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Tomato ripeness detection and
fruit segmentation based on
instance segmentation
Jinfan Wei1, Yu Sun1,2, Lan Luo1, Lingyun Ni1, Mengchao Chen1,
Minghui You1,2, Ye Mu1,2* and He Gong1,2*

1College of Information Technology, Jilin Agricultural University, Changchun, China, 2Jilin Province
Intelligent Environmental Engineering Research Center, Changchun, China
In order to meet the urgent need of fruit contour information for robot precision

picking in complex field environments (such as light changes, occlusion and fruit

overlap, etc.), this paper proposes an improved YOLOv8s-segmethod for tomato

instance segmentation, named ACP-Tomato-Seg. The method proposes two

innovative modules: the Adaptive and Oriented Feature Refinement module

(AOFRM) and the Custom Multi-scale Pooling module (CMPRD) with Residuals

and Depth. By deformable convolution and multi-directional asymmetric

convolution, the AOFRM module adaptively extracts the shape and direction

features of tomatoes to solve the problems of occlusion and overlap. The

CMPRD module uses the pooling kernels of self-defined size to extract multi-

scale features, which enhances the model’s ability to distinguish tomatoes of

different sizes and maturity levels. In addition, this paper also introduces a partial

self-attention module (PSA), which combines channel attention and spatial

attention mechanism to capture global context information, improve the

model’s ability to focus on the target region and extract details. To verify the

validity of the method, a dataset of 1061 images of large and small tomatoes was

constructed, covering six ripened categories of large and small tomatoes. The

experimental results show that compared with the original YOLOv8s-seg model,

the performance of ACP-TomatoSeg model is significantly improved. In the

bounding box task, mAP50 and MAP50-95 are improved by 5.6% and 8.3%,

respectively, In the mask task, mAP50 and MAP50-95 increased by 5.8% and

8.5%, respectively. Furthermore, additional validation on the public strawberry

instance segmentation dataset (StrawDI_Db1) indicates that ACP-Tomato-Seg

not only exhibits superior performance but also significantly outperforms existing

comparative methods in key metrics. This validates its commendable

generalization ability and robustness. The method showcases its superiority in

tomato maturity detection and fruit segmentation, thus providing an effective

approach to achieving precise picking.
KEYWORDS

tomato instance segmentation, complex field environments, adaptive feature
extraction, multi-scale features, self-attention mechanism, ACP-tomato-seg
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1 Introduction

Modern agriculture is developing in the direction of automation

and intelligence, in which robot automatic picking technology is a

key link to improve agricultural production efficiency and reduce

labor costs (Oliveira et al., 2021). Globally, Tomatoes are the second

most grown vegetable crop after potatoes (Ma et al., 2023), Accurate

detection of ripeness and precise segmentation of fruit are essential

for efficient and precise automatic harvesting. Traditional

agricultural practices, mainly rely on manual tomato picking,

which is not only labor-intensive, inefficient, and difficult to meet

the growing market demand.

In the early days, limited by the technical level, people tried to

use simple mechanical devices for batch picking, but this way could

not identify the maturity of the fruit, and could not achieve accurate

picking, resulting in serious damage to the fruit and mixed quality.

With the rise of digital image processing and machine learning

algorithms, researchers began to explore the use of machine vision

technology to give robots the ability to “recognize objects” (Wang T.

et al., 2022). For a long time in the past, researchers began to explore

the use of digital image processing technology and machine

learning algorithms to automatically identify the maturity of

various fruits and vegetables, mainly by extracting color features

or texture features in the image to match the maturity of fruits and

vegetables, such as: Wan et al. (2018) combined image processing

technology and backpropagation neural network to obtain tomato

images, extract color feature values, and use these feature values as

inputs to train and verify models, so as to realize automatic

detection and classification of fresh tomato maturity. Anindita

Septiarini et al. (2021) extracted the color and texture features of

fresh oil palm fruit clusters, and used principal component analysis

(PCA) for feature selection to select the most influential features,

and then used artificial neural network and backpropagation

algorithm to classify the maturity of fresh oil palm fruit clusters.

Although these methods have achieved some success in feature

design, their limitations have become increasingly prominent.

These methods rely too much on fixed color characteristics, and

have insufficient adaptability to light and color changes, which is

difficult to meet the challenges brought by the color diversity of

fruits and vegetables and the change of environmental light. In

addition, the traditional texture feature extraction method is based

on artificially designed filters and feature descriptors, which has the

problems of low computational efficiency and insufficient

generalization ability, and it is difficult to deal with a wide variety

of fruit and vegetable textures.

In recent years, with the rapid development of computer vision

and artificial intelligence technologies, automated picking systems

based on machine vision have gradually emerged (Tang et al., 2020).

Among them, object detection technology has been widely applied

to the recognition and localization of fruits and vegetables.

Particularly in the field of tomato detection and maturity

classification, researchers have achieved remarkable progress. For

instance, JUN Guo et al. (2023). expanded the receptive field by

introducing the ReplkDext structure, optimized the detection head,

and adopted the ODConv module, which improved the detection
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accuracy (mAP50 increased by 1.3%) in densely occluded scenarios.

Congyue Wang et al (2023). optimized the anchor boxes based on

K-means++, combined the coordinate attention (CA) mechanism

with the WIoU loss function, and achieved a high average precision

of 95.2% while ensuring real - time performance (5.3 ms/frame).

Appe et al. (2023). integrated the channel-spatial attention (CBAM)

with the DioU-NMS strategy, raising the mAP50 of YOLOv5 to

88.1% on the Laboro Tomato dataset, effectively enhancing the

recognition ability under occlusion and sudden illumination

changes. (Nguyen et al., 2024) utilized the lightweight RFAConv

module, achieving an mAP50 of 88.2% and a speed of 10.3 ms/

frame with an extremely low parameter count (3.06M),

demonstrating the potential for deployment on low-computing-

power devices. The TOMATOD dataset constructed by the Tsironis

team (Tsironis et al., 2020) and their fine-grained maturity

classification evaluation of mainstream detection algorithms have

promoted the standardization of algorithm evaluation in this field.

In addition, in other fruit and vegetable recognition tasks, Gao Ang

et al. (2024) aiming to improve the detection efficiency and accuracy

of citrus young fruits, proposed an improved detection method

based on YOLOV8n. By using a lightweight network and

integrating the attention mechanism, they enhanced the model’s

detection ability. Yan Liu et al. (2023) proposed a blueberry

maturity detection algorithm based on the YOLOv5x algorithm,

aiming to enhance the ability of picking robots to automatically

recognize and pick ripe blueberries. They optimized the algorithm

structure by introducing the lightweight attention mechanism

Little-CBAM and the improved MobileNetv3. When deployed on

a picking robot, it can operate in real - time at a speed of 47 frames

per second, showing good practicality and accuracy. However,

although these studies based on object detection technology have

achieved remarkable results in terms of localization accuracy and

classification accuracy, their output results are essentially the

bounding boxes of objects. Such rectangular boxes can only

provide approximate position and category information of the

objects, and it is impossible to obtain precise pixel-level contours.

In scenarios that require fine-grained operations, such as robot

picking, accurate fruit contours are crucial for planning grasping

postures, calculating grasping points, and avoiding stem and leaf

occlusions. The bounding box information has inherent limitations

in this regard.

In contrast, instance segmentation technology can not only

detect objects but also accurately segment the pixel-level masks of

each object, providing complete contour information, which offers

key technical support for downstream tasks such as precise grasping

and path planning of robots. For example, Huijun Zhang et al.

(2023) developed a binocular apple positioning method based on

Mask R-CNN, which is used to improve the positioning

performance of apple robot picking. Binocular cameras are used

to capture apple images, and then Mask R-CNN is applied for

instance segmentation. The 3D coordinates of Apple are calculated

by using template matching and stereoscopic matching techniques.

The results show that this method has excellent performance in

positioning accuracy and consistency. Aiming at the occlusion

problem in the visual recognition system of litchi picking robot,
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Yuanhong Li et al. (2023) proposed a picking location prediction

method based on litchi phenotype characteristics, used edge

computing and gradient direction distribution to calculate fruit

normal vector, and proposed a one-stage instance segmentation

network (LP3Net) based on feature prototype. The experimental

results showed that, based on the phenotypic characteristics of

litchi, LP3Net achieved an average localization accuracy of up to

82%, which significantly improved the localization accuracy of litchi

cluster picking points. Cheng Chen et al. (2020) proposed an

instance segmentation method based on monmesh RGB camera

for the accurate location of sweet pepper fruit. A deep convolutional

neural network (CNN) was designed to output binary segmentation

maps and embedded feature maps in a multi-task framework, and

the mean shift clustering and contour discovery algorithms were

used to achieve instance segmentation and location. The method

was validated on a public bell pepper dataset with competitive

results. Isaac Pérez-Borrero et al. (2020) proposed a deep learn-

based segmentation method for strawberry instances that improves

the Mask R-CNN network to reduce computational costs in the

inference phase. For this study, a new high-resolution strawberry

image dataset was obtained and a new performance metric was

proposed: Example intersection ratio (I2oU), the experimental

results show that the proposed method significantly reduces the

inference time while maintaining the average precision (mAP) and

average I2oU indexes comparable to the original Mask R-CNN.

As mentioned earlier, the instance segmentation technique is

widely used in the vision system of agricultural robots. However, the

color changes of tomato fruits in different ripening stages are subtle,

especially under natural lighting conditions, which makes it difficult

to distinguish. In addition, the shape, size and growth posture of the

fruit are different, which is easy to overlap and occlusion, further

increasing the difficulty of detection (Gongal et al., 2015). In the

aspect of fruit segmentation, the traditional segmentation method is

difficult to be effective because the surface of tomato is smooth and

the texture characteristics are not obvious. Moreover, accurate

robot picking requires accurate positioning and high-precision

contour information, which puts forward higher requirements for

the accuracy and efficiency of the instance segmentation algorithm.

Therefore, this paper aims to study the method of tomato ripened

detection and fruit segmentation based on instance segmentation.

In view of the challenges existing in the task, this paper proposes

two innovative modules to improve the performance of the model.

The main contributions of this paper are as follows:
Fron
• ACP-Tomato-Seg model was proposed for tomato ripeness

detection and fruit segmentation. The model integrates

three modules, AOFRM, CMPRD and PSA, which can

effectively solve the challenges brought by the change of

tomato shape, size and occlusion, and improve the

detection ability and fruit segmentation accuracy of the

model for tomatoes with different maturity levels.

• AOFRM module: Used to enhance the model’s perception

of tomato targets. The module captures the shape change

and orientation features of tomatoes by deformable
tiers in Plant Science 03
convolution and asymmetric convolution respectively,

thereby enhancing the feature representation and enabling

the model to better adapt to the diversity of tomato targets.

• CMPRD module is used to enrich the scale information of

features. The multi-scale feature extraction and fusion

strategy are carried out by the self-defined pool kernel,

which enables the model to focus on the local details and

the overall contour of the tomato target at the same time,

thus improving the detection accuracy of different sizes

of tomatoes.

• A dataset of large and small tomatoes with six ripeness

categories was constructed. The data set can be used to train

and evaluate tomato ripeness detection and fruit segmentation

models, and provide data support for related studies.
2 Materials and methods

2.1 Production of data sets

2.1.1 Data sample collection
In order to train and evaluate the proposed ACP-Tomato-Seg

instance segmentation algorithm, we establish a Tomato image

dataset named Tomato-Seg, which is from the tomato

experimental greenhouse of Jilin Agricultural University. After

rigorous screening, excessive fuzzy, severely overexposed or

irrelevant images are removed. A total of 1061 high-resolution

color images were collected, covering large and small tomato fruits

at different ripening stages, angles, distances, lighting conditions,

overlap and occlusion degrees. Some of the images were shown in

Figure 1. Finally, we randomly divided the data set into the original

training set and the original verification set according to 8:2.

2.1.2 Data set enhancement
In order to eliminate potential problems that may occur in the

training process of the model, for example, the model overlearns the

details and noise in the training data, resulting in poor performance

on unseen data and poor generalization ability. The model may also

over-rely on certain features in the training data, such as specific

lighting conditions, shooting angles, or tomato morphology, and

the model’s detection and segmentation performance will

deteriorate when confronted with tomato images with different

lighting, angles, or morphology. We implement the data

enhancement strategy on the training set of Tomato-Seg dataset,

and carry out a series of random transformations on the original

image to effectively expand the diversity of training samples (Arnal

Barbedo, 2019). These transformations include 30 to 45 degrees of

random left-to-right rotation, random cropping, adding random

noise, and translation to simulate real-world changes in tomato

growing posture, lighting conditions, and shooting angles, as shown

in Figure 2. Finally, through the application of data enhancement

techniques, we expanded the training set by 4 times. Table 1 shows

the proportion of each instance in the training set and the test set.
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2.2 Model improvement

ACP-Tomato-Seg model adopts the advanced YOLOv8-seg

(Jocher et al., 2023) model as the basic architecture, which is

composed of trunk extraction network, neck and segmentation head

respectively. In order to enhance the segmentation ability of the model

in the case of overlap and occlusion of tomatoes, we added the adaptive

and oriented feature refinement module (AOFRM) to the C2f module

of the backbone extraction network to enhance the model’s perception

ability of tomato targets and provide more discriminative feature

representation for subsequent modules. In order to further improve

the detection ability of tomato maturity of different sizes, the original

SPPF module was replaced by a custom multi-scale pooling module

(CMPRD) with residual and depth. In order to guide the model to pay

attention to important feature information and suppress the

interference of irrelevant information, so as to improve the detection

and segmentation accuracy of the model, the PSA module is

introduced between the backbone extraction network and the neck.

The improved algorithm model structure is shown in Figure 3:

2.2.1 An adaptive and oriented feature refinement
module

To enhance feature representation and improve segmentation, an

adaptive and oriented feature refinement module (AOFRM) is
Frontiers in Plant Science 04
proposed and integrated into YOLOv8s-seg architecture. Unlike

previous feature enhancement methods, the ADFRM module does

not simply stack convolutions or attention mechanisms. Instead, it

differentially designs adaptive shape modeling and multi-directional

feature capture capabilities in response to the unique challenges of the

tomato instance segmentation task. This module is strategically placed

after the c2f feature extraction module of the backbone network to

take full advantage of its rich semantic and spatial information. The

design essence of the ADFRMmodule is based on two core principles:

adapting to shape changes and capturing multi-directional features.

These two principles are achieved by integrating deformable

convolution (Zhu et al., 2018) and strategically designed asymmetric

convolution (Ding et al., 2019) in a multi-branch architecture.

Figure 4 shows the detailed structure of the AOFRM module:

AOFRM module adopts three-branch structure to realize self-

adaptation and effective fusion of direction information. Among

them, adaptive feature extraction (Branch 0) utilizes two cascaded

deformable convolution layers. Different from traditional

convolution, deformable convolution provides a dynamic

receptive field by learning the offset of the sampling grid, and its

formula can be expressed as:

y(p) = o
K

k=1

Wk · x(p + pk + Dpk) (1)
FIGURE 1

In order to construct a tomato dataset covering different lighting conditions, shooting angles and occlusion conditions, the following scenarios were
considered in the data acquisition process: (A) the upshot Angle under low light conditions; (B) Overhead shooting Angle under sufficient light; (C)
The shooting Angle under occlusion and overlap; (D) Frontal shooting under backlight; (E) Oblique shooting Angle under sufficient light; (F) Front
facing shooting under sufficient lighting.
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Where, y(p) represents the eigenvalue of the output feature map

at position p, w(k) represents the weight of the convolutional kernel

at position k, x(p + pk + Dpk) represents the eigenvalue of the input
feature map at position (p + pk + Dpk), and pk represents the regular
sampling position of the convolutional kernel, Dpk represents the

learned offset. This adaptability enables branch 0 to effectively

capture the shape of the tomato regardless of its orientation,

growth stage, or shade degree, thus achieving robust segmentation

performance under real conditions. Horizontal feature

enhancement (branch 1) and vertical feature enhancement

(branch 2) adopt the asymmetric convolution kernel of (1, 3) and

(3, 1), and the convolution sequence of the two branches is opposite,

so as to effectively extract the directional features of the target. The

formula can be expressed as follows:

y(p) =oi,jw(i, j) · x(p + (i, j)) (2)
Frontiers in Plant Science 05
Where, y(p) represents the eigenvalue of the output feature map

at position p, w(i,   j) represents the weight of the convolution kernel

at position (i,   j), and x(p   +   (i,   j)) represents the eigenvalue of the

input feature map at position p   +   (i,   j). In addition, both branches

use 3x3 Dilated convolution (Yu and Koltun, 2015) (dilation=5) to

expand the receptive field to better extract information such as the

width, height, texture, and edge of the target, a configuration that is

crucial for accurately delineating tomato boundaries and contours,

especially in the case of partial occlusion. The features extracted

from the three branches are connected along the channel

dimension, effectively fusing adaptive and directional information.

This connected feature map is then passed through a 1x1

convolution layer to reduce dimensionality and refine the

representation, resulting in an information-rich feature map

tailored for tomato instance segmentation. In order to solve the

problem of disappearing gradients and facilitate the seamless flow of
FIGURE 2

An example of the application of data enhancement techniques, randomly rotating an image around 30 to 45 degrees, cropping, adding noise,
and translating.
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information, residual connectivity is added to the AOFRM module.

This connection adds input features directly to output features,

facilitating gradient propagation and enhancing the learning

process during backpropagation.

The ADFRM module effectively captures global shape

variations and local directional cues by innovatively combining

deformable convolution, asymmetric convolution, and dilated

convolution, and adopting a unique three-branch structure and

feature fusion strategy, thereby significantly enhancing the feature

representation for tomato instance segmentation. This enhanced

feature representation will help generate more accurate and

smoother tomato contours, minimize instances of incorrect

s egmen ta t i on , and u l t ima t e l y improve the ove ra l l

segmentation quality.
Frontiers in Plant Science 06
2.2.2 Custom multi-scale pooling with residuals
and depth

Multi-scale feature extraction and fusion are crucial for various

computer vision tasks (Gao et al., 2021). In order to capture features

at different scales, SPP (He et al., 2014) has been proposed and

widely used in various CNN architectures. SPP uses multiple

parallel pooling layers, each with a different fixed size, to extract

multi-scale features. However, the computational cost of SPP is

high, and the efficiency of information fusion between different

pooling layers is limited. To solve these problems, SPPF (Jocher,

2020) is proposed. SPPF achieves the same functionality as SPP in a

cascading manner, thereby increasing efficiency. However, SPPF

still relies on simple concatenation operations to fuse features

extracted from different pooling layers, which may not be

optimal. In order to further improve the model’s ability to detect

the maturity of tomatoes of different sizes, a custom multi-scale

pooling module with residual and depth, called CMPRD, was

proposed in this paper, as shown in Figure 5:

CMPRD module consists of main branch, custom multi-scale

pooling branch, feature fusion and residual connection:

The main branch is constructed with three successive deep

separable convolution layers (DWConv) (Howard et al., 2017),

whose formula can be expressed as:

y(p) =okwd(k) · x(p + pk) (3)

y(p) =ocwp(c) · yd,c(p) (4)

Where, y(p) represents the eigenvalue of the output feature map

at position p, wd(k) represents the weight of the deep convolutional

kernel at position k, x(p   +   pk) represents the eigenvalue of the

input feature map at position p   +   pk, and wp(c) represents the

weight of the point-by-point convolutional kernel at channel c. yc(p)

represents the eigenvalue of the deep convolutional output feature
TABLE 1 Shows the composition of the data set, including the number
of images of the original training set, the enhanced training set and the
verification set, as well as the number of instances of the six categories.

Train Val

Images
Instances

Original
(848)

Enhance
(2544)

Original
(213)

Large-fully-mature 584 1752 128

Large-semi-mature 633 1899 139

Large-immature 1500 4500 354

Small-fully-mature 1025 3075 246

Small-semi-mature 854 2562 262

Small-immature 3592 10776 1006

All 8188 24564 2135
The six categories are: the full ripening stage of large tomatoes, the semi-ripening stage of large
tomatoes, the immature stage of large tomatoes, the full ripening stage of small tomatoes, the
semi-ripening stage of small tomatoes and the immature stage of small tomatoes.
FIGURE 3

Network architecture of ACP-Tomato-Seg model.
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map at channel c and position p. First, a 1x1 DWConv layer is used

to reduce the number of channels in the input feature map,

reducing the amount of computation. A 3x3 DWConv layer then

performs more refined feature extraction. Finally, another 1x1

DWConv layer restores the channel count to the input

dimension. The use of depth-separable convolution effectively

reduces the number of parameters and computation, making the

model more lightweight and efficient.

Custom multi-scale pooling branches: Unlike the fixed pooling

kernel size of SPP and SPPF, multiple pooling operations are

performed, and the diversity of the receptive field is relatively

limited. The adaptive multi-scale pooling branch of the CMPRD

module can customize the kernel size (3x3, 5x5, 7x7), which allows

us to flexibly adjust the size of the receptive field of each pooling

layer according to the task requirements, extract the feature

information of different scales, obtain a richer combination of

receptive fields, and better capture the target features of different

scales in the image. Therefore, it can better adapt to different target

scales and scene complexity.

Feature fusion and residual joining: In order to effectively fuse

the features extracted from the main branch and multi-scale

pooling branch, the CMPRD splices their outputs and uses a 1x1
Frontiers in Plant Science 07
convolution layer for reduction and feature fusion. In addition, in

order to promote network training and information flow, the

CMPRD module also introduces residual connection, adding the

elements at the corresponding positions of the input features and

the fused features to further enhance the learning ability of

the model.

The CMPRD module overcomes the limitations of traditional

SPP/SPPF modules in flexibility, efficiency, and fusion methods by

innovatively introducing a custom multi-scale pooling branch, an

efficient depthwise separable convolution main branch, and a

refined feature fusion and residual connection mechanism. It

extracts and fuses multi-scale features more effectively, thereby

significantly improving the performance of the target detection

model in complex scenes and for multi-scale targets.

2.2.3 PSA
Although the CMPRD module proposed in this paper can

effectively increase the receptive field through the custom multi-

scale pooling branch, its main concern is the fusion of local features,

and it lacks the capture of global context information. In order to

pay attention to both local features and global context information,

and avoid the high computational cost brought by traditional self-
FIGURE 4

Network structure of AOFRM module.
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attention mechanism, this paper introduces a Partial self-attention

module (PSA) based on YOLOv10 (Wang A. et al., 2024). It is

embedded between the backbone network and the neck network of

ACP-TomatoSeg network to enhance the ability of the model to

extract tomato features. The module structure is shown in Figure 6.

The core idea of PSA module is to divide the input feature map into

two parts for local feature extraction and global context information

modeling respectively.

PSA module combines channel attention and spatial attention

mechanism, and can focus on the spatial dimension and channel

dimension information of feature map at the same time. Among

them, channel attention is used to screen the feature channels that

are more important for the detection of tomato maturity, while

spatial attention is used to focus on the tomato-related regions in

the image, thereby improving the sensitivity of the model to the

target information. The MHSA (Vaswani et al., 2017) module is

nested inside the PSA module to capture the relationship between

different positions in the feature map and further enhance the

model’s ability to extract details such as tomato contour and texture.

Compared with the commonly used channel-spatial attention
Frontiers in Plant Science 08
modules CBAM (Woo et al., 2018) and Coordinate Attention

(Hou et al., 2021), the core innovation of the PSA module lies in

the idea of “partial self-attention” and the combination of global

context modeling and local feature preservation. Different from

attention mechanisms such as CBAM and CA that mainly focus on

the selective enhancement of the channel or spatial dimension, the

PSA module focuses more on explicitly modeling the global context

information of the feature map through the MHSA module and

fusing it with local features. At the same time, by only performing

global context modeling on a portion of the feature maps, the PSA

module effectively reduces the computational complexity, achieving

a better balance between computational efficiency and performance

improvement. Furthermore, the design concept of the PSA

module is more in line with the human visual attention

mechanism, that is; while paying attention to local details, it is

also necessary to understand the global scene information to make

accurate judgments.

Specifically, the PSA module first uses a 1x1 convolution to

reduce the number of channels of the input feature map, achieving

the screening of channel information by controlling the number of
FIGURE 5

Network structure diagram of CMPRD module.
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channels, and then divides it into two parts, A and B. Among them,

part A is directly sent to the subsequent module to preserve local

feature information and effectively reduce the amount of

calculation, while part B of the feature map is sent to the nested

PSA (Partial Self-Attention) block for global context information

modeling. The core component of the PSA block is the Multi-Head

Self-Attention (MHSA) module, which calculates the correlation

between any two points in the feature map to obtain an attention

matrix used to represent the importance between different

positions. The formula is as follows:

B0 = B + softmax QKTffiffiffiffi
dk

p
� �

� V (5)

Where Q, K, V are the query, key, and value matrices,

respectively, obtained by linear transformation, and dk is the

dimension of the key. The PSA module, unlike traditional spatial

attention mechanisms, can more effectively pay attention to the

spatial and channel dimension information of the feature map

simultaneously. Additionally, the PSA module also contains a feed-

forward network (FFN):

B00 = B0 + FFN(B0) (6)
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Finally, the two feature maps A and B 0 0 are concatenated, and
the number of channels is restored through a 1x1 convolution to

obtain the final output feature map Y:

Y = Conv1�1(concat(A,B
00)) (7)

By introducing the attentional mechanism module, ACP-

Tomato-Seg can locate the tomato target more accurately and

extract more fine feature information, thus improving the

accuracy of tomato ripenness detection and fruit segmentation.
2.3 Evaluation indicators

The basic evaluation indexes used in this study include accuracy

(P), recall rate (R) and average accuracy (mAP50 and MAP50-95).

The model’s performance in tomato ripen detection and fruit

segmentation tasks was evaluated from two aspects: Box and

Mask. For the riper detection task, P and R indexes were used to

evaluate the model’s positioning accuracy and recall rate of tomato

target borders with different maturity levels, while mAP50 and

MAP50-95 indexes were used to evaluate the model’s average

accuracy under different IoU thresholds. For the fruit
FIGURE 6

Network structure diagram of PSA module.
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segmentation task, we adopted the same index system, represented

by the indexes Mask P, Mask R, Mask mAP50 and Mask mAP50-

95, respectively, to evaluate the model’s performance of tomato

segmentation at the pixel level. The calculation formulas for each

evaluation indicator are as follows:

PBox=Mask = TP
TP+FP (8)

RBox=Mask =
TP

TP+FN (9)

APBox=Mask =
Z 1

0
p(r)dr (10)

mAPBox=Mask = oN
I=1

APi

N
(11)

where Box represents the target box, Mask represents the

mask, TP represents the case in which the model correctly

classifies the actually positive samples as positive, FP represents

the case in which the model incorrectly classifies the actually

negative samples as positive, and FN refers to the case in which the

model incorrectly classifies the actually positive samples

as negative.
3 Results and analysis

3.1 Experimental environment and
parameter setting

This study uses the same equipment for experiments,

and the model is based on PyTorch deep learning framework

and developed in Anaconda environment. Table 2 shows the

main experimental equipment environment configuration. The

experimental hyperparameters are set as follows: the number of

iterations is 200, the batch size is 64, the optimizer is SGD, the initial

learning rate is 0.01, the learning rate momentum is 0.937, the

weight attenuation coefficient is 0.0005, and the model is trained

using two Gpus.
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3.2 Experimental results of ACP-tomato-
seg model

Figure 7 intuitively shows the experimental results of the ACP-

Tomato-Seg model on the Tomato-Seg data set, which completely

records the results of the ACP-Tomato-Seg model during the

training process. The variation of the different loss indicators and

the Precision, Recall and average accuracy under the two categories

of bounding box and mask.

Figure 8 shows the F1 score curve of each tomato maturity

category under different confidence thresholds. F1 score is an

important indicator to measure the comprehensive performance

of the model, which comprehensively considers the accuracy and

recall rate of the model.

Figure 9 shows the P-R curve of the model, which intuitively

reflects the tradeoff between the accuracy rate and the recall rate of

the model under different confidence thresholds. Ideally, we want

the model to achieve both a high accuracy rate and a high recall rate,

i.e. the closer the P-R curve is to the top right corner, the better. As

can be seen from the figure, the P-R curve of the model is smooth on

the whole, and still maintains a high accuracy rate under a high

recall rate, which indicates that the model can effectively control the

false detection rate while ensuring the recall rate, and achieve a good

recognition effect.
3.3 Comparative experiments of different
models

To evaluate the model performance, we selected multiple

mainstream models for comparative experiments to verify ACP-

Tomato- Seg advantages in the riper detection and fruit

segmentation tasks of large and small tomatoes. These include the

Mask R-CNN (He et al., 2017), Mask2Former (Cheng et al., 2021),

RT-Detr series (Lv et al., 2023), the YOLO series [v3-tiny (Redmon

and Farhadi, 2018), v5m-seg (Jocher, 2020), v6-seg (Li et al., 2022),

v7 (Wang C-Y. et al., 2022), v8s-seg (Jocher et al., 2023), v9c-seg,

v9e-seg (Wang C-Y. et al., 2024), v10s-seg (Wang A. et al., 2024),

11s-seg (Jocher et al., 2023), v12s-seg (Tian et al., 2025)], and the

ACP-Tomato- seg (our). Table 3 shows the evaluation of each

model on the two tasks of Box and Mask:

Figure 10 shows the comprehensive performance of

different models.

It can be seen that the mAP index of the ACP-Tomato-Seg

model proposed in this paper is superior to other comparison

models under the two categories of Box and Mask. In addition, it

maintains a good balance in terms of memory usage, parameter

number and computation amount. Specifically, under Box task, the

improved model mAP50 and MAP50-95 reached 91.3% and 84.5%

respectively, which increased by 5.6% and 8.3% compared with the

original YOLOv8s-seg model. Under the Mask task, the improved

model mAP50 and MAP50-95 reached 91.2% and 83.3%

respectively, which increased by 5.8% and 8.5% compared with

the original YOLOv8s-seg model. At the same time, the improved
TABLE 2 Experimental environment configuration.

Environment
Configuration

Parameter

Operating System Linux

CPU
Intel(R) Xeon(R) Gold 6148 CPU @

2.40 GHz

GPU 2×A100(80 GB)

Development environment PyCharm 2023.2.5

Language Python 3.8.10

Framework PyTorch 2.0.1

Operating platform CUDA 11.8
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model occupies only 28.7 MB, the number of parameters is more

than 14 million, the calculation amount is 47.1 GFLOPs, and the

average inference time is 12.3 ms, which is slightly increased

compared with YOLOv8s-seg, but it is within the acceptable

range. As shown in Table 4, the RT-Detr series and YOLOv9

series models also perform well on mAP50, but their memory

consumption, parameter number, inference speed and computation

amount are much higher than the models proposed in this paper. In

contrast, the models proposed in this paper strike a better balance

between performance, efficiency and model size, and are more

suitable for practical application scenarios.
3.4 Visual comparison of test results

In order to show the superiority of ACP-Tomato-Seg model

more intuitively, we visually compare the detection results of the

improved model with the original model. Figure 11 shows the

detection results of some tomato images. As can be seen from the

figure, the original model failed to detect partially occluded or

overlapping tomatoes. In addition, the original model also had

certain shortcomings in segmentation, as the extracted contour was
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not fine enough and there was deviation from the real contour. In

contrast, ACP-Tomato-Seg model can detect and segment tomato

targets more accurately. The improved model can effectively

identify the occlusion or overlapping tomatoes, and can extract

the contour information of tomatoes more accurately, which is

more consistent with the real contour. This shows that the

improved method proposed in this paper effectively improves the

detection accuracy and contour extraction ability of the model, and

enhances the robustness of the model in complex scenarios.
3.5 Ablation experiment

Experiments in sections 3.2, 3.3 and 3.4 demonstrate the

performance superiority of the ACP-Tomato-Seg model. In order

to evaluate the effectiveness of the proposed module, we conduct a

comprehensive ablation experiment using YOLOv8s-seg

architecture as the benchmark model. The ablation experiment

was conducted to study the effect of innovative modules on the

instance segmentation performance of tomato. Table 5 shows the

comparison between the model after adding the improved module

and the original model:
FIGURE 8

F1 scores under box and mask.
FIGURE 7

Experimental results of ACP-Tomato-Seg model.
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3.5.1 Analysis of the influence of AOFRM on
model performance

Table 5 shows the quantitative results of the ablation

experiment. Compared with the benchmark model, the mAP50

and MAP50-95 of the model under Box increased by 3.6% and 5.6%

respectively, and the mAP50 and MAP50-95 under Mask increased

by 4% and 5.3% respectively. To gain a deeper understanding of the

impact of the AOFRM module, we visualized the feature maps of

each layer downsampled to 40×40 by the baseline model and the

improved model. Figure 12 shows the feature visualization results.

Feature visualization shows that the AOFRM module

significantly enhances the clarity and richness of feature
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representation. Compared to the benchmark model, the AOFRM

model presents clearer contours, finer textures, and greater

emphasis on tomato-specific features, revealing that the AOFRM

module enriches feature representation by capturing the necessary

shape and orientation information. The adaptive properties of

deformable convolution in the AOFRM module enable the model

to deal effectively with the changes of tomato shape, orientation and

occlusion. The strategic integration of asymmetric convolution

enables the model to capture directional features that are critical

to accurately delineating tomato boundaries. The residual

connection in the AOFRM module facilitates the seamless flow of

information and mitigates the problem of disappearing gradients,
TABLE 3 12 Performance comparison of mainstream models.

Model
Box Mask

P R mAP50 mAP50-95 P R mAP50 mAP50-95

Mask R-CNN 80.2 79.8 85.4 74.1 80.5 80.3 86.0 74.3

Mask2Former 83.6 80.2 89.1 75.8 83.2 81.1 89.0 76.9

RT-Detr-l 83.4 81.4 88.8 78.2 83.4 81.4 88.7 74.6

RT-Detr-resnet50 83.0 81.4 89.4 78.7 83.0 81.3 89.2 74.7

YOLOv3-tiny 78.2 71.8 77.0 60.0

YOLOv5m-seg 80.6 81.6 85.5 77.0 80.6 81.4 85.3 73.2

YOLOv6-seg 81.3 79.1 86.5 74.6 81.2 79.0 86.2 71.4

YOLOv7 82.8 81.1 87.1 71.5

YOLOv8s-seg 84.2 75.8 85.7 76.2 81.5 78.4 85.4 74.8

YOLOv9c-seg 83.0 83.2 89.1 81.3 83.0 82.5 89.0 77.7

YOLOv9e-seg 82.6 83.3 89.6 79.6 82.7 83.4 89.6 75.8

YOLOv10s-seg 85.6 80.4 89.4 79.6 86.0 80.1 89.0 76.2

YOLO11s-seg 84.6 80.6 90.5 79.9 84.1 80.4 89.6 81.5

YOLO12s-seg 85.1 81.4 89.9 81.2 85.3 81.8 88.9 80.9

our 85.8 82.2 91.3 84.5 85.5 82.1 91.2 83.3
FIGURE 9

P-R curve under box and mask.
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helping to enhance learning and improve segmentation

performance. It is proved that the AOFRM module proposed can

significantly enhance the feature representation of tomato

case segmentation.

3.5.2 Impact analysis of CMPRD on model
performance

As can be seen from Table 5, after the CMPRDmodule is added,

the mAP50 andMAP50-95 of the model under Box are increased by

2.5% and 3.2% respectively, and the mAP50 and MAP50-95 under

Mask are increased by 2.9% and 4.1% respectively. In order to

further analyze the action mechanism of the CMPRD module, we

generated the heatmap of the model on the CMPRD feature layer, as

shown in Figure 13.

With the addition of the CMPRD module, the model is more

focused on the area of concern for the tomatoes and is better able to

capture the edges and details of the tomatoes, especially for
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tomatoes of different sizes and rims. This is mainly attributed to

the CMPRD module being able to capture feature information of

different scales more flexibly and enhance the model’s ability to

extract tomato features, which proves that CMPRD module can

effectively enhance the model’s ability to recognize the maturity of

tomatoes of different sizes and improve the model’s detection and

segmentation performance.

3.5.3 Analysis of the impact of PSA on model
performance

In order to verify the effectiveness of PSA module, we add PSA

module and several other common attention mechanisms,

including SE (Hu et al., 2017), CA (Hou et al., 2021), CBAM

(Woo et al., 2018) and ECA (Wang et al., 2019), on the basis of

YOLOv8s-seg model respectively, and conduct training and testing

on Tomato-Seg dataset. As can be seen from Table 6, after the

addition of PSA module, the mAP50 and MAP50-95 of the model
TABLE 4 Comprehensive performance parameters of RT-Detr series and YOLOv9 series models.

Model Box (mAP50) Mask(mAP50) Memory(M) Parameters FLOPs(G) Time(ms)

RT-Detr-l 88.8 88.7 63.8 3.0803202 168.9 30.9

RT-Detr-resnet50 89.4 89.2 83.7 4.0754146 191.1 32.7

YOLOv9c-seg 89.1 89.0 56.3 2.7987104 157.7 31.3

YOLOv9e-seg 89.6 89.6 121.9 5.9686306 244.5 50.5

our 91.3 91.2 28.7 1.4121826 47.1 12.3
FIGURE 10

Shows the comprehensive performance comparison of 15 models on multiple indicators, including mAP50 under Box and Mask categories, model
size, parameter number, computation amount and average inference time. Each curve in the radar map represents a model, and the closer the
intersection of the curve and each axis is to the outside, the better the index. The larger the area enclosed by the curve, the better the
comprehensive performance of the model.
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under Box increased by 1.8% and 2.7% respectively, and the mAP50

and MAP50-95 under Mask increased by 2% and 4.2% respectively.

Compared with other attention mechanisms, PSA module also

achieved the best performance improvement, which indicates that

PSA module can enhance the model’s ability to extract tomato

features more effectively than other attention mechanisms, and

improve the detection and segmentation performance of the model.

The advantage of the PSA module is its ability to combine channel

attention and spatial attention mechanisms to extract tomato

characteristics more fully. The MHSA module introduced by the

PSA module can capture the relationship between different

positions in the feature map, and further enhance the model’s

ability to extract details such as tomato contour and texture. In

addition, the PSA module uses a partial self-attention mechanism

to efficiently capture global context information without

introducing excessive computational costs. In summary, PSA

module can effectively enhance the model’s ability to extract

tomato features, improve the model’s detection and segmentation

performance, and show its superiority in comparison with other

attention mechanisms.
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3.6 Generalization ability Ttest of the ACP-
tomato-seg model

To further evaluate the generalization ability and cross - dataset

applicability of the ACP-Tomato -Seg model proposed in this

paper, we conducted supplementary verification on the publicly

available strawberry instance segmentation dataset (Pérez-Borrero

et al., 2020). We identified four instance segmentation methods

(Pérez-Borrero et al., 2020; Perez-Borrero et al., 2021; Cao et al.,

2023; Guo et al., 2024) that had also been evaluated on this dataset

as benchmarks, and carried out a comprehensive comparison using

the same instance segmentation metrics (mAP, AP50, AP75, mAPS,

mAPM, mAPL). The detailed comparison results are presented in

Table 7. The results show that the method proposed in this paper

significantly outperforms the selected comparative methods in the

(AP50, mAPS, mAPM) metrics. In terms of the mAP, AP75, and

mAPL metrics, the performance of our model is comparable to that

of StrawSeg. StrawSeg has a slight lead in these metrics (only 3.7%,

1.7%, and 3.1% higher respectively). Overall, the results of these

comparative experiments on the Straw DI_Db1 dataset fully
TABLE 5 Results of ablation experiments.

Method
Box Mask

P R mAP50 mAP50-95 P R mAP50 mAP50-95

base 84.2 75.8 85.7 76.2 81.5 78.4 85.4 74.8

+ADFRM 84.0 80.8 89.3 81.8 84.6 80.1 89.4 80.1

+CMPRD 84.9 81.6 88.2 79.4 84.3 81.8 88.3 78.9

+PSA 84.4 81.2 87.5 78.9 84.1 81.3 87.4 79.0

our 85.8 82.2 91.3 84.5 85.5 82.1 91.2 83.3
FIGURE 11

The left side is the detection result of the ACP-Tomato-Seg model, the middle is the real image label, and the right side is the detection result of the
original model. It can be seen that compared with the original model, the ACP-Tomato-Seg model can detect and segment the tomato target
more accurately.
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demonstrate that the effectiveness of our model design is not

confined to a tomato dataset. The results of the comparative

experiments on the public strawberry dataset strongly prove that

the improved model proposed in this paper has good generalization

ability and cross-dataset applicability. This indicates that the feature

representations learned by the model and the structural

optimizations are robust and can be effectively transferred to

similar yet different fruit instance segmentation tasks, addressing

concerns about generalization that may arise from testing only on

self-built datasets.
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4 Discussion

This study successfully developed an instance segmentation-

based tomato maturity detection and fruit segmentation method,

ACP-Tomato-Seg, aiming to solve the technical challenges of

precise tomato picking in complex field environments. In

response to the deficiency of traditional object detection methods

in obtaining fine contour information, the proposed ACP-Tomato-

Seg method significantly enhances the model’s feature expression

ability for tomatoes of different maturities, sizes, shapes, and with
FIGURE 13

Shows the comparison of heat maps in feature extraction between the model with CMPRD module and the original model. Each pixel value on the
thermal map represents the activation value of the position, and the higher the activation value, the more likely the target is to appear in the
position, which is brighter and more prominent in the thermal map. It can be seen that the heat map generated by the feature map of the CMPRD
module is obviously more concentrated on the tomato region than the heat map generated by the original model, indicating that the CMPRD
module can effectively enhance the model’s ability to extract tomato features and make it more focused on the target region, thus improving the
accuracy of detection and segmentation.
FIGURE 12

Shows the visual comparison of feature maps between the original model and ACP-TomatoSeg model in different feature extraction stages.
Compared with the original model, adding AOFRM after C2f highlights the tomato target more clearly and retains more detailed information, which
can better capture the key features of the tomato target and provide more abundant information for subsequent detection and segmentation.
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occlusion by innovatively introducing three modules: ADFRM,

CMPRD, and PSA. Experimental results show that on the

Tomato-Seg dataset, our method achieves excellent performance

under both bounding box and mask evaluation metrics, with high

levels of accuracy, recall rate, and mAP metrics, fully verifying the

effectiveness of ACP-Tomato-Seg in tomato maturity detection and

fruit segmentation in complex field environments. More crucially,

to further validate the effectiveness and generalization ability of our

model design, we conducted additional comparative experiments

on the publicly available StrawDI_Db1 dataset (details can be found

in Table 7). The results of these experiments indicate that, even

when confronted with different fruit types and data distributions,

ACP-Tomato-Seg significantly outperforms existing methods in

terms of performance, especially in key precision metrics. This

not only addresses concerns about the potential limitations of a

single dataset but also further confirms that the performance

improvements brought about by our proposed innovative

modules (ADFRM, CMPRD) possess good robustness and

generalization potential across datasets. Compared with

traditional object detection methods, the instance segmentation

method can provide more detailed fruit contour information. This

is crucial for precise robot picking because accurate contour

information can help the robot system locate and grasp fruits

more accurately, reduce damage during the picking process, and

improve the efficiency and quality of picking. Therefore, the

instance segmentation method proposed in this study provides

important technical support for the realization of intelligence and

precision in tomato-picking robots. One limitation of this study is

that our current work mainly focuses on the development and

verification of image processing and machine vision algorithms,

lacking a direct comparative analysis of fruit maturity detection
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results with the physicochemical indicators of tomatoes. Although

our method achieves satisfactory performance at the image level,

effectively distinguishing tomatoes at different maturity stages and

achieving precise fruit segmentation, we have not yet explored the

quantitative relationship between the maturity levels classified by

images and the actual physicochemical maturity. For example, we

have failed to measure indicators such as soluble solids, firmness,

and color parameters of tomatoes in different maturity categories,

thus unable to verify the accuracy and reliability of our image

detection results from the physicochemical level. We admit that

adding verification of physicochemical indicators will enable a more

comprehensive and in-depth evaluation of the effectiveness of our

method and enhance the scientific rigor of the research conclusion.

It should be noted that the main objective of this study is to explore

and verify the potential of deep learning methods based on instance

segmentation in solving the problems of tomato maturity detection

and fruit segmentation in complex field environments. Therefore,

our research focuses on the design of the model structure, algorithm

optimization, and performance evaluation on image datasets.

Although physicochemical analyses are crucial for a

comprehensive verification of the effectiveness of the maturity

detection method, it is beyond the scope and focus of this study.

An important direction for future research will be to address the

limitations of this study, conduct simultaneous measurement and

analysis of physicochemical indicators of tomatoes, and correlate

image segmentation and maturity detection results with

physicochemical data. For example, future studies can collect

images of tomatoes at different maturity stages and

simultaneously measure indicators such as soluble solids,

firmness, and color parameters to establish a quantitative

relationship model between image features and physicochemical
TABLE 7 Performance comparison of our model and several existing models on the straw DI_Db1 test set.

Methods mAP AP50 AP75 mAPS mAPM mAPL

Pérez-Borrero et al. (2020) 43.8 74.2 45.1 7.5 51.7 75.9

Perez-Borrero et al. (2021) 52.6 69.4 57.8 17 65.3 53.3

StrawSeg (Cao et al., 2023) 80.0 89.8 83.8 40.9 83.3 97.1

StrawSnake (Guo et al., 2024) 59.23 81.54 66.73 24.26 71.29 82.87

Our 76.3 93.4 82.1 60.5 85.0 94.0
TABLE 6 Comparative experiments of different attention mechanism modules.

Method
Box Mask

P R mAP50 mAP50-95 P R mAP50 mAP50-95

base 84.2 75.8 85.7 76.2 81.5 78.4 85.4 74.8

+SE 83.2 81.5 86.0 74.3 83.0 81.3 86.1 73.9

+CA 84.6 78.4 86.5 77.1 84.3 78.3 86.2 76.9

+CBAM 84.1 80.0 87.1 77.6 83.9 79.9 86.6 76.3

+ECA 83.6 79.8 86.6 78.0 83.4 78.9 86.3 77.9

+PSA 84.4 81.2 87.5 78.9 84.1 81.3 87.4 79.0
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indicators. This will contribute to a deeper understanding of the

intrinsic relationship between image features and tomato maturity

and provide a more scientific basis for rapid and non-destructive

maturity detection methods based on images. Additionally, as

stated in the conclusion section, model lightweighting and

integration with the robot vision system are also important

directions for our future research. We will explore model

compression and acceleration techniques to reduce the number of

model parameters and computational costs, enabling its

deployment on mobile or embedded devices with limited

computing resources. At the same time, we will strive to combine

the ACP-Tomato-Seg method with the robot vision system to

develop a prototype system of an automated tomato-picking

robot and verify the application potential of this method in actual

agricultural production.
5 Conclusions and future work

In order to solve the difficult problem of tomato ripenness

detection and fruit segmentation in complex field environment, this

paper pays special attention to the limitation that traditional target

detection methods cannot meet the requirements of robot accurate

picking for fruit contour information, and proposes an ACP-

Tomato-Seg instance segmentation method. Through the

proposed AOFRM, CMPRD and introduced PSA three innovative

modules, the method effectively improved the feature expression

ability of the model for tomatoes of different sizes, shapes and

occlusion degrees, and realized accurate identification of tomato

maturity and fine segmentation of fruit contour. AOFRM module

uses adaptive receptive field and multi-directional feature extraction

to effectively solve the segmentation problems caused by tomato

occlusion and overlap. The CMPRD module improved the model’s

ability to recognize tomatoes of different sizes and maturity levels

through multi-scale feature fusion. By capturing the global context

information, PSA module further enhances the accuracy of the

model to extract details such as tomato contour and texture. The

design of these modules cooperates with each other to improve the

detection and segmentation performance of the model. The

AOFRM module enhances the perception ability of the model to

the tomato target, and the CMPRD module extracts multi-scale

information to enable the model to understand the characteristics of

the tomato target more comprehensively. The PSA module uses the

multi-scale features extracted by CMPRD to guide the model to

focus on important features through the attention mechanism,

thereby improving the detection and segmentation accuracy of

the model. Experimental results on Tomato-Seg dataset with six

categories show that the proposed method achieves remarkable

performance improvement. Under the Box task, the accuracy, recall

rate, mAP50 and MAP50-95 reached 85.8%, 82.2%, 91.3% and

84.5% respectively. Under the Mask task, the accuracy, recall rate,

mAP50 and MAP50-95 reached 85.5%, 82.1%, 91.2% and 83.3%

respectively. To verify the generalization ability of the model, we

also conducted comparative experiments on the StrawDI_Db1

dataset. Even when faced with different fruit types and data
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distributions, our method still significantly outperforms existing

benchmark methods in the main evaluation metrics. This strongly

supports the effectiveness of our model design and its robustness

across datasets.

This study provides an effective technical solution for

realizing accurate picking of tomatoes, but the number of model

parameters and calculation is still large, which limits its

deployment and application on lightweight equipment. The future

work will focus on the following aspects: First, in order to verify

the accuracy of maturity detection more scientifically, we will

conduct simultaneous measurement and correlation analysis of

physicochemical indicators. Secondly, the performance and

robustness of the model will be tested in real field environments

and on robot platforms, and optimizations will be made for

uncontrolled conditions. At the same time, efforts will be devoted

to the lightweighting of the model to enable its deployment on

devices with limited resources. In addition, in-depth exploration of

the integration of the model with the robot vision system will be

carried out to develop an automated picking prototype system.

Finally, it is planned to expand the diversity of the dataset to

enhance the generalization ability of the model. In conclusion,

future research will be dedicated to promoting the ACP-Tomato-

Seg method from laboratory research to practical application and

contributing to the development of smart agriculture.
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