressing the save

button. In addition, the developed application supports reading

video streams and performing real-time pest identification. In

general, the results will be displayed within 0.5 seconds, which can

be ignored for image recognition, but the delay is relatively high for

real-time pest recognition. Through model lightweight optimization

and edge computing technology, efficient device-side inference can be

achieved to meet the real-time requirements of different scenarios. At

the same time, combined with federated learning and a data closed-
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loop system, the model performance can be continuously optimized

to adapt to regional pest morphological differences. In practical

application, this application can improve the accuracy of pest

identification, reduce the amount of pesticide use, and provide

reliable data support for precision agriculture, which has a wide

range of application prospects and promotion value. The source code

is available at https://github.com/qianyiheng888/PestClassification/.
5.3 Future work

Future work in this domain could focus on evaluating the

proposed model on larger and more diverse datasets to further

assess its generalization capabilities across a wide range of crop

types, pest species, and environmental conditions. Expanding the

scope of testing to include datasets with varying levels of image

quality, lighting conditions, and seasonal variations would provide

valuable insights into the model’s robustness and adaptability in real-

world scenarios. Furthermore, the integration of domain-specific

knowledge, such as pest behavior patterns and crop growth stages,

could enhance the model’s contextual awareness, enabling more

accurate and timely pest classification. These future directions

could lead to the development of a more comprehensive, reliable,

and scalable pest classification system, significantly benefiting

precision agriculture and sustainable pest management practices.
FIGURE 7

Desktop application.
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6 Conclusions

This study presents a novel deep-learning architecture for crop pest

classification, designed to address practical challenges in agricultural

monitoring and pest management. The architecture, a dual-branch

structure that combines Convolutional Neural Networks and

Transformer models, aims to improve classification accuracy by

integrating fine-grained feature representation, multi-scale feature

fusion, and long-range dependency modeling. The key components of

this architecture include the Feature Fusion Module (FFM) and the

Mixed Attention Module (MAM). The FFM enhances the extraction of

detailed features and adaptively selects key information, while theMAM

introduces an attention mechanism to capture long-range dependencies

within the channel domain. The model’s performance was evaluated

across three datasets, IP102, D0, and Li, achieving test accuracies of

75.74%, 99.82%, and 98.77%, respectively. These results highlight the

model’s ability to effectively balance fine-grained feature extraction with

deep semantic learning, which is critical for accurately identifying pests

in real-world agricultural environments. Compared to traditional single-

branch networks, the proposed dual-branch architecture prevents the

loss of fine-grained features during downsampling and enables better

feature expression for small targets, which are often challenging to

detect. Additionally, the architecture’s cross-channel information

exchange and ability to suppress background noise improve its

robustness, particularly in complex environments. By incorporating

Transformer blocks, this architecture combines the strengths of CNNs

in capturing local patterns and Transformers in modeling global

dependencies, achieving superior performance with small

computational overhead. The experimental results demonstrate that

the model not only achieves state-of-the-art accuracy but also maintains

practical inference times, making it suitable for real-time deployment in

precision agriculture. The high performance makes the proposed

method highly effective for large-scale pest detection, contributing to

improved pest management practices and better crop protection

strategies in agricultural settings. Moreover, an application is

developed to meet the users’ needs for pest identification. In the

future, this research aims to explore model lightweighting and

integration of multi-domain knowledge to achieve higher accuracy

with fewer images and smaller model complexity in practice.
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