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Introduction: Iron (Fe) content in soil can influence rice cultivation, inciting

responses ranging from deficiency to toxicity. Fe toxicity is a major constraint,

particularly in areas where acidic soils predominate. Grain Fe content along with

Zn is a major contemporary breeding objective in rice in order to tackle

micronutrient deficiency. There is no information available on the influence of

soil Fe levels, normal and excess, can influence grain micronutrient contents,

particularly in rice genotypes that are tolerant to excess soil Fe.

Methods: In this study, a subset of 170 rice germplasm lines from the 3K panel

were evaluated for grain Fe and Zn concentrations in brown rice across three

different locations. Additionally, the response of these lines to Fe toxicity was

assessed at one location.

Results: Significant phenotypic variation for both traits was observed. Fe toxicity led

to increased grain Fe content but decreased Fe uptake efficiency (IAE), suggesting an

adaptive mechanism to limit excess Fe absorption in the rhizosphere. Five significant

single-nucleotide polymorphisms (SNPs) associated with grain Fe (qGFe1.1ADT,

qGFe2.1BPN-S, qGFe8.1ADT, qGFe12.1ADT, and qGFe12.2BPN-N) were identified on

chromosomes 1, 2, 8, and 12, while one SNP associated with grain Zn

(qGZn12.1BPN-N) was detected on chromosome 12. These SNPs co-localized with

major genes andQTLs involved in heavy-metal homeostasis and transport, including

OsMT2D and Os12g0435000. Superior haplotypes for two candidate genes were

identified, with the analysis revealing their frequencies and allelic effects in different

subgroups. Two marker-trait associations (MTAs), qGFe12.1ADT and qGZn12.1BPN-N,

were validated in an F2:3 population using linked SSR markers.
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Discussion: These validated MTAs provide valuable genetic resources for

biofortification breeding programs aimed at increasing Fe and Zn concentrations

in rice grains, addressing micronutrient deficiencies among rice-

dependent populations.
KEYWORDS
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1 Introduction

Rice serves as a staple food source for approximately 3.5 billion

people across the globe, contributing to 23% of the per capita global

energy intake and supplying 16% of dietary protein (Hoogenkamp

et al., 2017). However, the increasing global population is putting

tremendous demand on rice production worldwide under

escalating challenges of shifting climate. Globally, abiotic stresses

such as drought, salinity, submergence, nutritional deficiency, and

heavy metal toxicity threaten food security for billions of rice-

dependent people. As a primary impediment to rice productivity,

the stresses singly or in combination demand the need for novel

stress-tolerant rice cultivars (Sandhu et al., 2019; Kaewcheenchai

et al., 2021; Theerawitaya et al., 2022).

Heavy metal ions, particularly excess iron (Fe), aluminum (Al),

and cadmium (Cd), severely affects plant growth, development, and

yield. Over 40% of the world’s arable land is affected by acidic soils,

particularly in Asia, sub-Saharan Africa, and South America, which

are primary rice-growing regions. These acidic soils often contain

toxic levels of Fe and Al, impairing root system development,

disrupting nutrient uptake, and causing oxidative damage to plant

cells. Due to the negative impacts of climate change, 18% of the total

rice-cultivable land on a global scale has come under Fe toxicity

problem. Fe toxicity can reduce yields by up to 50% in severely

affected areas. Ionic stresses limit growth and grain yield by

competing with essential nutrient elements, especially interfering

with phosphorus (P) uptake.

In India, which contributes to ~24% of the global rice

production, ecosystem diversity is a major challenge in boosting

rice productivity (Prasad et al., 2017). Some of the large rice

production zones in India such as eastern India are plagued with

several stress factors, such as drought, high temperature, low light,

soil acidity, salinity, nutrient deficiencies, and toxicities (Kumar

et al., 2017). Soil acidity is a major problem in Northeast Indian

soils, where excess Fe and Al impede rice production. Fe-containing

acid soils develop due to podsolization by leaching of sesquioxides

in high rainfall (Patra et al., 2022). The Fe content is significantly

impacted by various soil factors, such as texture, pH, electrical

conductivity (EC), and organic matter content (Zeng et al., 2011).

Soil pH significantly impacts the solubility and accessibility of Fe

(Schmidt et al., 2019). In India, approximately 11.7 million hectares
02
of rice-growing areas are affected by excess Fe, including Assam

(2.43 million hectares), Kerala (Kuttanad region), and Odisha,

where yield losses range from 10% to 100% depending on

severity. In Assam, rice yield stands at 2.17 tonnes per hectare,

while Kerala faces challenges due to waterlogging and extreme soil

acidity. Odisha’s lowland rice fields suffer significant productivity

declines due to Fe toxic soil, potentially interfering with crop

production (Sonu et al., 2024; Ebimol et al., 2023; Regon et al.,

2021; Reddy et al., 2019). Similar conditions are observed in other

rice-growing regions worldwide. In Africa, hundreds of hectares of

land are being abandoned due to Fe toxicity. A substantial portion

of rice cultivation areas in countries such as China, the Philippines,

Thailand, Malaysia, and Indonesia are also threatened by Fe toxicity

(Ullah et al., 2023).

Understanding the effect of different soil Fe status on grain

micronutrient accumulation, especially of Fe, is an interesting

aspect of micronutrient homeostasis in rice plants. Since rice

grains accumulate Fe sourced from the soil, the paradoxical

situation of low or excess soil Fe is likely to affect the Fe content

in the grain. Despite significant progress in identifying the genetic

mechanisms that regulate Fe uptake, transport, and grain

accumulation in rice, there is limited information on the genetic

potential and control of grain Fe assimilation in rice when grown in

soils with varying Fe levels. It is also interesting to know the effect of

defense strategies to excess Fe on micronutrient uptake and

assimilation as well as of the genomic regions regulating those

responses. This knowledge can guide the development of rice

varieties that are both resilient to abiotic stresses and capable of

accumulating optimal levels of essential micronutrients, thereby

addressing productivity and nutritional challenges. This is

particularly important in the context of increasing global Fe

toxicity in rice-growing soils, while rice remains as an important

vehicle for supplementing essential micronutrients like Fe and Zn.

Furthermore, most previous studies on Fe toxicity tolerance in rice

have primarily based on artificial screening under controlled

environments, leaving a gap in information under natural field

conditions. In this study, we evaluated a diverse set of rice

germplasm under different Fe conditions and characterized grain

Fe and Zn assimilation vis-à-vis their response to Fe toxicity. We

have also evaluated the genetic regulation of the responses’ traits

using genome-wide association studies (GWAS).
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2 Materials and methods

2.1 Plant materials and experimental setup

The study utilized 174 genotypes, comprising a subset of the 3K

genome panel (Wang et al., 2018) of 170 genotypes and four check

varieties. Initiated with 192 genotypes (188 germplasm lines and

four checks), the study could continue only with 174 genotypes, as

14 genotypes suffered establishment issues rendering them unusable

in the downstream analyses. The checks were contrasting excess Fe-

responsive genotypes, Shahsarang (tolerant), Megha SA2 (tolerant),

Pusa 44 (sensitive), and IR64 (sensitive). Shahsarang is a medium-

tall (100–110 cm), non-lodging, and medium-duration (120–130

days) indica rice variety with moderate resistance to blast disease

and high tolerance to Fe toxicity. Shahsarang performs well in acidic

and lowland soils, and its grains are notable for their high Fe and Zn

content. Megha SA2, another variety tolerant to excess Fe (Sonu

et al., 2024), is a late-maturing cultivar well suited to mid- to low-

altitude lowland ecosystems. It produces medium-aromatic, long

slender grains with awns and red-colored kernels. Among the

sensitive checks, IR64 is an early-maturing, high-yielding variety

with comparatively lower grain micronutrient levels, while Pusa 44

is a long-duration, semi-dwarf, high-yielding cultivar known for its

sturdy stem. The subset assembly had predominantly Indian origin

genotypes comprising cultivars, landraces, and breeding lines

(Supplementary Table S1). All materials were sourced from the

ICAR-Indian Agricultural Research Institute (IARI), New Delhi.

Field evaluations were conducted at three diverse agro-

ecological locations in India. These sites were New Delhi (DEL),

Aduthurai (ADT), and Barapani (BPN) having four sites with

varying soil Fe levels. At DEL, the experiment was conducted

during Kharif 2022–2023 at the experimental plots of the

Division of Genetics, ICAR-IARI (28°38′ N; 77°10′ E; 246 m),

while at ADT, the field at the IARI Rice Breeding and Genetics

Research Centre (RBGRC, Tamil Nadu) was used (11°00′ N; 79°28′
E; 41 m) in Rabi 2022–2023. Located at the experimental farm of the

ICAR-Research Complex for North Eastern Region, Umaim,

Meghalaya (25°41′ N; 91°54′ E; 980 m), at BPN, there were two

different lowland field conditions. Site 1 was with normal Fe (24.6

ppm) (BPN-N) and site 2 was with excess Fe-stressed (72.0 ppm)

(BPN-S) conditions. DEL soil was relatively low in Fe (16 ppm)

(Rani et al., 2021) (site 3), while ADT had moderate soil Fe content

(24.6 ppm) (site 4) (Jeyasingh et al., 2023). The soil Zn content at all

of the sites was moderate, with DEL having a DTPA-extractable Zn

content of 2.5 ppm, BPN with 1.96 ppm, and ADT with 1.2 ppm.

The soil types and pH varied across sites, with DEL having sandy

loam soil (pH 8), ADT with alluvial soil (pH 6.28), and BPN having

red loam acid soil (pH 5.63 for BPN-N and pH 5.2 for BPN-S).

The field experiments have been laid out in augmented

randomized complete block design at all three sites under

irrigated transplanted conditions. The nursery was raised on

elevated beds for 21 days and transplanted into well-puddled field

with a spacing of 20 × 15 cm. The field was divided into four blocks,

with 47 genotypes in each block to accommodate the initial panel of

188 genotypes. The check genotypes were replicated four times over
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four blocks. Each entry was transplanted in 0.9-m2 plots of three

rows having 10 plants each. The entire trial was managed with

recommended agronomic practices at all of the locations.

Experimental layout and randomization were made using

PBTools v1.4 (Sales et al., 2013). As previously mentioned, only

174 genotypes were used further for analyses.

A QTL validation population was developed by crossing

Shahsarang/IR64. These two parents were selected based on their

contrasting responses to Fe toxicity rather than being among the top

12 high-iron and zinc accessions identified in the study. Cross was

made in 2020, and F1 seeds were grown and tested using SSR

markers to confirm hybridity. 192F2 plants were raised along with

the parental lines at ICAR-IARI, New Delhi, during the Kharif

season of 2021–2022. The plants were selfed and harvested

separately. The F2:3 seeds were evaluated in the lowland area at

ICAR-NEH region, Umiam, Meghalaya, during Kharif 2022–2023,

and phenotyping was done for grain Fe and Zn.
2.2 Analysis of grain Fe and Zn content

At maturity, the grains were harvested from each genotype

separately from five uniform-looking plants per plot from each of

the four experiments. The harvested grains were pooled per genotype,

cleaned by removing any discolored or ill-filled spikelets and sun-

dried for 3 days to bring to uniformmoisture content. The grains were

then dehusked using Satake® THU35C-T testing husker. Grain Fe

(GFe) and Zn (GZn) levels were directly determined using Hitachi®

X-Supreme 8000 (Oxford Instruments Plc., UK) energy-dispersive X-

ray fluorescence (ED-XRF) spectrometer calibrated as per Paltridge

et al. (2012) for high-throughput screening of brown rice (Chandu

et al., 2020). To this, 5 g of dehusked and cleaned rice kernels was

placed in 30-mm aluminum sample cups and sealed with Poly-4 XRF

film. The samples were uniformly distributed by gentle shaking before

analysis. The GFe and GZn contents were recorded in mg/kg.
2.3 Soil Fe estimation

Soil Fe content (SFe) was estimated using the diethylenetriamine

pentaacetate (DTPA) method (Lindsay and Norvell, 1978). Soil

samples were collected from the experimental plots and dried

sufficiently. Moreover, 20 g of air-dried sample was thoroughly

mixed with 40 mL of DTPA solution, allowed to stand for 1 to 2 h,

and centrifuged. The supernatant was extracted and filtered with

Whatman 41 filter paper, and the filtrate was analyzed for Fe

concentration using atomic absorption spectrophotometry.
2.4 Grain iron assimilation efficiency

For the purpose of understanding the influence of soil Fe

content on grain Fe concentration, we propose an index, grain

iron assimilation efficiency (GIAE), following similar indices

calculated for other nutrients (Xu et al., 2012; Saito et al., 2021).
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GIAE =
GFe content

Total Fe in Soil
� 100
2.5 Statistical analysis

Site-wise analysis of variance (ANOVA) was used to compute

coefficients of variation for phenotypic (PCV) and genotypic (GCV)

components and broad sense heritability (H2). R package

augmentedRCBD (Aravind et al., 2023) was used in the computations.

Using the pooled data, best linear unbiased predictors (BLUPs) were

generated using a restricted maximum likelihood (REML) approach

using the lme4 package integrated with the software PBTools v1.4 (IRRI

2014). Jitter box plots were drawn in R using ggplot2 package.

Correlation analysis was done and presented graphically in R using

corrplot package. Graphical analysis of genotype (G), site (E), and

genotype-by-site interaction (GSI) was done using GGE biplot

analysis using GGEbiplotGUI package and factorial regression analysis

(FRA) was done using GEA-R software (https://data.cimmyt.org). FRA

particularly emphasized how different co-factors of different

environments influence the genotype performance (Denis, 1988;

Van Eeuwijk et al., 1996; Vargas et al., 1999). A factorial regression

(FR) model that incorporates environmental covariates into the

genotype × environment interaction (GEI) can be expressed as:

Yij = μ + gi + ej +o
H

g=1
Zihzjh + eij

where Yij is the response variable of the i
th genotype (i=1,…,I) in

the jth environment (j=1,…,J). μ represents the grand mean, gi and ej
are the genotype and environment deviations respectively from the

grand mean; Zih are the environmental covariates; zjh are the

genotype factor; H (H< J) is the number of environmental

covariates, and eij is the error term.
2.6 Population structure and linkage
disequilibrium

To estimate the population structure of the test germplasm,

genome-wide data of 3,341,271 SNPs were downloaded from the

Rice-SNP Seek database (Alexandrov et al., 2015). Filtered across

taxa for a maximum of 10% missing call rate and across the sites for

minor allele frequency of 0.05 and heterozygosity >0.3, a total of

140,487 markers were used for analysis. Chromosome-wise SNP

distribution was visualized using an SNP density plot in SRplot

software (Tang et al., 2023). The number of subgroups in the

association mapping panel was estimated using the LEA-R

package (Frichot et al., 2014) along with vcfR and PCA. Analysis

was performed with assumed subgroups (K) ranging from 1 to 10,

replicated 10 times. The total number of ancestral populations was

determined using cross-entropy and the elbow method (Bholowalia

and Kumar, 2014). PCA was conducted with GAPIT (Lipka et al.,

2012), and the significant number of PCs was determined using a

scree plot. Pairwise LD was calculated using a 50-bp sliding window
Frontiers in Plant Science 04
in TASSEL 5.0, and LD (r²) was plotted against marker distance

(Bradbury et al., 2007). Only r² values with p <0.05 were considered

for LD decay analysis, and the LD decay plot was constructed in R

4.2.3 as per Remington et al. (2001).
2.7 GWAS analysis

Bayesian information and linkage disequilibrium iteratively

nested keyway (BLINK) model adopted in GAPIT package was

used to identify marker–trait associations (MTAs) because of its

high computing efficiency and statistical power. Significant MTAs

were identified after a Bonferroni multiple test correction calculated

from the reciprocal of the total number of markers used for analysis

[p < 4.78E-07; -log10(p) > 6.32]. Circular Manhattan plots and

symphysic Q-Q plots were used for the graphical presentation

of significant MTAs. The percentage of phenotypic variance

explained (PVE) by individual SNP was calculated through the

single-marker analysis. These MTAs were named following QTL

naming conventions.
2.8 Assessment of the novelty of identified
MTAs

The marker interval which harbors significant marker–trait

association across the locations was studied further to identify

putative candidate genes for grain Fe and Zn content. The

probable expressed genes present between the marker positions

were downloaded from the Rice Annotation Project Database

(RAP-DB) and compared as to the physical positions with those

of the previously reported quantitative trait loci (QTLs). In addition

to the literature survey, the Gramene QTL database (https://archive.

gramene.org/qtl/) and KnetMiner (Hassani-Pak et al., 2021;

https://knetminer.com) were searched to identify the physical

locations of the previously reported QTLs.
2.9 Validation of identified quantitative trait
loci

The parental genotypes of the validation population were tested

for parental polymorphism for the SNP-linked SSR markers using

microsatellite (SSR) markers, the segregation ratio of polymorphic

markers was checked using chi-square test, and distorted markers

were removed (Zhang et al., 2010). Phenotypic data was tested for

ANOVA, and best linear unbiased predictors (BLUPs) were

generated through the REML approach using the lme4 package

integrated with the software PBTools v1.4 (Sales et al., 2013) with

genotypes as random variables in the model. The F2 genotypic data

was regressed on the phenotypic BLUPs of F2:3 and the

corresponding individual F2s to perform single-marker analysis.

The markers which showed significant variation among the

parental classes for the target trait were considered validated for

the corresponding linked QTL.
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3 Results

3.1 Phenotypic variation for grain
micronutrients

Pooled analysis of variance showed significant variations for

genotype (G), site (S), and GSI components for GFe and GZn

(Table 1). Variation due to checks and genotype at BPN-N was not

significant for GFe, while grain GZn exhibited significant variation.

Boxplots across all of the sites showed the distribution for both

traits, confirming the quantitative inheritance of the trait

(Figure 1A). The average GFe and GZn content across the sites is

presented in Supplementary Table S2. GFe showed the highest

mean of 22.3 mg/kg at BPN-S, with a range of 17.3 to 30.2 mg/kg,

followed by DEL with an average of 17.9 mg/kg and a range of 10.5

to 33.3 mg/kg. No significant difference was observed for GFe
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content at ADT and BPN-N with average GFe of 14.9 and 15.9

mg/kg, respectively. Similarly, GZn content with the highest average

was observed at BPN-S condition with a value of 37.2 mg/kg and a

range from 34.9 to 41.9 mg/kg, followed by DEL, ADT, and BPN-N.

Genetic variability analysis revealed that the highest PCV and GCV

for GFe were observed to be highest at ADT (22.0 and 20.8,

respectively), followed by DEL (19.6 and 18.1), BPN-S (19.2 and

17.1), and BPN-N (15.6 and 13.0). GZn displayed the highest PCV

and GCV at BPN-N (19.0 and 18.3, respectively), followed by BPN-

S (16.4 and 16.3), DEL (16.2 and 15.3), and ADT (14.6 and 14.0).

Highest broad sense heritability was observed at ADT for GFe,

while the lowest was observed for BPN-N, and the GZn maximum

heritability was observed at BPN-S and the lowest at DEL (Table 1).

According to the critical grain micronutrient thresholds for

biofortification set by HarvestPlus—grain Fe >18 mg/kg and grain

Zn >28 mg/kg—several genotypes were found to exceed these levels
TABLE 1 Analysis of variance for the grain micronutrient content under four sites with varying levels of soil Fe content.

Source GFe GZn

ADT BPN-N BPN-S DEL ADT BPN-N BPN-S DEL

Treatment 7.6* 5.4 8.9* 18.6** 23.8** 15.9** 5.8** 41.9**

Check 8.3* 6.6 48.1** 58.9** 31.9** 77.2** 7.3* 64.9**

Test 7.5* 5.3 8.3* 15.7** 14.2** 11.5** 2.17 33.2**

Test vs. check 22.6** 6.1 43.2** 427.5** 1618.2** 654.5** 613.8** 1476.8**

Block 0.1 3.4 6.6 5.1 3.9 2.1 4.9* 5.4

Residuals 1.16 1.6 2.67 2.1 1.17 0.9 0.68 2.4

Genotype (G) 2.7*** 1.8**

Site (S) 10.3** 42.5**

GxS 4.6*** 13.4**

Residual 2.5 1.45

Mean ±
SE (ppm)

14.9 ± 0.2 15.9 ± 0.2 22.3 ± 0.3 17.9 ± 0.3 29.8 ± 0.3 21 ± 0.3 37.2 ± 0.4 30.1 ± 0.4

Minimum 9.7 10.7 17.3 10.5 18.5 14.9 34.9 20.5

Maximum 25.8 24.3 30.2 33.3 41.3 33.3 41.9 54.6

CV% 7.1 7.5 8.6 7.78 4.1 5.1 2.2 5.4

SD 3.3 2.5 4.6 3.6 4.8 4 6.0 5.0

GCV% 20.8 13.0 17.1 18.1 14.0 18.3 16.3 15.3

(high) (medium) (medium) (medium) (medium) (medium) (medium) (medium)

PCV% 22.0 15.6 19.2 19.6 14.6 19 16.4 16.2

(high) (medium) (medium) (medium) (medium) (medium) (medium) (medium)

h2(BS) 89.6 76.7 80.0 84.5 92.1 92.4 98.2 89.3

(high) (high) (high) (high) (high) (high) (high) (high)

GAM 40.6 3.9 31.6 34.2 27.7 7.6 33.2 30.0

(high) (high) (high) (high) (high) (high) (high) (high)
GFe, grain Fe content in ppm; GZn, grain Zn content in ppm; ADT, Aduthurai; BPN-N, Barapani- normal; BPN-S, Barapani-stressed; DEL, Delhi; CV, coefficient of variation; SD, standard
deviation; GCV, genotypic coefficient of variation; PCV, phenotypic coefficient of variation; h2(BS), heritability in broad sense; GAM, genetic advance over mean.
*, **, and *** indicate significant variation at p < 0.05, p < 0.01, and p < 0.001 levels, respectively.
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when grown at different sites, particularly at sites BPN-S and DEL.

For grain Zn, in addition, numerous genotypes exceeded the critical

level at ADT also. However, the genotypes did not consistently

maintain high micronutrient levels across all sites. For grain Fe,
Frontiers in Plant Science 06
only one genotype, IRG173, consistently showed over the threshold

GFe across all sites. In the case of GZn, three genotypes—IRG189,

IRG192, and IRG72—consistently exceeded the threshold across all

locations (Figure 1B).
FIGURE 1

(a) Boxplots showing the distribution of grain Fe and grain Zn content under four sites, (b) Venn diagram showing common genotypes that show the
average grain nutrient content above HarvestPlus threshold values, and (c) correlogram of grain Fe and Zn content across four sites having varying
soil Fe contents. The sites are coded as DEL for Delhi, ADT for Aduthurai, and BPN for Barapani.
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3.2 Interrelations grain micronutrient
contents across sites

Pearson’s correlation coefficient between the grain micronutrient

contents showed a significant association between sites (Figure 1C).

The GFe and GZn contents between ADT and BPN-S showed a

significant positive association. The GFe content at DEL showed a

positive trend with that of other sites as well as with the GZn content

except for BPN-N. Except for the positive association between GFe

and GZn at BPN-N, GFe at this site did not show any relation with

the micronutrient status at other sites, whereas the GFe recorded at

BPN-S has had a significant association with GZn content at ADT,

DEL, and BPN-N. Other than these, the GZn content at different sites

showed a low association with the grain micronutrient contents of

other sites. Exception on this were the associations observed between

GZn contents BPN-S and those of ADT and DEL. Interestingly, no

associations in the grain micronutrient contents could be observed

between normal and stressed conditions at BPN, signifying the effect

of Fe toxicity in grain micronutrient accumulation.
3.3 Fe assimilation efficiency

The average Fe assimilation efficiency (IAE) of genotypes varied

significantly between the sites, and so were the variances. IAE was

highest in DEL (1.20) and lowest at BPN-S (0.31). The IAE at ADT

(0.62) and BPN-N (0.65) conditions were close and were

intermediate to that at the other two sites. The sample variance

also varied between 0.04 (BPN-S) and 0.25 (DEL) (Figure 2B).
3.4 Site soil characters and genotype-by-
environment interactions

Site-wise soil analysis revealed that the DEL site had a pH of 8.0,

EC of 1.2 dS/m, and 16 mg/kg soil Fe content. ADT soil was alluvial,

having a pH of 6.3, EC of 1.7 dS/m, and 24.0 mg/kg Fe content. The

BPN-S site was highly acidic with a pH of 4.5–5.2, having a Fe

content of 72.0 mg/kg and EC of 0.11 dS/m. The BPN-N site soil

had a Fe content of 24.6 mg/kg with a pH range of 5 to 6 and EC

0.18 dS/m (BPN-N). The FRA demonstrated the varied levels of

significance in the influences of G, S, and GSI components on both

GFe and GZn. Partitioning GSI further, all three soil variables, pH,

EC, and soil Fe were found to have a significant influence (Table 2).

Interaction of genotype × soil pH had a profound share of 47.9% in

genotype × site interaction for GFe content, followed by SFe (36.1%)

and EC (32.4%). A similar pattern of influence was observed on

GZn also, in which genotype × soil pH interaction had 58.2% share

in the GSI, followed by EC (30.9%) and SFe (21.8%).

The biplots of GGE analysis indicated the differential response of

the test genotypes under different sites. In both cases, DEL was the

closest to the average environment axis (AEA), and BPN-N remained

the farthest. Among the genotypes, IRG169 and IRG204 showed high

GFe content under BPN-S, while IRG260 showed higher GFe under

DEL location. There was a distinct difference among the sites for Fe
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content, while there was no significant variation among the sites for

GZn content. IRG193, IRG247, and IRG197 were the top rankers in

GZn but were found unstable across environments. However,

genotypes such as IRG142, IRG205, IRG163, IRG207, etc., were

found to be stable as well as having higher GZn. In the case of

GFe, IRG218 and IRG134 were found stable (Figure 2A).
3.5 Linkage disequilibrium and population
structure

The chromosome-wise distribution of 140,487 SNPs among the

panel of 170 genotypes revealed that the markers were distributed

across with an average distance of 2.66 kb (Table 3). The highest

marker density was found on chromosome 1 with an average marker

distance of 1.99 kb and the lowest was on chromosome 9 with an

average marker distance of 3.73 kb (Figure 3A). Linkage

disequilibrium (LD) calculated based on the r2 values denoted a

critical LD of 158.9 kb based on the 95th percentile of the

cumulative pairwise distances between markers on each linkage

group. The markers present between a physical distance of less than

159 kb tend to inherit together as a single haplotype unit (Figure 3B).

The cross entropy from the estimated admixture coefficients plotted

against the expected number of subpopulations revealed a significant

fall in the slope at K = 3, revealing the elbow point (Figure 3C). The

three sub-populations were designated as POP1, POP2, and POP3. A

PCA analysis performed on the genotypic data also indicated a

significant presence of three groups in the population structure,

explaining about 40% of the total variation (Figure 3D). With a

maximum cutoff value of 0.95 for admixture (co-ancestry) coefficients

(Q), 49.4% of admixtures were identified in the whole population.

When plotted in the bar chart, POP1 had 30 genotypes, of which 18

genotypes were with less than 5% admixing, and the remaining 12 had

5% to 41% admixing. POP2 contained 14 genotypes, nine of which

were least admixed and the remaining five were admixed. Among 126

genotypes in POP3, 59 were least admixed and 67 were admixtures

(Figure 3E). The details of the genotypes in the three subpopulations

are provided in Supplementary Table S3.
3.6 MTAs for grain micronutrient content

The Q-Q plots for all the traits showed the expected distribution

of log10(p) that implied perfect control of false discovery (Figure 4).

Among the six MTAs identified, five were mapped for GFe and one

for GZn content. Three MTAs detected for GFe at ADT were

distributed on chromosomes 1(qGFe1.1ADT), 8 (qGFe8.1ADT), and

12 (qGFe12.1ADT) and positioned respectively at 2.6, 19.4, and 18.5

Mbp. These MTAs explained a phenotypic variance of 10.8%, 8.3%,

and 9.7%, respectively. At BPN -S, the only MTA detected was on

chromosome 2 (qGFe2.1BPN-S) located at 0.48 Mbp, which explained

a PVE of 42.3% for GFe. There were two MTAs identified under

BPN-N both located on chromosome 12. One of these MTAs was

associated with GFe (qFe12.2BPN-N) and was located at the physical

position of 21.2 Mbp, explaining 41.7% variation. The other MTA
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was associated with GZn (qGZn12.1BPN-N) and was located at 14.2

Mbp, accounting for 32.2% of the total phenotypic variance (Table 4).
3.7 In silico search for candidate genes

A total of 92 annotated gene models were identified within the

haplotype surrounding the identified MTAs. These included 42
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candidate genes belonging to different protein family classes such as

auxin transporters, cation efflux proteins, heavy-metal-associated

domains, nicotinamine synthase, 6-phosphoribosyl transferase

domains, iron-regulated metal transporters, and zinc ion binding

proteins. qGFe1.1ADT was found to be associated with genes like

OsMT2D (Os01g0149200) and OSMT2A (Os01g0149800) encoding

metallothionein (MT) and controlling iron and zinc homeostasis.

qGFe2.1BPN-S was found to be associated with Cytochrome p450,
FIGURE 2

(a) Combined GGE biplots describing the genotype and environment dispersion for grain micronutrient content at four sites with varying soil Fe
levels. (b) Violin plots showing the distribution of Fe assimilation efficiency among the panel genotypes under sites with varying soil Fe levels.
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CYP1, and HPL1 gene encoding heme-binding protein, while

qGFe8.1ADT was found proximal to genes OsHMP39, HMP39,

OsHIPP46, OsaHIP46, HIP46, OsHMP40, HMP40, OsHPP7,

OsaHPP07, and HPP07 (Os08g0403300) encoding heavy-metal-

associated protein 39 and heavy-metal-associated isoprenylated

plant protein 46. Candidate genes around qGFe12.1ADT included

genes encoding OSM protein (oxidative stress management genes),

while candidate genes around qGFe12.2BPN-N were in close
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proximity with the genes OSGRX28 and OSGRX29 and genes

encoding metal binding protein. The MTA was also found to be

associated with genes such as VIL1 (Os12g0533500) and VIP5

(Os12g0535900) associated with grain yield and biomass. The

genes associated with qGZn12.1BPN-N include OsFUSED,

CCD1, and LAP1, controlling traits like pollen development,

lipid transport, and zinc ion binding protein (Supplementary

Table S4).
FIGURE 3

(a) Genome-wide distribution of SNPs in the association panel, (b) LD decay and the cutoff LD, (c) number of ancestral populations by (i) elbow and
(ii) PCA 3D, and (d) bar plot showing population admixing using the co-ancestry coefficients.
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3.8 QTL validation

The ANOVA of the F2:3 population derived from Shahsarang/

IR64 showed significant differences for GFe and GZn contents among

the segregating progenies. The frequency distribution histogram of

F2:3 demonstrated that both of the traits were normally distributed in

the population, confirming the quantitative inheritance pattern

(Figure 5A). The phenotypic evaluation revealed GFe ranging from
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8.1 to 31.1 mg/kg, with a mean value of 15.2 mg/kg and high PCV

and GCV, while GZn ranged from 22.1 to 39.0 mg/kg, with a mean

value of 28.0 mg/kg and low GCV and medium PCV. Both of the

traits exhibited high heritability (Supplementary Table S6).

Using SSR markers, two QTLs out of six, qFe12.2BPN-N and

qZn12.1BPN-N, were validated. There were 30 SSR markers present

in the vicinity of the MTA region on chromosome 12. A

polymorphism survey between the two parents identified six
FIGURE 4

Circular Manhattan and Q-Q plots for the marker–trait associations (MTAs) identified for grain micronutrients in multisite evaluation under varying
soil Fe concentrations. The traits are coded as GFe for grain Fe content in ppm and GZn for grain Zn in ppm, and the sites are coded as ADT for
Aduthurai, DEL for Delhi, and BPN for Barapani. S indicates a plot with Fe toxicity, and N is for a plot with normal Fe level.
TABLE 2 ANOVA for factorial regression showing component variances for the fitted models, describing the genotype × site effects of soil factors in
determining grain Fe and Zn content.

Parameters GFe GZn

Variance Pr(>F) %GSI AIC Variance Pr(>F) %GSI AIC

Site (S) 100.6 0.0 – – 652.6 0.0 – –

Genotype (G) 7,633.8 0.0 – – 10,190.7 0.0 – –

Site × rep 0.3 0.9 – – 1.0 0.4 – –

G × S 11,015.2 0.0 – – 20,895.9 0.0 – –

G × pH 5,274.6 0.0 47.9 – 12,171.0 0.0 58.2 –

G × SFe 3,975.4 0.0 36.1 – 4,547.1 0.0 21.8 –

G × EC 3,570.2 0.0 32.4 – 6,457.2 0.0 30.9 –

Residuals 153.1 – – – 152.4 – – –
GFe, grain Fe content in ppm; GZn, grain Zn content in ppm; EC, electrical conductivity (dS/m); SFe, soil Fe content in ppm; AIC, Akaike information criterion; %GSI, the proportion of genotype
by site interaction explained; Pr(>F), F-probability.
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FIGURE 5

(a) Gradient ridges showing the density distribution of Fe response traits among the F2:3 population of the cross, Shahsarang/IR64 under two levels
of soil Fe at Barapani. (b) Network knowledge graphs showing the gene networks associated with validated MTAs for traits (i) grain Fe content and (ii)
grain Zn content.
TABLE 3 Chromosome-wise distribution of SNPs used in genome-wide analysis.

Chromosome No. of markers Length (Mb) Average marker distance (kb) Marker density per Mb

1 21,978 43.25 1.99 508.2

2 14,529 35.94 2.47 404.3

3 13,842 36.41 2.63 380.2

4 12,057 35.50 2.94 339.6

5 9,417 29.90 3.18 314.9

6 13,877 31.24 2.25 444.2

7 10,898 29.97 2.75 363.6

8 10,075 28.44 2.82 354.3

9 6,151 22.94 3.73 268.1

10 8,840 23.21 2.63 380.9

11 9,053 29.02 3.21 312.0

12 9,770 27.53 2.82 354.9

Total 140,487 373.35 2.66 376.3
F
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Mb, million base pairs; kb, kilobase pairs.
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polymorphic markers between them (Supplementary Table S7). The

marker, RM1986, showed a significant association with the GFe

under both conditions (BPN-N and BPN-S) and RM179 with GZn

at BPN-S. The genotypes which carry the homozygous allele of IR

64 (RM1986) showed an average GFe of 12.5 mg/kg at BPN-S and

10.6 mg/kg at BPN-N, whereas genotypes which carry homozygous

Shahsarang alleles showed 17.6 mg/kg at BPN-S and 12.6 mg/kg at

BPN-N. The PVE of the 12:21260572 SNP was found to be 55.3%

and 16.4% with additive effects of 0.9 and 2.5 mg/kg at BPN-S and

BPN-N, respectively, indicating that the positive QTL allele was

contributed by Shahsarang. Genotypes with homozygous RM179

alleles of IR 64 showed an average GZn content of 27 mg/kg,

whereas genotypes with homozygous Shahsarang alleles showed

31.5 mg/kg. The PVE of the marker was 42.7%, and the additive

effect was found to be 2.2 mg/kg, indicating that the QTL was

contributed by Shahsarang (Table 5).
3.9 Gene network associated with the
validated MTAs

The qFe12.2BPN-N was found networked with two thioredoxin

fold domain containing protein genes, Glutaredoxin 28 (OsGRX28)

and Glutaredoxin 29 (OsGRX29), located within the 21.4–21.5-Mbp

region. Another prominent network associated with qZn12.1BPN-N

was linked to the OsFUSED gene (Os12g0433500) (Figure 5B).
4 Discussion

Among the several nutrients essentially required for rice, two

important mineral micronutrients, viz., Fe and Zn, are considered
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critical to human nutrition. The dietary availability of these minerals is

essential to thwart micronutrient malnutrition (Bollinedi et al., 2020).

Fe supports energy metabolism by playing a critical role in oxygen

transport, while Zn is essential for immune function, cell division, and

enzyme activation. Biofortification is the process of enhancing the

nutritional value of staple food crops by increasing their content of

essential vitamins, minerals, and other beneficial nutrients. This

approach aims to improve the nutrient supply in the human diet.

Fe and Zn are two key micronutrients commonly targeted in

biofortification efforts. These enhancements can be achieved

through both biological and artificial methods, though biological

approaches are generally considered more sustainable. Promoting

agricultural practices that improve soil health is a key strategy to

enrich the nutrient content of food grains. In this context, variations in

soil Fe levels across different food-producing regions are likely to have

a direct impact on the Fe concentration in harvested grains. Soil

nutrient availability is dependent on soil, water, and climatic

parameters, and crop nutrient assimilation is genetically controlled.

Under this complex scenario, it is difficult to draw a direct relation

between nutrient status and grain nutrient content. This study

therefore bridges the information on how rice genotypes accumulate

GFe and GZn under varying soil Fe levels and how their responses are

genetically regulated.

The study utilized 174 genotypes adapted to various rice-growing

zones of India, particularly, the northeast, where soil and climatic

variations are high. The study sites fell under three different

agroclimatic zones, with varying levels of Fe availability. The three

agroclimatic zones represented in this study included the Eastern

Himalayan Region (EHR), where BPN was located; the Trans-

Gangetic Plain Region (TGPR), encompassing DEL; and the East

Coast Plains and Hills Region (ECPHR), which has ADT. These

regions were highly characteristic concerning their ecological diversity
TABLE 4 Marker-trait associations (MTAs) identified for grain micronutrient content under multi-site evaluation.

Location MTA Trait Chrom Position p-value Effect -log10(p) PVE%

ADT qGFe1.1ADT GFe 1 2693943 4.80E-08 0.39 7.32 10.84

qGFe8.1ADT GFe 8 19370641 2.40E-10 0.33 9.62 8.27

qGFe12.1ADT GFe 12 18503677 1.88E-07 0.2 6.7 9.74

BPN-S qGFe2.1BPN-S GFe 2 488238 1.18E-13 0.28 12.9 42.27

BPN-N qGFe12.2BPN-N GFe 12 21260572 6.24E-10 0.33 9.21 32.23

qGZn12.1BPN-N GZn 12 14185774 3.21E-11 0.21 10.5 41.71
GFe, grain Fe content in mg/kg; GZn, grain Zn in mg/kg; ADT, Aduthurai; DEL, Delhi and BPN, Barapani; S indicates plot with Fe toxicity; N is with normal Fe level.
TABLE 5 Single-marker analysis showing the validation of MTA-linked SSR markers among the segregation population of the cross, Shahsarang/IR64
under different screening systems.

Location Trait SNP Marker Chrom MSS R2 (%) Additive effect

BPN-N GFe 12:21260572 RM1986 12 881.9** 55.3 2.5

BPN-S GFe 12:21260572 RM1986 12 75.0** 16.4 0.9

BPN-N GZn 12:14185774 RM179 12 391.2** 42.7 2.2
The site codes were BPN-N, Barapani-normal, and BPN-S, Barapani-stressed.
GFe, grain Fe content in ppm; GZn, grain Zn content in mg/kg.
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and cropping pattern. EHR was hilly with predominantly acidic soils

having a sub-humid climate, TGPR had a semiarid climate having an

extreme temperature range, and EPHR had an alluvial, loam, and

clayey soils with a sub-humid maritime climate. In all of the regions,

rice was a traditional crop, but intensity was varying. In EHR, rice

cultivation was on terrace systems where shifting cultivation (Jhum)

was practiced, while TGPR followed the wheat–rice cropping system,

accommodating rice during the Kharif season. Rice cropping intensity

at the EPCHR region was the highest with up to three crops per year.

Due to the significant effect of cultivation practices on the soil fertility

status, we used managed fertilization in all of the sites, except for Fe.

The combination of genotypes and the sites could therefore bring out

an array of genotype responses that were studied closely in the context

of grain nutrient accumulation. Site-wise variation in nutrient

contents has been reported in several previous studies (Huang et al.,

2015; Bollinedi et al., 2020; Cu et al., 2021).

The variation among the Fe content was greater than that of Zn,

which apparently could be correlated with the native soil nutrient

available at different sites. Despite the variations, a significant

positive correlation was observed between both traits at all the

locations as reported earlier (Dixit et al., 2019; Bollinedi et al., 2020;

Cu et al., 2021; Pasion et al., 2023). The concomitant mobilization of

Fe and Zn into the grains has been reported in several crops in the

past. Although the exact mechanism remains obscure, there is

ample evidence that the metal ion transport in plants takes

several common regulators across complex genetic pathways

(Connorton et al., 2017). One of the regulators is a transcription

factor, ILR3 (IAA-leucine resistant 3), a basic helix-loop-helix

DNA-binding protein (bHLH) from Arabidopsis involved in Fe

homeostasis. Another key player is the Zn-regulated, Fe-regulated

transporter-like protein (ZIP) family gene, Zrt/Irt3, established to

be involved in the transport of both Zn and Fe. Notwithstanding,

many of the Fe ion transport regulators are also involved in Zn

mobilization, resulting in co-regulated variation for these two

micronutrients in plants (Diaz et al., 2022).

Significant genotypic and GSI were present in both GFe and

GZn content in this study, as described earlier by Pandian et al.

(2011) in milled rice and by Naik et al. (2020) in brown rice. The

grain ion concentration could change with the corresponding levels

of the nutrient reservoir in the soil, expressing a direct impact (Pujar

et al., 2020). Therefore, the common regulatory mechanism of metal

ion transport and assimilation must keep a balance when there is a

contrast in the soil nutrient contents, similar to the case in the

current study wherein the Fe levels varied relatively higher than the

Zn content (CV ranged between 7.1% and 8.6% for GFe as against

2.2% and 5.4% for GZn across locations). GFe content increased

with increasing soil Fe concentration at different sites, with the

maximum GFe content recorded at the BPN-S location.

Notwithstanding, no significant elevation in GZn content could

be observed. However, this was in contrast to IAE recorded at

various sites. IAE was the lowest in BPN-S, suggesting that high Fe

in the soil is not fully translated to GFe. The extreme levels of Fe

induced a toxicity response, resulting in a negative effect on the

translocation efficiency. Although very few studies have been

conducted on the effects of soil Fe and Zn content on
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micronutrient accumulation in grain, Bierschenk et al. (2020)

observed a moderate, albeit statistically insignificant, rise in grain

Fe concentrations, while a notable and statistically significant

increase in grain Zn concentrations was evident under chronic Fe

toxicity stress. We could also observe increased Zn accumulation

under Fe toxicity. Frei et al. (2016) also reported a non-significant

increase in grain Fe and Zn with acute and chronic stress

treatments. Excess Fe in soil affects, in general, the uptake of all

the nutrients because of the eventual root system damage (Li et al.,

2016). However, root system damage does occur slowly, allowing

the uptake of a large amount of Fe by the plants. This will incite

competition for nutrients within the plant system, resulting in

Fenton reactions, which, in turn, prevent the mobilization of Fe

and Zn ions to the developing grains.

Due to the geographical and climatic diversity of the study sites,

the soils exhibited considerable variability in properties such as pH

and electrical conductivity (EC), with DEL showing a pH of 8.0 and

EC of 1.2 dS/m, ADT with a pH of 6.3 and EC of 1.7 dS/m, BPN-S

with a pH ranging from 4.5 to 5.2 and EC of 0.11 dS/m, and BPN-N

with a pH of 5–6 and EC of 0.18 dS/m. Soil pH plays a significant

role in plant assimilation of Fe and Zn, increasing the availability

particularly when it is in the acidic range. Since soil pH plays a

profound role in solubilization, acidification can release more

bound Fe from the soil. It has been estimated that the solubility

of Fe falls by ~1,000 times per unit increase in soil pH (Lindsay and

Schwab, 1982; Hochmuth, 2011). Under a lower pH, the uptake by

rice plants remarkably increases below the pH of 5.0 (Fageria et al.,

2008). Establishing this, the remarkable effect of pH and Fe content

in soil augmented by EC could be observed on grain Fe

accumulation in the present study. On average, the grain Fe

content at the BPN-S site was 50% higher than at ADT, while the

relative increase compared to DEL was 16%. The contributory

effects of these soil parameters on grain Fe accumulation were

earlier reported by Pandian et al. (2011) on rice and Joshi et al.

(2010) on wheat. Notably, the combined effect of pH and EC was

found to major ly influence the accumulat ion of Zn

across environments.

To keep the target of biofortifying the crop varieties, particularly

the staple cereals, the International Food Policy Research Institute

(IFPRI) has instituted a global program aimed at ending

micronutrient malnutrition worldwide by promoting crops that

are enriched with mineral nutrients like Fe, Zn, and vitamin A.

Known as HarvestPlus, this program has set minimum targets for

identifying biofortified rice varieties. The target for grain Fe content

is >18 mg.kg-1 and for Zn is >28 mg.kg-1 in brown rice (Bouis and

Saldman, 2017). As per these standards, we could identify one

genotype, Bir Bahadur (IRG173), an aus/boro accession from Bihar,

India, with above critical values for GFe across all locations.

Similarly, three accessions, Jugray (IRG189), K17-9-1-1 (IRG192),

and Cauvery (IRG72), were found to possess above critical GZn

content, across all locations. Jugray is an indica landrace from

Chhattisgarh, while K17-9-1–1 is an indica breeding line. Cauvery is

an indica variety from Tamil Nadu (Gangadhara et al., 2024).

Having shown consistently high grain Fe and Zn across all of the

environments, these genotypes can be used as potential donors in
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the breeding program. Wide variability in rice accessions, especially

involving several landraces, has previously been reported

particularly in brown rice (Bollinedi et al., 2020; Anuradha et al.,

2012; Maganti et al., 2020), identifying genotypes with high Fe and

Zn content in the grains.

We have chosen the test assembly of genotypes considering two

advantages: (a) being part of 3K genome assembly, their genome

data was available; and (b) there was an ample representation of

genotypes of Indian origin in the panel. Indian-origin genotypes

were kept on the focus because they possessed the best adaptation

potential to Indian environments. Six QTLs could be identified

from the GWAS associated with GFe and GZn. Three MTAs

(qGFe12.1BPN-N, qGFe12.2BPN-N, and qGZn12.1BPN-N) were found

distributed 3 to 4 Mb apart on chromosome 12, suggesting the

possibility of genetic regulation of both nutrients on the arm of the

chromosome. This situation presents the breeders with an

opportunity to select for concurrent enhancement of both GFe

and GZn from appropriate donors having positive alleles under a

breeding program. Interestingly, five of the six MTAs identified

were found to be in the vicinity of previously reported QTL regions

and candidate genes, while one was novel. MTA identified on

chromosome 1 qGFe1.1ADT at 2.7 Mbp was found in very close

proximity to qFe1.1 (RM294A–RM12276) as reported by Swamy

e t a l . ( 2021) . Th i s l o cus was prox ima l t o OsPOT

(LOC_Os01g65110.1) coding for proton-dependent oligopeptide

transporters that were identified to play a role in the vascular

translocation of Fe2+–NA complexes (Dixit et al., 2019). OsMT2a

(Os01g0149800; 2169bp), a metallothionein-like protein type 2

known for their metal-binding and stress–response functions, is

also found very close to this QTL (Zhou et al., 2006). MTA

identified on chromosome 2, qGFe2.1BPN-S, was found near (66

kb) to a candidate gene hydroperoxide lyase 1 (HPL1 ,

Os02g0110200) and linked to (0.675 kb) Cytochrome P 89

(CYP89, Os02g0108800) gene encoding, heme-binding protein/

Fe-ion-binding protein. This MTA showed the highest PVE

under Fe toxic plots at BPN-S. MTA on chromosome 8,

qGFe8.1ADT, was found proximal to heavy metal transport and

detoxification genes associated with heavy metal transportation

under drought (Chung et al., 2018; Liang et al., 2021).

Additionally, it shares the same LD block with GDSL esterase/

lipase protein 30 (OsGELP30, Os02g0110000) (Chepyshko et al.,

2012) and vacuolar invertase 2 (VIN2) (Os02g0106100) genes

related to grain size and grain length (Lee et al., 2019). MTA

identified for GFe on chromosome 8 at 19.37 Mbp was found

proximal to Os08g0403300, reportedly associated with heavy metal

transport and detoxification genes (Liang et al., 2021). Barth et al.

(2009) reported HIPP26, an Arabidopsis ortholog of Os08g0403300

which encodes heavy-metal-associated protein in close proximity of

this MTA. Out of three significant MTAs on chromosome number

12, MTA at 14.19 Mbp was found closer toOsMTP1 (Os12g043500)

involved in Zn ion binding and transportation (Lyu et al., 2013).

Joshi et al. (2024) reported metaQTL MQTL 12.2 within

18,934,992–19,829,588 bp which was closest to MTA identified at

18 Mbp on chromosome 12. Another MTA located at 21.26 Mbp on

the same chromosome was found to be associated with genes
Frontiers in Plant Science 14
Os12g0538000 and Os12g0538066 at a distance of 149 and 160

kb, respectively, and both of the genes are found to be associated

with metal-binding proteins.

The present study provided valuable genetic information on

micronutrient accumulation in rice grains in response to soil Fe

variability across multiple sites. To support biofortification efforts

through breeding, it is essential to validate the identified candidate

genes associated with significant MTAs. There are several methods

employed to validate QTLs and candidate genes, such as using early

and advanced generation mapping populations, gene cloning and

expression analyses, transgenics, gene knockdown, etc (Sharma

et al., 2023). In this study, we validated two out of six MTAs

(qGFe12.2BPN-N and qGZn12.1BPN-N) using an early generation

(F2:3) population derived from a biparental cross using SSR

markers linked to MTAs (present in the same haplotype).

Chandel et al. (2015) validated QTLs for grain zinc by using SSR

markers and promoted its application in marker-assisted selection

for advanced breeding lines in biofortification programs. The

identified SSR markers RM1986 and RM170 can be potentially

used for the selection of high grain Fe and zinc traits and

introgression in elite lines. The gene models for the validated

MTAs showed putative candidate gene OsFUSED-associated

MTA on chromosome 12 that was previously reported to be

associated with iron transporter genes like yellow stripe like 6

(OsYSL6) and Nicotianamine synthase 1 (OsNAS1) (Zheng et al.,

2010; Kakei et al., 2012). OsFUSED is an ortholog to the wheat gene,

TaFUSED. There were some intermediary proteins in this network

whose functions were not defined. Networked to this gene is a metal

tolerance protein gene OsMTP1 located at 14.02 Mbp. OsFUSED is

associated with iron ion concentration, and the associated OsMTP1

is involved in heavy metal transport across plasma membranes

including Zn, nickel (Ni), and cadmium (Cd) (Yuan et al., 2012).

Advancements in understanding the key genes in grain nutrient

accumulation will contribute to the development of rice varieties

with enhanced Fe and Zn content through breeding, aiding to

address global challenges of micronutrient malnutrition more

effectively. This study assessed grain Fe and Zn concentrations in

brown rice; however, as white (milled) rice is the primary form

consumed, analyzing micronutrient retention post-milling would

provide more practical relevance. Additionally, the study was

conducted under a broader soil and environmental conditions,

which could help in using the information on a wider scale.
5 Conclusion

In the present study, we studied 174 lines and identified the

genomic regions associated with GFe and GZn. This study also

revealed the effect of different soil Fe levels on GFe and GZn

content, two major micronutrients that are pivotal to

biofortification programs. Although high Fe in the soil increased

the grain micronutrient status, the assimilation efficiency was found

to be significantly reduced under toxic conditions, indicating the

effect of stress on grain accumulation of micronutrients. Along with

Fe ions, Zn also showed a similar assimilation response under
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different environments. Soil pH, EC, and Fe content influenced the

assimilation micronutrients, defining their role in imparting GSI.

The marker–trait associations identified and their corresponding

haplotypes can be used for micronutrient enrichment breeding. The

identified significant MTAs are potential candidates for larger

studies to understand the genetic regulation of Fe response in rice.
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