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Citrus Huanglongbing (HLB), also known as citrus greening, is a severe disease that

has caused substantial economic damage to the global citrus industry. Early

detection is challenging due to the lack of distinctive early symptoms, making

current diagnostic methods often ineffective. Therefore, there is an urgent need for

an intelligent and timely detection system for HLB. This study leveragesmultispectral

imagery acquired via unmanned aerial vehicles (UAVs) and deep convolutional neural

networks. This study introduce a novel model, MGA-UNet, specifically designed for

HLB recognition. This image segmentation model enhances feature transmission by

integrating channel attention and spatial attention within the skip connections.

Furthermore, this study evaluate the comparative effectiveness of high-resolution

and multispectral images in HLB detection, finding that multispectral imagery offers

superior performance. To address data imbalance and augment the dataset, this

study employ a generative model, DCGAN, for data augmentation, significantly

boosting the model’s recognition accuracy. Our proposed model achieved a mIoU

of 0.89, amPA of 0.94, a precision of 0.95, and a recall of 0.94 in identifying diseased

trees. The intelligent monitoring method for HLB presented in this study offers a

cost-effective and highly accurate solution, holding considerable promise for the

early warning of this disease.
KEYWORDS

Citrus HuangLongBing, citrus greening, UAV, multispectral images, deep learning,
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1 Introduction

Citrus Huanglongbing (HLB) is a bacterial disease. It poses a serious threat to the health

and yield of citrus trees. The disease spreads primarily through psyllids. It can also spread via

infected seedlings and grafting practices. (Halbert and Manjunath, 2004) Symptoms of HLB

include leaf yellowing and uneven fruit ripening. In severe cases, it often leads to tree mortality.
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The disease is prevalent across Asia, Africa, South America, and North

America. It has profound economic implications for the citrus

industry. For example, in 2017, the citrus industry in Guangdong

Province, China, incurred losses exceeding $500 million due to HLB.

Currently, there is no cure for HLB. Once a tree is diagnosed, it must

be removed. Therefore, early detection and monitoring are critical for

managing the disease.

However, early detection of HLB remains a significant challenge

for citrus growers. Presently, methods such as field visual inspection

(Garcia-Figuera et al., 2021), electron microscopy, grafting

diagnosis (Lin et al., 2017), and PCR testing are employed (Li

et al., 2006). Field visual inspection requires experts to visit citrus

orchards to observe potentially infected trees. This process depends

heavily on the inspectors’ experience. Electron microscopy can

reveal the pathogen’s structure and is useful in detecting HLB.

However, both field inspection and electron microscopy have low

accuracy in identifying early-stage HLB. Grafting diagnosis involves

attaching branches suspected of HLB infection to healthy indicator

plants. Observing pathological symptoms takes 6 to 10 months or

more. PCR testing identifies pathogen DNA sequences in the tree

and compares them to HLB-specific sequences to confirm infection.

Yet, both grafting diagnosis and PCR testing are expensive and

difficult to scale. This study proposes an innovative intelligent

detection method for HLB. It leverages images captured by

unmanned aerial vehicles (UAVs) combined with convolutional

neural networks (CNNs). This approach offers faster identification

and lower detection costs than traditional methods.

In recent years, machine learning has become the leading

approach for image recognition. Various mature solutions exist

for applying machine learning in HLB detection (Lan et al., 2020).

Some studies have used machine learning techniques like linear

regression and support vector machines for HLB detection.

However, challenges persist. Indistinct disease characteristics and

blurred image boundaries hinder recognition accuracy. In this

study, we introduce MGA-Unet, a deep learning model based on

the U-net architecture specifically designed for image segmentation.

MGA-Unet excels at distinguishing edge information and fine

details. This makes it well-suited for tasks that require precise

feature differentiation, such as early HLB detection.

Building a robust dataset is essential for the intelligent

detection of HLB. Previous research often utilized handheld

cameras for close-range image acquisition (Qiu et al., 2022), but

this approach is inefficient and unsuitable for large-scale data

collection. UAV remote sensing technology, a burgeoning tool in

plant protection, offers rapid image collection and analysis

capabilities (Bendig et al., 2015). UAVs can be equipped with

high-resolution, multispectral, or hyperspectral cameras to

capture imagery. Recent studies have shown the applicability of

high-resolution camera images captured by UAVs in HLB

detection (Garza et al., 2020). However, due to the subtlety of

early HLB symptoms, the use of high-resolution imagery for

dataset construction presents limitations in recognition

accuracy. This study investigates the use of multispectral camera

imagery as a dataset for early HLB detection. Meanwhile compares

its performance with high-resolution images.
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A model’s performance depends not only on algorithmic

optimization but also on the quality of the dataset. In the context

of early HLB detection, the proportion of diseased citrus trees in the

dataset is relatively small. Deep learning models require a

substantial amount of both positive and negative samples, and

imbalanced datasets can adversely affect model training.

Addressing the issues of small data size and class imbalance can

significantly enhance model performance. Traditional data

augmentation methods can increase dataset size but it doesn’t

fundamentally change the dataset.

This study employs a specialized data augmentation strategy by

leveraging the DCGAN model, a variant of generative adversarial

networks (GANs), to address the small data size and class imbalance

in the HLB dataset. This approach enhances both the robustness of

the dataset and the performance of the subsequent machine learning

models. Specifically, we introduce an MGA-Unet model designed for

early detection and identification of HLB, incorporating channel

attention and spatial attention with optimized skip connections.

We also utilize multispectral images acquired via an unmanned

aerial vehicle (UAV) platform in conjunction with convolutional

neural networks (CNNs) for rapid early detection of HLB, and

compare recognition performance between high-resolution image

data and multispectral image data. Furthermore, the DCGAN

generative model is employed for data augmentation in HLB image

segmentation, with recognition performance evaluated both with and

without DCGAN augmentation.
2 Materials and methods

2.1 Data sources

The dataset was acquired from various citrus production bases

in Guangdong Province, China. Guangdong is located in southern

China, characterized by a subtropical monsoon climate, making it

suitable for citrus cultivation (Luo et al., 2017). To ensure high-

quality data, image capture was conducted during periods with

minimal solar radiation interference. The specific data collection

sites are shown in Figure 1.

A DJI Mavic 3M drone was used for data collection. It offers up

to 43 minutes offlight time per mission and can cover up to 2 square

kilometers per flight. The drone was equipped with both a high-

resolution camera and a multispectral camera. This setup allowed

for the simultaneous capture of two image types during a single

flight. The multispectral camera was capable of capturing four

spectral bands: Red Edge (RE), Red (R), Near-Infrared (NIR), and

Green (G). The camera parameters are provided in detail in Table 1.
2.2 Labeling disease data methodology

2.2.1 Sample collection
Samples of citrus leaves suspected to be infected with

Huanglongbing (HLB) were collected from a variety of citrus

species, including Citrus reticulata ‘Chachiensis’, Citrus reticulata
frontiersin.org
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‘Shatangju’, Citrus maxima, and Citrus sinensis. Trees were selected

and marked as individual units within predefined areas. For each

tree, 1–2 leaves were collected from 12 distinct locations

corresponding to four directions (east, south, west, and north) at

three canopy heights (upper, middle, and lower layers). The

collected leaves were stored in sample bags and immediately

transported to the laboratory, where they were stored at -20°C for

further processing.

2.2.2 Total DNA extraction from citrus leaves
Total genomic DNA was extracted from the collected citrus

leaves using an automated nucleic acid extraction and purification

system. A magnetic bead-based plant genome extraction kit was

used for this purpose. To prepare for extraction, 12 leaf samples

were pooled, and 0.1g of main vein tissue was placed into a 2mL

centrifuge tube containing grinding beads. This was followed by

mechanical disruption using an MP FastPrep-24 homogenizer.

After disruption, the appropriate reagents were added following
Frontiers in Plant Science 03
the kit protocol, and the sample was processed through the

extraction and purification system. The resulting DNA was

transferred into 1.5mL centrifuge tubes and stored at -80°C for

long-term preservation.

2.2.3 Real-time quantitative PCR detection of
HLB pathogen

To detect Huanglongbing (HLB), a real-time quantitative PCR

(qPCR) assay utilizing a dual-probe strategy was employed. The

reaction mixture was prepared using the Premix EX Taq™ (Probe

qPCR) kit (RR390A, TaKaRa). The specific primers used are listed

in Table 2.The qPCR reaction mixture consisted of 10 μL of premix

solution, 0.4 μL of 10 μM forward and reverse primers, 0.3 μL of 10

μM probes, and 2 μL of the extracted DNA template. The final

volume was adjusted to 20 μL with ddH2O. Amplifications were

performed on a Roche LightCycler 480 II qPCR instrument under

the following cycling conditions: initial denaturation at 95°C for 5

minutes, 58°C for 30 seconds (ramp rate of 2.2°C/s) and followed by

45 cycles of 95°C for 5 seconds. The denaturation phase was set at

95°C for 10 seconds, 40°C for 30 seconds (ramp rate 2°C/s),

followed by 80°C for 30 seconds (ramp rate 0.06°C/s). Annealing

was carried out at 50°C for 30 seconds (ramp rate of 2.2°C/s).

Positive controls, negative controls, blank controls, and standard

curve controls were included in the assay, were included to ensure

the accuracy and reliability of the results.

In this study, the location of each tree was recorded during leaf

collection. If any leaf sample from a particular tree tested positive for

the HLB pathogen via PCR detection, that tree was labeled as diseased.

Conversely, if none of the sampled leaves from a tree tested positive, the
TABLE 1 DJI Mavic 3M camera parameters.

Item RGB Camera Multispectral Cameras

Max Image Size 5280 x 3956 2592 x 1944

Photo Pixel 20 MP 5 MP

Image Sensor 4/3 CMOS 1/2.8-inch CMOS

Equivalent focal length 24 mm 25 mm

Aperture f/2.8 to f/11 f/2.0
FIGURE 1

This is a map of Guangdong Province, China. The specific data collection locations are marked on the map as ‘A’, ‘B’, and ‘C’. The collection times
and corresponding coordinates (latitude and longitude) for each location are as follows: (A) Yingde City, Qingyuan (2023.01.04), covering 7581m2, at
coordinates (112.89928897, 24.40084808); (B) Xinhui District, Jiangmen (2023.02.18), covering 3740m2, at coordinates (112.97968806,
22.40470336); (C) Zijin County, Heyuan (2023.04.25), at coordinates (114.98817667, 23.43008256).
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tree was labeled as healthy. These labeled data points are utilized in the

image preprocessing stage. If a tree is labeled as “diseased,” this study

classifies the entire tree into the diseased category. Due to the

orthophoto imagery being captured from an unmanned aerial

vehicle (UAV) perspective, the spatial scale and viewpoint only allow

the detection of disease characteristics at the canopy or population

level. Moreover, the overhead viewpoint captures only the top portions

of the trees; therefore, each tree is treated as a whole entity for

classification purposes.
2.3 Image preprocessing

2.3.1 Dataset processing
The raw images captured by the drone’s cameras require

preprocessing before they can be utilized for analysis. To

maintain image continuity and completeness, it is necessary to

address the overlapping regions at the edges of drone-captured

images (Wang et al., 2022). These images are sequentially stitched

together to form larger, continuous datasets for subsequent

processing. The methodology is illustrated in Figure 2. His study
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also compares the efficacy of high-resolution images and

multispectral images in detecting HLB. High-resolution images

are ready for use without any additional processing. In contrast,

multispectral images require synthesis across various spectral bands

to enhance their utility in detection tasks.

2.3.2 Multispectral image preprocessing
In the context of HLB detection, color and texture features are

more critical than shape features. Multispectral images are

particularly effective in accentuating color characteristics, which

in turn enhance the clarity of texture features at object boundaries.

When employing multispectral data, deep learning models can

more effectively learn the pathological features associated with

HLB. However, single-band multispectral images are limited in

the information they provide. By synthesize multispectral images in

the following bands: Red Edge (RE), Red (R), Near-Infrared (NIR),

and Green (G). This can highlight more useful information.
• G (Green): The Green band, centered around 560 ± 16nm,

is particularly sensitive to plant photosynthesis.

• R (Red): The Red band, centered around 650 ± 16nm, is

sensitive to chlorophyll absorption. Healthy vegetation

exhibits lower reflectance in this band, making it useful

for distinguishing vegetation from soil.

• RE (Red Edge): The Red Edge band, centered around 730 ±

16nm, lies between the red and near-infrared bands. It is

highly effective for differentiating between vegetation types

and assessing vegetation health due to the significant

reflectance changes observed in healthy vegetation.

• NIR (Near-Infrared): The Near-Infrared band, centered

around 860 ± 26nm, is characterized by high reflectance

in healthy vegetation, while water bodies almost completely

absorb this wavelength.
FIGURE 2

This is a description of the image stitching process. (A) shows a series of consecutive images captured by the drone, with some overlapping pixels
between the adjacent images. (B) illustrates the result of stitching these images together in the order and positions they were captured, removing
the overlapping pixel regions to form a composite image.
TABLE 2 Primer sequence list.

Name Sequence(5′-3′)

HLB-F ACGCTGGCGGCAGGCTAA

HLB-R GTAGATTCCTACGCGTTACTCA

HLB-P FAM-TCGAGCGCGTATGCGAAT-BHQ

COX-F GTATGCCACGTCGCATTCCAGA

COX-R GCCAAAACTGCTAAGGGCATTC

COX-P TET-ATCCAGATGCTTACGCTGG-BHQ-2
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There are two pr imary methods fo r proce s s ing

multispectral images:
Fron
1. Vegetation Index: The vegetation index is a widely used

approach for processing multispectral data, with common

indices including NDVI, GNDVI, SAVI, NIR-R, G/R, and

NIR/R (Garcia-Ruiz et al., 2013). NDVI, which relies on the

reflectance of the red and near-infrared bands, is often used

to detect vegetation and assess chlorophyll content. It is

effective in highlighting vegetative areas, as there is a

positive correlation between chlorophyll content and

NDVI values (Jones et al., 2007). NDVI can also reflect

differences in vegetation water content and nitrogen levels.

However, for HLB detection, the differences between

healthy and HLB-affected trees are not always significant

when using vegetation indices.

2. Color Synthesis: By combining data from different

wavelength channels of multispectral images, a

synthesized false-color image can be produced (Nekhin

et al., 2022). False-color images map information from

non-visible spectrum bands (e.g., infrared) onto the visible

spectrum’s color channels (red, green, blue), creating a

visual representation that emphasizes features from

different bands. In the context of HLB detection, where

leaf yellowing is a key indicator, it is crucial to clearly

distinguish between yellow and green in the images. This

study utilizes multispectral color synthesis techniques for

image preprocessing to enhance the visibility of these

critical features. The implementation method is shown

in Figure 3.
tiers in Plant Science 05
2.4 Data augmentation

A high-quality dataset is pivotal to the successful training of a

model (Gharawi et al., 2022), as imbalances or insufficient size can

negatively impact the training outcomes. When a dataset is

imbalanced, it can skew the model’s learning process (Zhang

et al., 2019), and if the dataset is too small, the model is prone to

overfitting (Fang et al., 2023). Data augmentation techniques should

be tailored to the specific image categories and their characteristics.

However, a fundamental principle is to introduce as much variation

as possible without altering the original semantic information. Data

augmentation enhances model performance. In some instances, it

also reduces the need for extensive data labeling efforts.

Generally, data augmentation offers three key benefits:
1. It enhances the model’s generalization capabilities, enabling

better performance on unseen datasets.

2. It reduces overfitting by helping the model learn essential

image features, thereby preventing the model from

becoming too specialized on the training data.

3. It effectively expands the dataset, increasing its size and

addressing class imbalance.
2.4.1 Traditional data augmentation methods
Geometric transformations are a common technique,

generating new images by repositioning pixel values through

rotation, flipping, scaling, translation, and cropping (Shorten and

Khoshgoftaar, 2019). These methods preserve the fundamental

shape of the images while altering their orientation and position.
FIGURE 3

Band synthesis requires combining several grayscale multispectral images, captured at the same location but across different spectral bands, into a
single false-color image. In this image, different colors are assigned to various multispectral bands, allowing the image to simultaneously contain
information from multiple bands while rendering certain features visible to the human eye.
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Techniques like sharpening and blurring modify image details

and edge contrasts to achieve various effects. Sharpening enhances

details, while blurring diffuses pixel values, softening edges and

diminishing detail prominence. These methods can either

emphasize or downplay semantic features in an image.

Noise perturbation involves adding random or fixed noise

patterns to images. Noise can significantly impact object

recognition in deep learning, as even small amounts of noise can

lead to misclassification. However, appropriately added noise can

improve the robustness of image processing algorithms and

increase dataset diversity.

While traditional data augmentation methods can improve a

model’s generalization, they have limitations. These methods

generally apply only basic transformations, resulting in

augmented images that remain fundamentally similar to the

originals. To overcome these limitations, this study also employs

Generative Adversarial Networks (GANs) to generate new image

data, further optimizing data augmentation.

2.4.2 Generative model-based data augmentation
Generative models create new data based on existing datasets.

These synthetic data are not real but are generated by capturing and

replicating the characteristics of the training set. Although these

generated images share features with the real dataset, they do not

exactly match any real data. Such synthetic data are invaluable,

particularly in fields like plant identification, where data collection

is constrained by specific growth periods. Missing data collection

during these periods can lead to long delays in data acquisition. In

plant pathology identification, where data on diseased specimens

may be scarce, healthy images can be used to generate images of

diseased specimens. Generative models can also be employed to

produce synthetic data that exclude sensitive information. This

capability makes them useful in scenarios requiring confidentiality.

Additionally, they can be used to remove watermarks from images

(Yang et al., 2020; Huang and Cao, 2023). Generative models thus

offer a solution to the challenge of acquiring difficult-to-obtain data.

In this study, the Deep Convolutional Generative Adversarial

Network (DCGAN), a type of GAN-based unsupervised learning

model, was employed. DCGAN enhances model performance

through adversarial training between a generator and a

discriminator. The generator’s goal is to create realistic synthetic

data that the discriminator cannot distinguish from real data.

Meanwhile, the discriminator’s objective is to differentiate

between real and synthetic data. Through this adversarial process,

both the generator and discriminator progressively improve. When

the model reaches Nash equilibrium, the discriminator can no

longer reliably distinguish between real and generated data. At

this point, the model gains the ability to generate data that closely

resembles real images.

Although GANs have shown great promise in generating data

through adversarial training, they initially faced challenges such as

training instability and mode collapse. Deep Convolutional

Generative Adversarial Network (DCGAN) addresses these issues

by significantly improving the quality and stability of the generated

images. The training process of DCGAN is similar to that of
Frontiers in Plant Science 06
traditional GANs but includes convolutional layers and design

optimizations. These improvements enhance network stability

and make the training process more efficient. In DCGAN, the

discriminator uses convolutional layers to gradually extract feature

maps. Meanwhile, the generator employs transposed convolutional

layers (also known as deconvolution layers) to upsample and

reconstruct the feature maps into images. Typically, each layer

includes batch normalization and activation functions like ReLU.

In this study, data augmentation using DCGAN was applied

exclusively to the minority class—specifically, diseased tree samples.

Since our samples were collected during the early stages of HLB

disease, the number of diseased tree samples was significantly

smaller compared to healthy ones, resulting in severe class

imbalance. To address this, the DCGAN was trained on each

cropped image containing complete diseased trees, generating

additional synthetic samples to enrich the dataset of diseased

tree images.
2.5 Machine learning models

Numerous studies have utilized machine learning models for

plant pathology recognition, employing techniques such as Support

Vector Machines (SVM) (Tomar and Agarwal, 2016), K-Nearest

Neighbors (KNN) (Ambarwari et al., 2016), Decision Trees (Samal

et al., 2002), and Random Forests (Polyakova et al., 2023). While

these methods have demonstrated success, early identification of

plant diseases remains challenging due to the small size and subtlety

of affected areas. To further improve recognition accuracy, deep

convolutional neural network (CNN) models are increasingly

necessary (Chen et al., 2023).

2.5.1 Deep learning models
Some researchers have employed YOLOv5 as a baseline model,

achieving a micro-F1 score of 85.19% (Qiu et al., 2022).These

methods primarily rely on datasets of close-range images

captured with handheld cameras (Deng et al., 2016; Barman et al.,

2020; He et al., 2022; Qiu et al., 2022). Drone-captured images pose

unique challenges, such as resolution and angle constraints.

Therefore, more specialized models are necessary to achieve

effective recognition.

2.5.2 MGA-UNet models
The U-Net model, originally developed for medical image

segmentation (Ronneberger et al., 2015), consists of an encoder

(Contracting Path) and a decoder (Expanding Path), connected

through skip connections. This progressive encoding-decoding

structure allows U-Net to extract features at multiple levels. It

captures edge and texture details at the pixel level while also

considering shape and position on a global scale. Despite its

strong performance, the traditional U-Net model may struggle

with understanding global contextual semantics in complex

scenarios, leading to potential feature loss. To overcome these

limitations, this study introduces the MGA-UNet model. It

enhances the U-Net architecture by incorporating channel
frontiersin.org
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attention and spatial attention mechanisms within the skip

connections to optimize feature transmission.

The encoder (contracting path) reduces the spatial dimensions

of the image while increasing the depth of the feature maps. This

process facilitates the extraction of high-level features. It consists of

convolutional layers followed by pooling layers. Each convolutional

layer comprises two 3x3 convolutional kernels paired with ReLU

activation functions, designed to capture local features from the

image. Pooling layers follow the convolutional layers, reducing the

size of the feature maps. After each pooling operation, the spatial

dimensions of the image are halved, and the number of channels is

doubled. This approach reduces computational complexity and the

number of parameters.

The bottleneck serves as the connection between the encoder

and decoder, containing two 3x3 convolutional layers and ReLU

activation functions to extract deeper features. Skip connections are

essential as they concatenate feature maps from corresponding

layers in the encoder and decoder. This helps preserve

information that may have been lost during encoding and aids in

the image reconstruction process within the decoder.

The decoder (expanding path) progressively increases the spatial

dimensions of the image while reducing the depth of the feature

maps, ultimately restoring the image to its original size. The decoder

comprises up-sampling and convolutional layers, where up-sampling

is achieved through 2x2 transposed convolution, effectively doubling

the image dimensions. This is followed by two 3x3 convolutional

kernels and ReLU activation functions.

The output layer, usually a 1x1 convolutional layer, maps the

feature maps to the required number of channels for the

segmentation task. The number of output channels corresponds
Frontiers in Plant Science 07
to the number of target classes. The architecture of the MGA-UNet

model is illustrated in Figure 4.

The channel attention mechanism focuses on the relationships

among different channels in the feature maps, generating a channel

attention map that highlights the most significant channels. The

process begins by taking a feature map of dimension H �W � C,

where H is the height, W is the width, and C is the number of

channels. Next, Global Average Pooling or Global Max Pooling is

applied to transform the feature map into a channel descriptor,

resulting in a 1� 1� C vector. This descriptor is then passed

through a fully connected layer (or convolutional layer) to

produce a channel attention map of the same shape, 1� 1� C. A

Softmax or Sigmoid function is subsequently used to normalize this

attention map, ensuring its values lie between 0 and 1. Finally, the

normalized attention map is multiplied with the original feature

map on a per-channel basis, thereby enhancing the representation

of the more important channels in the final output.
The equations are expressed as follows:

Attention _map = s(FC(Pooling(F)))

F0 = F⊗Attention _map

where s denotes the Sigmoid function, FC refers to the fully

connected layer, Pooling represents the global pooling operation,

and ⊗ denotes element-wise channel multiplication.

The spatial attention mechanism focuses on the correlation of

spatial locations within the feature maps, generating a spatial

attention map to highlight important regions in the image.

The spatial attention mechanism typically operates on a feature

map of dimensions H �W � C, where H is the height, W is the
FIGURE 4

MGA-UNet model structure.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1503645
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ye et al. 10.3389/fpls.2025.1503645
width, and C is the number of channels. Through convolutional

operations or similar transformations, this feature map is converted

into a spatial attention map of dimensions H �W . A Softmax or

Sigmoid function is then applied to normalize this attention map,

ensuring its values fall between 0 and 1. Lastly, the normalized

attention map is multiplied element-wise with the original feature

map, effectively emphasizing crucial spatial locations.

The equations are expressed as follows:

Attention _map = s (Conv(F))

F0 = F⊗Attention _map

where s denotes the Sigmoid function, Conv refers to the

convolution operat ion, and ⊗ denotes e lement-wise

channel multiplication.
2.6 Experimental setup

2.6.1 Configuration information
To ensure a fair comparison, all experiments were conducted in

a consistent hardware and software environment. Both the DCGAN

and MGA-UNet models were trained using the PyTorch

framework. The detailed hardware and software configurations

are provided in Table 3.

2.6.2 Training configuration
To enhance training efficiency, the drone-captured images were

first stitched together into larger images and then uniformly

processed into false-color images using multispectral data. Since

drone images are too large to be processed directly by machine

learning models, we divided them into smaller sub-images, each

with dimensions of approximately 512 × 512 pixels.

Following traditional and generative model-based data

augmentation techniques, a total of 9,972 images were used for

training. The dataset consists of 3,348 diseased tree samples and

6,072 healthy tree samples. The data were randomly split into

training, validation, and test sets in a 7:2:1 ratio. The dataset is

divided into 6,980 training images, 1,994 validation images, and 998

test images.
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The learning rate was adjusted using the Adam Optimizer.

Adam (Adaptive Moment Estimation) is a widely adopted gradient

descent algorithm in deep learning, known for its ability to handle

sparse gradients and non-stationary targets (Kingma, 2014). Based

on preliminary tests, the training parameters were set as follows: the

entire training process spanned 100 epochs, balancing efficiency

and accuracy. The batch size was set to 8, optimizing GPU

utilization. Momentum was set to 0.9. The detailed training

configuration is provided in Table 4.

2.6.3 Evaluation metrics
To provide a comprehensive assessment, several evaluation

metrics were employed, including mIoU (Mean Intersection over

Union), mPA (Mean Pixel Accuracy), Precision, and Recall.

mIoU is a common metric in image segmentation tasks,

evaluating model performance by measuring the overlap between

the predicted region and the actual region. The IoU for each

category is calculated as the intersection of the predicted and

actual regions ( jPredicted  Region ∩ Actual  Region j)divided by

the union of these regions ( j Predicted  Region ∪ Actual  Region j).
The mIoU is the average IoU across all categories.

IoU =
jPredicted  Region ∩ Actual  Region j
jPredicted  Region ∪ Actual  Region j

mIoU =
1
No

N

i=1
IoUi

where N represents the total number of classes, and IoUi

represents the IoU value for class.

mPA evaluates pixel accuracy by first calculating the accuracy

for each category and then averaging across all categories.

PAC =
TPC

TPC + FNC

mPA =
1
No

N

c=1
PAC

where TPC represents the number of true positive pixels for

class. FNC represents the number of false negative pixels for class c.

N represents the total number of classes. PAC denotes the pixel

accuracy for class c.

Precision measures the accuracy of the model’s positive

predictions, making it especially relevant for imbalanced datasets.

Precision is calculated as the number of true positive predictions

divided by the sum of true positives and false positives.
TABLE 3 Hardware and software configuration information.

Item Parameters Version

Hardware

CPU
Intel(R) Xeon(R) Platinum 8352V CPU

@ 2.10GHz

GPU NVIDIA RTX 4090 24GB

RAM 90GB

Software

Python 3.12

Pytorch 2.3.0

CUDA 12.1

CUDNN 8.9.1
TABLE 4 Detailed training configuration.

Parameters Value

momentum 0.9

batch size 8

epoch 100

learning rate Adam
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Precision =
TP

TP + FP

where TP represents the number of true positive samples. FP

represents the number of false positive samples.

Recall complements Precision by indicating the proportion of

actual positives correctly identified by the model. Recall is calculated

as the number of true positive predictions divided by the sum of

true positives and false negatives.

Recall =
TP

TP + FN

where TP (True Positives) represents the number of correctly

predicted positive samples. FN (False Negatives) represents the

number of samples that are actually positive but were incorrectly

predicted as negative.
3 Results

This study systematically examined the differences between

using multispectral and high-resolution image datasets. It also

explored the benefits of employing generative model-based data

augmentation to enhance the dataset and analyzed the impact of

attention mechanisms on image segmentation performance.

Experiments were conducted across various data and algorithm

combinations: the first group utilized high-resolution images, the

second group used color-synthesized multispectral images, and the

third group employed images augmented by generative models.

Multispectral images consist of datasets captured simultaneously by

a multispectral camera and a high-resolution camera at the same
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spatial scale. In this study, we compared the classification

performance between these different image datasets. The specific

experimental results are shown in Table 5.
3.1 Comparison between high-resolution
images and multispectral images

The drone used in this study was equipped with both a high-

resolution camera and a multispectral camera, allowing

simultaneous capture of high-resolut ion images and

corresponding multispectral Images during a single flight. The

high-resolution images were stitched into larger mosaics and then

uniformly cropped into segments suitable for training. These

images, consisting of three color channels (R, G, B), capture

visual information similar to that perceived by the human eye but

offer limited informational depth. In the context of early Citrus

Huanglongbing (HLB) detection, the subtle pathological features of

infected citrus trees are challenging to discern using high-resolution

images alone. The focus of this study was on the recognition

accuracy of positive samples, specifically the identification rate of

infected trees. For high-resolution images, the model achieved a

mean Intersection over Union (mIoU) of 0.35, mean Pixel Accuracy

(mPA) of 0.4, Precision of 0.76, and Recall of 0.4. These relatively

low recognition rates indicate that high-resolution imagery is

insufficient for the early detection of HLB.

To enhance the model’s ability to detect early-stage HLB

features, multispectral images were employed as the primary

dataset. These images, captured by the drone’s multispectral

camera, included four spectral bands: Red Edge (RE), Red (R),
TABLE 5 Specific experimental results.

Evaluation Metrics Classification High definition image Multispectral image Data Augmentation

IoU

mIoU 0.59 0.81 0.92

sick 0.35 0.73 0.89

health 0.48 0.76 0.91

background 0.93 0.94 0.95

PA

mPA 0.73 0.89 0.96

sick 0.4 0.82 0.94

health 0.82 0.89 0.96

background 0.97 0.96 0.97

Precision

sum 0.75 0.89 0.96

sick 0.76 0.87 0.95

health 0.53 0.83 0.94

background 0.96 0.97 0.98

Recall

sum 0.73 0.89 0.96

sick 0.4 0.82 0.94

health 0.82 0.89 0.96

background 0.97 0.96 0.97
The category name "sick," marked in bold in the table, represents the values of each evaluation metric for diseased fruit tree regions of interest infected with Citrus Huanglongbing after processing
by the image segmentation model.
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Near-Infrared (NIR), and Green (G). The multispectral images were

then color-synthesized into false-color composites images for

training. A comparison between a multispectral image, a high-

resolution image, and a false-color composite image is provided in

the Figure 5. For the detection of diseased trees using multispectral

images, the model achieved an mIoU of 0.73, mPA of 0.82,

Precision of 0.87, and Recall of 0.82. The recognition accuracy

improved significantly when switching from high-resolution to

multispectral images. This result demonstrates that multispectral

imaging is more suitable for the early detection of HLB, offering

greater accuracy compared to high-resolution images. The

visualization of the recognition results for the multispectral

images, which were segmented into individual sample images, is

presented in Figure 6. Meanwhile, this study also provides a large-

scale map-based visualization of the hyperspectral images, as

illustrated in Figure 7.
3.2 Impact of generative model-based data
augmentation

A key challenge in the early detection of HLB lies in the relatively

small proportion of diseased samples within the dataset. During the

initial stages of HLB infection, the virus spreads slowly, resulting in
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significantly fewer diseased samples compared to healthy ones, which

in turn leads to a pronounced dataset imbalance. This imbalance

often induces model overfitting, adversely affecting training

outcomes. Moreover, simply reducing the number of healthy

samples to address this imbalance shrinks the overall dataset,

complicating the statistical analysis of HLB spread trends.

To mitigate these issues, this study employed a generative

adversarial network (DCGAN) to augment the dataset by

generating synthetic images of HLB-infected trees. DCGAN

learns the distinguishing features of diseased images from the

existing dataset and creates novel synthetic images that closely

resemble authentic diseased samples yet remain unique. This

approach effectively alleviates dataset imbalance while preserving

statistical rigor, offering a marked advantage over conventional

augmentation techniques.

Nevertheless, DCGAN has certain limitations and areas for

further refinement. First, DCGAN requires a sufficiently large

training dataset; it may perform suboptimally on very small

datasets. Second, although DCGAN can produce high-quality

diseased samples, the resolution of these generated images is often

relatively low, which may limit subsequent model performance.

Future research may explore more advanced generative algorithms

or enhanced hardware to increase image resolution and quality.

Additionally, generated synthetic data should not be recycled as
FIGURE 5

This figure illustrates the differences between a multispectral image, a high-resolution image, and a false-color composite image. In the figure,
image (A) rep-resents the grayscale image of a single band from the multispectral image. Image (B) is a high-resolution image composed of three
RGB bands. Image (C) is a false-color composites image created by combining multiple bands from the multispectral image.
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training inputs in the same generative model, as doing so may cause

model contamination, producing progressively distorted outputs

(Wenger, 2024).

Despite these drawbacks, generative models such as DCGAN

offer unique benefits for data augmentation by reducing model

overfitting and bolstering robustness. In HLB detection, minor

distortions in structural details—problematic in other applications

like human facial recognition—are less critical. While multispectral

imaging outperformed other approaches in this study, its higher

acquisition and processing costs may limit large-scale commercial
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adoption. Consequently, practical applications must balance the

expense of data acquisition with the desired detection accuracy.

Overall, the use of a generative model for data augmentation in

the HLB dataset proves to be a viable solution. For the identification

of diseased trees, the model achieved an mIoU of 0.89, mPA of 0.94,

Precision of 0.95, and Recall of 0.94. Compared to the recognition

accuracy prior to the application of generative model-based data

augmentation, these results show a notable improvement,

significantly enhancing the model’s robustness. The comparison

of the real images and generated images is shown in Figure 8.
FIGURE 6

This figure illustrates the classification results of multispectral images segmented into small patches by the MGA-UNet model. Each displayed image
contains only a single sample. The two images in the first row represent samples identified as “Citrus disease: HLB” indicated by the red pixel mask
overlays. The two images in the second row represent samples classified as “Healthy,” highlighted by the green pixel mask overlays.
FIGURE 7

This figure demonstrates the direct classification results of large-scale UAV-acquired images using the MGA-UNet model. Trees partially covered
with red pixel areas are identified as “Citrus disease: HLB” even if other regions of the same tree exhibit green pixels. This phenomenon occurs
because, during the early stages of HLB infection, pathological symptoms may not yet manifest uniformly across all leaves of a single tree.
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4 Discussion

The study’s results highlight the substantial benefits of integrating

multispectral imaging with deep learning algorithms for the early

detection of Citrus Huanglongbing (HLB). A comparative analysis

between high-resolution and multispectral images shows that

multispectral images consistently outperform high-resolution

images in key metrics, including mIoU, mPA, Precision, and

Recall. This is especially evident in the identification of diseased

trees. These findings underscore the efficacy of multispectral imaging

in capturing early pathological features of plants. Unlike high-

resolution images, multispectral images offer richer spectral
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information across four bands—Red Edge (RE), Red (R), Near-

Infrared (NIR), and Green (G)—which more effectively highlight

the subtle early indicators of HLB. Consequently, multispectral

imaging significantly enhances the accuracy of HLB detection,

especially in the early stages where symptoms are less pronounced.

Moreover, the application of the Generative Adversarial

Network DCGAN for data augmentation yielded notable

improvements. The DCGAN-generated images increased the

proportion of diseased samples, effectively addressing dataset

imbalance and boosting performance metrics related to the

identification of diseased trees. Compared to traditional data

augmentation techniques, generative models not only diversify
FIGURE 8

This figure presents a comparison between real and generated images. The three images on the left show real images that have undergone color
composition processing, while the three images on the right display images generated by the DCGAN model after being trained on a dataset of real images.
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the dataset but also bolster model robustness, leading to overall

performance enhancements. While the generated images may

introduce slight distortions in fine structures, these do not

significantly impact the model’s performance in plant disease

detection. This suggests that DCGAN holds considerable promise

for overcoming data augmentation challenges in plant recognition.

The MGA-UNet model developed in this study further

advanced image segmentation performance. By incorporating

channel and spatial attention mechanisms into the U-Net

architecture, MGA-UNet more effectively extracts and leverages

detailed information from multispectral images. This improvement

is particularly focused on identifying diseased regions. This

refinement has led to improved segmentation accuracy. The

experimental outcomes demonstrate that the MGA-UNet model

is both applicable and effective for the early detection of HLB.

By integrating multispectral imaging, DCGAN-based data

augmentation, and the MGA-UNet model, this study offers a

robust solution for the early detection of HLB. This approach not

only enhances disease recognition accuracy but also provides

valuable insights for future research in plant disease detection.
5 Conclusions

Citrus Huanglongbing (HLB) poses substantial challenges for

early detection due to its subtle pathological features. In this study,

multispectral images captured by drones were used as the primary

dataset, and an optimized MGA-UNet model was proposed for

image segmentation and recognition. By integrating channel and

spatial attention mechanisms into the skip connections of a U-Net

architecture, the model achieved more effective feature retention

and mapping, leading to superior performance in detecting and

monitoring HLB.

To address the imbalance in the dataset, a Generative

Adversarial Network (DCGAN) was employed to generate

additional HLB-infected samples, thereby improving the

reliability of model training. While DCGAN effectively produced

usable synthetic data, its resolution limitations warrant exploration

of more advanced generative methods or improved hardware for

higher-quality images. Furthermore, although multispectral

imaging demonstrated notable advantages, its cost may limit

large-scale adoption, necessitating a careful balance between

detection accuracy and practicality.

Experimental results showed that the proposed model achieved

an mIoU of 0.89, an mPA of 0.94, a Precision of 0.95, and a Recall of

0.94. These findings underscore the potential of deep learning in

conjunction with drone-acquired multispectral data to facilitate the

early detection and identification of HLB, thereby partially reducing

the reliance on manual inspections.
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