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Introduction: Desertification is a globally recognized ecological issue that poses

severe threats to the environment, economic and social systems. Revegetation is

the primary means to combat desertification, yet the effectiveness of

revegetation practices requires reasonable quantification.

Methods: To identify appropriate planting patterns for revegetation in different

deserts and provide a basis for vegetation reconstruction in deserts, we

conducted a comprehensive survey in the Ulan Buh Desert and the Kubuqi

Desert of the Northern China. Data on vegetation and soil were collected from 54

representative sites, covering both natural and revegetation communities.

Results: The findings revealed that the diversity of herbaceous and woody

species, and soil nutrient content increased after revegetation, in comparison

to adjacent moving sand dunes. Additionally, the species diversity and soil

conditions in revegetation areas, gradually approached those of natural

vegetation communities, indicating a succession towards a state resembling

natural conditions. Variations in the coupling of vegetation-soil systems were

observed among different community types in both deserts. Notably, the

communities dominated by Caragana korshinskii and Artemisia ordosica

exhibited the strongest coupling in the vegetation-soil system, driven primarily

by soil water and nutrients, as well as vegetation growth.

Discussion: Evaluation of vegetation-soil system coupling effect was used to

evaluate the effectiveness of vegetation restoration and species selection in the

wo deserts, which can serve as a reference for vegetation reconstruction and

ecological restoration in desert areas.
KEYWORDS

revegetation, natural vegetation, vegetation-soil system, coupling coordination,
revegetation construction
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1 Introduction

Desertification is an increasingly severe ecological problem

worldwide due to climate change, soil erosion, natural disasters,

and unreasonable human activities (Cao et al., 2009; Yang and Wu,

2010; Odjugo and Isi, 2003; Kar, 2018; Meng et al., 2021). The

vegetation-soil system is a dynamic equilibrium ecosystem based on

the reciprocal effects of vegetation, soil, and the complex

biogeochemical process (Zeng et al., 2006; Chi et al., 2022).

Vegetation-soil system coupling refers to the interactive and

interdependent relationship between vegetation and soil (Wang

et al., 2021). This coupling is fundamental to the functions and

services of ecosystems and is of great significance for the study of

ecological restoration (Ma et al., 2023). Desertification not only

causes the vegetation destruction and soil degradation, but also

weakens the coupling effects between vegetation-soil systems (Fu

et al., 2011). China is also influenced by desertification, which exerts

significant impacts on ecological, economic, and social systems

(Wang et al., 2002; Bao et al., 2017; Zhang and Huisingh, 2018). To

combat desertification, China has initiated a series of key ecological

projects (He et al., 2015; Hu et al., 2021; Zhai et al., 2023).

Numerous studies have focused on the ecological effects of these

projects and paid excessive attention to the impacts of isolated

indicators like vegetation characteristics, while overlooking a

comprehensive assessment that includes the ecosystem health,

biodiversity, and soil quality (Zhang et al., 2016; Dou et al., 2024).

In desert ecosystems, vegetation restoration plays a significant

role in reducing wind erosion and stabilizing the mobility of sandy

soils. Consequently, selecting appropriate plant species is crucial

during the process of vegetation restoration (Zhang et al., 2016). In

order to scientifically quantify the effectiveness of revegetation, it is

necessary to set the adjacent natural communities and highly

degraded moving sand dunes as control. The purpose of this

approach is to assess the ecological restoration effectiveness of

revegetation on the structure of vegetation and soil properties (Li

et al., 2018; Zhou et al., 2023). Building on this foundation, the

present study will conduct a scientific quantitative analysis of the

ecological restoration effects of vegetation restoration in improving

vegetation coverage and soil properties, using adjacent natural plant

communities and highly degraded moving sand dunes as controls.

The common method assessing the effects of revegetation is to

compare changes in vegetation cover, species diversity, soil

properties after revegetation (Courtney et al., 2009). But rarely

consider the coupling effects between them (Zhao et al., 2022). The

traditional methods tend to consider vegetation and soil properties

separately (Pan et al., 2019), but rarely consider the coupling effects

between them (Zhao et al., 2022). Separate analysis of vegetation

and soil considers their respective characteristics and changes

individually, whereas vegetation-soil system coupling analysis

takes into account the interactions between the two subsystems,

enabling more accurate predictions of the ecosystem’s response to

environmental changes. The vegetation-soil system coupling

evaluates the restoration status of both vegetation and soil

(Li et al., 2020; Zhang et al., 2013). Likewise, vegetation-soil

coupling models offer theoretical foundations for ecological
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restoration (Du et al., 2013; Wang et al., 2021; Puyang et al.,

2021). Therefore, understanding evaluation of vegetation-soil

system coupling effect in desert ecosystems provides scientific

evidences for species selection and configuration, and further

ensures the sustainability of ecological restoration.

This study selected the Wulan Buhe Desert and the Kubuqi

Desert as the research areas, with survey points chosen based on the

different vegetation types in the two deserts. These two deserts

exhibit significant spatiotemporal heterogeneity in terms of

geographical location, climatic conditions, dune morphology,

vegetation coverage, and the impacts of human activities (Zhu

et al., 2025). Additionally, different regions of the two deserts are

characterized by various types of vegetation restoration. Therefore,

different vegetation restoration models should be adopted for

revegetation construction and ecological restoration in these two

deserts. Effect value is used to quantify the magnitude of the effect of

an experiment or intervention, describing the average difference

between two or more groups on a specific variable. In this study, we

compared the effect values of revegetation with natural vegetation

and moving sand dunes in the Ulan Buh Desert and Kubuqi Desert

to investigate the influence of revegetation on species diversity and

soil nutrient content. Furthermore, we conducted an investigation

into the vegetation and soil characteristics of different vegetation

types in the two deserts and explored appropriate strategies for

vegetation restoration, with the aim of determining the most

suitable replanting patterns for these two deserts. To achieve

these objectives, we posited the following hypotheses: 1)

Compared to the adjacent moving sand dunes, revegetation

would improve the plant and soil conditions, which were similar

to the adjacent natural vegetation community. 2) Different

community types will exhibit varying degrees of vegetation-soil

system coupling, and the extent of recovery of vegetation and soil

will differ following the planting of different revegetation types.
2 Materials and methods

2.1 The study area

The study area is located at the critical area for mitigating

desertification in the Ulan Buh Desert and Kubuqi Deserts. The

Ulan Buh Desert is located in the middle reaches of the Yellow River

and belongs to a transitional zone from warm-temperate semi-arid to

arid climate (Li et al., 2018). The annual average precipitation is about

140 mm, and the annual average evaporation ranges from 2110 to

2995 mm (Li et al., 2024). The predominant soil type is aeolian sand

(Tian et al., 2019), and the vegetation is dominated by xerophytic

herbaceous plants and shrubs. The Kubuqi Desert is located at the

northern edge of the Ordos Plateau, falling within the temperate arid

and semi-arid regions. The annual precipitation is about 249 mm,

and the annual average evaporation ranges from 2100 to 2700 mm

(Yang et al., 2016; Chen et al., 2022). The predominant soil types are

aeolian sand and gravelly sand (Dong et al., 2020; Sun et al., 2023),

and the vegetation consists of steppe-like desert vegetation dominated

by perennial grasses and small shrubs (Figure 1).
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2.2 Vegetation survey, soil samples
collection and measurement

We collected data from 24 survey plots in the Ulan Buh Desert

and from 30 survey plots in the Kubuqi Desert from July and August

in 2022 and 2023 (Figure 1). In the Ulan Buh Desert, the main survey

line was established along the east-west sand-crossing highway from

Jilantai to Wuhai, where ten survey points were set up. An additional

line extended from Jilantai through Dengkou toWuhai, with fourteen

survey points established along this route. In the Kubuqi Desert, the

main survey line was laid out along the east-west direction of the

Expressway, with branch lines set up in the north-south direction. The

north-south branch line was divided into three regions: east, middle,

and west, with 11, 7, and 12 survey points, respectively. At each survey

point, we established a transect line of 100 to 200 meters. In each

survey site, a nested design was implemented along the transect line,

consisting of three 10 m × 10 m quadrats for moving sand dunes, six

for revegetation, and three for natural woody vegetation. Within each

of these larger woody vegetation quadrats, a smaller 0.5 m × 0.5 m
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quadrat was nested for the purpose of studying herbaceous vegetation.

When survey points were distant from moving sand dunes or lacked

revegetation, only natural vegetation plots were established. In the

Ulan Buh Desert, a total of 99 quadrats were established (N=33 for

revegetation, 57 for natural vegetation, and nine in moving sand

dunes), and in the the Kubuqi Desert, a total of 185 quadrats were

established (98 for revegetation, 60 for natural vegetation, and 27 in

moving sand dunes) (Figure 1; Supplementary Figure S1).

In each woody vegetation quadrat, we recorded the species,

density and cover of woody plants, as well as the planting methods,

row spacing (to evaluate the initial density of revegetation), and

types of revegetation. In each herbaceous quadrat, we counted the

number of species and estimated the vegetation cover. The above-

ground biomass was collected using envelops in each herbaceous

quadrat, and then was dried at 80°C in the laboratory for 48 hours,

finally was weighed. The above-ground biomass was collected using

envelops in each herbaceous quadrat, and then was dried at 80°C in

the laboratory for 48 hours, finally was weighed. For both woody

and herbaceous quadrats, we measured species richness (R) and
FIGURE 1

Location of the study area and distribution of the sampling points. (a) Distribution of sampling points in the Ulan Buh Desert and Kubuqi Deserts (b)
Location of research areas on the map of China.
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calculated the Shannon-Wiener index (H’) and Simpson index (D)

(Whittaker, 1972; Magurran and McGill, 2010; Tuomisto, 2010).

We collected latitude, longitude and altitude data of each

sample plot using a GPS device. Meteorological data for the local

area was obtained from the spatial interpolation dataset of China’s

average meteorological elements using ArcGIS Desktop 10.8

software, based on the latitude and longitude of the sample plots

(Spatial Interpolation Dataset of Average Conditions of Chinese

Meteorological Elements: https://www.resdc.cn/DOI/DOI.aspx?

DOIID=39). The acquired meteorological data mainly includes

annual evaporation, annual average ground temperature, annual

precipitation, annual average atmospheric pressure, annual average

relative humidity, annual sunshine hours, annual average

temperature, and annual average wind speed. We collected soil

samples at nine depths (0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5 m) in the

center of each woody quadrat. We placed the fresh soil into sealed

bags and weighed them in situ. The soil samples were dried at 105°C

for 24 hours and were weighed to get their dry weight in the

laboratory. The gravimetric soil water content at different soil

depths could be calculated. We collected surface (0-5 cm) soil

samples using a 1×10-4 m3 core in each quadrat and measured

soil bulk density in the laboratory. To measure soil saturated water

content, we soaked the soil samples in water for 24 hours and then

weighed them before and after drying at 105°C for 24 hours. We

collected soil samples from 0-20 cm using a 1×10-4 m3 cutting ring

and then divided them into two parts after air-drying. One part was

passed through a 2 mm mesh sieve for measuring soil mechanical

composition using the wet sieve and pipette method. The other part

was passed through a 1 mm sieve to measure soil organic carbon,

total carbon, total nitrogen, total phosphorus content, pH and

conductivity. We tested the pH of a solution with a soil to water

ratio of 1: 2.5 (g/ml) using a pH meter, and measured the electric

conductivity of a solution with a soil to water ratio of 1:5 (g/ml)

using a conductivity meter. Total carbon, total nitrogen, and total

phosphorus contents were measured using an external heating-

potassium dichromate method, a semi-micro Kjeldahl method, a

sodium hydroxide melting-molybdenum antimony anti-

colorimetric method, respectively (Pal, 2013; Haluschak, 2006).
2.3 Data analysis

2.3.1 Comparison of vegetation and
soil characteristics

We calculated effect values (Ln RR) of vegetation and soil

indicators (ratios of indicators in revegetation to those in natural

vegetation, and ratios of indicators in revegetation to those in

moving sand dunes) as follows (Equation 1; Hedges et al., 1999):

Ln RR = Ln (Xt=Xc) = Ln (Xt) − Ln (Xc) (1)

Where Xc represents the value of the indicator of the

revegetation community, Xt represents the indicator of the

natural vegetation community or moving sand dunes.
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We used one-way ANOVA to test the differences in vegetation

and soil indicators among different community types, and used the

Duncan test for multiple comparisons (a=0.05).
2.3.2 Evaluation of vegetation-soil
system coupling

The selection of indicators for vegetation-soil system coupling

evaluation followed the principle of representativeness,

scientificalness and independence. The evaluation system for

vegetation-soil system with different vegetation community types

in Ulan Buh Desert and Kubuqi Desert was divided into a

vegetation subsystem and a soil subsystem, here in seven

indicators were selected in each subsystem, after removing

strongly correlated indicators (Supplementary Figure S2). The

vegetation subsystem was comprised of herbaceous and woody

indicator. The herbaceous indicator selected included herbaceous

abundance, richness, coverage and biomass, as well as the woody

abundance, richness and coverage. The soil subsystem consisted of

soil physical property indicator and soil nutrient indicators, the

former included soil water content, sand, silt and clay contents; the

latter included organic carbon, total carbon and total phosphorus.

Finally, we employed the entropy weight method (Zou et al., 2006)

to determine the weights of vegetation and soil indicators and

constructed an evaluation indicator system for vegetation-soil

coupling (Table 1).

We standardized the vegetation and soil indicators (Equation 2;

Zeng et al., 2006; Guo et al., 2021) using the following formula:

 Ni =

xi−min (xi)
      max (xi)−min (xi)

    (Positiveeffect）

 
max (xi)−xi

max (xi)−min (xi)
            (Negativeeffect）

8>><
>>: (2)

Where Ni is the standardized value of each indicator, xi is the

value of the different indicators. Positive indicators included

herbaceous abundance, richness, coverage, and biomass, woody

abundance, richness, and cover, soil water content, organic carbon,

total carbon, total phosphorus, clay and silt content. Negative

indicators included sand content.

We calculated a comprehensive evaluation indicator of

vegetation and soil as follows (Equations 3, 4; Zeng et al., 2006;

Peng et al., 2011; Zhang et al., 2013; Zhao et al., 2022):

CCE(x) =on
i=1pixi (3)

PCE(y) =on
i=1qiyi (4)

Where CCE is the vegetation evaluation indicator; PCE is the

soil evaluation indicator; pi and xi are the weights and standardized

values corresponding to the i-th indicator in the vegetation

evaluation function, respectively; qi and yi are the weights and

standardized values corresponding to the i-th indicator in the soil

evaluation function, respectively. Higher CCE and PCE values

indicate better vegetation growth status or soil properties.
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We calculated the coupling coordination degree (Cd) of the

vegetation-soil system as follows (Equations 5–7; Zeng et al., 2006;

Peng et al., 2011; Zhang et al., 2013):

Cd =
ffiffiffiffiffiffiffiffiffiffi
C · T

p
(5)

T = aCCE(x) + bPCE(y) (6)

C =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CCE(x) · PCE(y)

(CCE(x) + PCE(y))2

s
(7)

Where Cd is the coupling coordination degree of vegetation-soil

system, which ranges between 0 and 1. The greater the Cd value, the

more harmonious the coupling relationship of vegetation-soil system.

T is the comprehensive harmonic indicator of vegetation-soil system,

which reflects the synergistic effect of vegetation-soil system. C is the

coupling degree of the vegetation-soil system, which ranges between 0

and 1, where C approaches 1, the relationship between vegetation and

soil is more benign. a and b are coefficients of the CCE and PCE

comprehensive evaluation functions, respectively. Because vegetation

and soil both play important roles in ecological restoration, we set a

and b both to 0.5. Finally, we used the coupling results to determine a

reasonable vegetation construction mode (Table 1).

We used redundancy analysis (RDA) to analyze the factors that

influence the coupling indicator, which we analyzed and plotted

with Canoco5.
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3 Results

3.1 The effect values of vegetation and
soil indicators

In the Ulan Buh Desert, we found that revegetation led to an

increase in the abundance, diversity and richness of herbaceous

species, but a decrease in herbaceous biomass and woody

abundance compared to natural vegetation. Similarly, compared

to moving sand dunes, revegetation resulted in higher herbaceous

abundance, richness, coverage and biomass; in addition, the soil

water content in both shallow (0-0.3 m) and deep (0.4-1.5 m) layers

decreased, while soil organic carbon, total nitrogen, total carbon,

silt, clay, and electrical conductivity increased in both natural and

revegetation communities (Figure 2).

In the Kubuqi Desert, revegetation led to lower herbaceous

abundance, richness, diversity cover, and biomass, but higher

woody cover compared to the natural vegetation. There were

higher herbaceous abundance, richness, and diversity, as well as

higher woody abundance and cover in revegetated areas compared

to moving sand dunes. In revegetated areas, the soil organic carbon,

total nitrogen, total carbon, silt, clay contents, and electrical

conductivity were lower than those in natural vegetation areas,

while the organic carbon, total nitrogen, total carbon, clay content,

and electrical conductivity were higher than those in moving sand

dunes (Figure 2).
TABLE 1 Evaluation indicator system and indicator weight of vegetation-soil coupling.

Goal layer Criterion layer

indicator layer

Comprehensive
weight

First
grade

indicators
Weight

Second
grade

indicators
Weight

Evaluation of vegetation-soil
coupling coordination degree

Vegetation comprehensive
evaluation function (CCE)

Herbaceous
indicator

0.5

Abundance 0.3758 0.1879

Richness 0.1388 0.0694

Coverage 0.2183 0.1091

Biomass 0.2671 0.1336

Woody indicator 0.5

Abundance 0.4159 0.2080

Richness 0.1539 0.0770

Coverage 0.4302 0.2151

Soil comprehensive evaluation
function (PCE)

Soil physical
property
indicator

0.75

Soil water content 0.2205 0.1329

Sand 0.3252 0.0690

Silt 0.3764 0.0481

Clay 0.0780 0.2439

Soil
nutrient indicator

0.25

Organic carbon 0.5315 0.2823

Total carbon 0.2762 0.0585

Total phosphorus 0.1923 0.1653
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3.2 Vegetation-soil system coupling of
different community types in two deserts

We found that the natural Caragana korshinskii community,

the Artemisia ordosica community and the Nitraria tangutorum-

Haloxylon ammodendron community exhibited stronger

vegetation-soil system coupling among the natural vegetation

communities in the Ulan Buh Desert, and the coupling degree

values (C) were 0.496, 0.492 and 0.486, respectively. Likewise, the

natural Kalidium foliatum community, N. tangutorum community

and N. tangutorum-H. ammodendron community exhibited better

vegetation-soil system coupling and coordination. Their respective

coupling coordination degree values (Cd) were 0.594, 0.515, and

0.471. In the revegetation community, the vegetation-soil system

coupling was highest in the H. ammodendron, followed by the

Hedysarum scoparium community, and the worst in the C.

korshinskii community. Their respective C values were 0.495,

0.469 and 0.440. The vegetation-soil system coupling

coordination state was highest in the C. korshinskii and H.

ammodendron communities, but lowest in the H. scoparium, their

Cd values were 0.494, 0.412, and 0.324, respectively. Compared to

the natural C. korshinskii community, the coupling relationship

between vegetation and soil of the revegetation C. korshinskii
Frontiers in Plant Science 06
community was improved, and the vegetation-soil system also

showed a good coupling state (Table 2).

The coupling between vegetation communities and soil was

higher in natural vegetation communities of the Kubuqi Desert.

This included higher C values of natural Achnatherum splendens,

Caragana tibetana, and A. ordosica communities were 0.500, 0.499

and 0.498, respectively. Likewise, the natural N. tangutorum-

Tamarix chinensis, C. tibetana and A. ordosica communities had

higher coupling coordination states of the vegetation-soil system,

with high Cd values of 0.753, 0.694 and 0.682 respectively (Table 2).

In revegetated areas, the vegetation-soil system coupling in the A.

ordosica, C. korshinskii, and Populus przewalskii-Salix psammophila

revegetation communities was relatively higher, and the C values of

them were 0.500, 0.498, and 0.490, respectively. The revegetated

communities of A. ordosica, C. tibetana and P. przewalskii had the

relatively higher vegetation-soil system coupling coordination

states, with Cd values of 0.763, 0.612, and 0.484, respectively. The

vegetation-soil system coupling and its coordination states of

revegetated A. ordosica community were higher than those of

natural A. ordosica community (Table 2).

We found that the first axis (RDA1) and the second axis

(RDA2) explained 56.2% and 17.5% of the influence of

environmental factors on the vegetation-soil system coupling,
FIGURE 2

Vegetation and soil indicator effect values of different community types in Ulan Buh Desert (a) and Kubuqi Desert (b). * represents significant effect
size at p=0.05 level. (Effect value>0 indicates an increase in the indicator, and effect value<0 indicates a decrease in the indicator).
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respectively. Specifically, we found that vegetation-soil system had

strong correlations with total nitrogen, total carbon, the cover,

abundance, richness, and biomass of herbaceous species, as well as

woody cover and richness, while it was negatively correlated with

soil pH, sand content, wind speed and temperature. Furthermore,

water status, vegetation growth and soil nutrient contents also

influence the vegetation-soil system coupling (Figure 3).
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3.3 Identification of optimal revegetation
species in Ulan Buh Desert and
Kubuqi Desert

We compared vegetation and soil indicators, and vegetation-

soil system coupling to select the proper revegetation species and

configurations. In the Ulan Buh Desert, compared to the natural C.
TABLE 2 Coordination of vegetation-soil system coupling in different desert community types.

Desert Area Community category CCE PCE C T Cd CCE/PCE

Ulan Buh Desert

Natural

Pha 0.380 0.135 0.440 0.258 0.337 2.820

Nit 0.260 1.082 0.395 0.671 0.515 0.240

Kaf 0.308 1.613 0.367 0.960 0.594 0.191

Amm 0.259 0.596 0.460 0.428 0.443 0.435

Aro 0.259 0.372 0.492 0.315 0.394 0.695

Cos 0.557 0.211 0.447 0.384 0.414 2.635

Aro-Ars 0.251 0.076 0.423 0.164 0.263 3.293

Nit- Haa 0.350 0.563 0.486 0.457 0.471 0.621

Cak 0.436 0.333 0.496 0.384 0.436 1.309

Revegetation

Haa 0.296 0.389 0.495 0.342 0.412 0.759

Cos 0.302 0.147 0.469 0.224 0.324 2.055

Cak 0.292 0.817 0.440 0.554 0.494 0.357

Moving sand dunes Moving sand dune 0.004 0.159 0.153 0.082 0.112 0.025

Kubuqi Desert

Natural

Aro-Nit 0.557 1.012 0.479 0.784 0.613 0.551

Aro 0.828 0.692 0.498 0.760 0.615 1.197

Krc 0.527 0.960 0.478 0.744 0.596 0.549

Cab 0.836 0.702 0.498 0.769 0.619 1.191

Cat 0.907 1.023 0.499 0.965 0.694 0.886

Nit-Tac 1.021 1.260 0.497 1.140 0.753 0.811

Nes 0.939 0.920 0.500 0.930 0.682 1.021

Aro-Cof 1.005 0.287 0.416 0.646 0.518 3.498

Cof 0.751 0.429 0.481 0.590 0.533 1.750

Revegetation

Cof 0.739 0.284 0.448 0.511 0.478 2.606

Haa 0.277 0.417 0.490 0.347 0.412 0.664

Cam 0.532 0.162 0.423 0.347 0.383 3.279

Sac 0.559 0.276 0.471 0.418 0.443 2.024

Aro 1.140 1.192 0.500 1.166 0.763 0.956

Pop 0.594 0.369 0.486 0.481 0.484 1.608

Pop-Sac 0.256 0.172 0.490 0.214 0.324 1.485

Cak 0.824 0.675 0.498 0.750 0.611 1.220

Moving sand dunes Moving sand dunes 0.145 0.231 0.487 0.188 0.302 0.626
Pha, Phragmites australis; Nit, Nitraria tangutorum; Kaf, Kalidium foliatum; Amm, Ammopiptanthus mongolicus; Aro, Artemisia ordosica; Cos, Corethrodendron scoparium; Ars, Artemisia
sieversiana; Haa, Haloxylon ammodendron; Cak, Caragana korshinskii; Krc, Krascheninnikovia ceratoides; Cab, Caragana brachypoda; Cat, Caragana tibetica; Tac, Tamarix chinensis; Nes,
Neotrinia splendens; Cof, Corethrodendron fruticosum; Cam, Calligonum mongolicum; Sac, Salix cheilophila; Pop, Populus przewalskii.
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korshinskii community, the woody abundance, richness, and

coverage of revegetated C. korshinskii community increased by

2.90%, 18.4%, and 15.8%, respectively; the soil organic carbon,

total nitrogen, total carbon, silt, and clay contents increased by

39.5%, 31.3%, 30.7%, 70.8%, and 61.3%, respectively; the

vegetation-soil system coupling also increased; while the sand

contents decreased by 20.7%. Therefore, in the Ulan Buh Desert,

we recommend two replanting species and their densities: C.

korshinskii with 18-44 individuals per 100 m-2, and H.

ammodendron with 24-30 individuals per 100 m-2 (Table 2;

Supplementary Table S1).

In the Kubuqi Desert, compared to the natural A. ordosica

community, the herbaceous abundance, woody abundance,

herbaceous coverage, and woody coverage of the revegetated A.

ordosica community increased by 3.63%, 72.2%, 18.6%, 58.5%,

respectively; the soil organic carbon, total nitrogen, total carbon,

total phosphorus, silt, and clay contents increased by 57.7%, 27.6%,

10.7%, 21.7%, 27.7%, and 22.5%, respectively; the vegetation-soil

system coupling also increased; while the sand content decreased by

4.83%. As a result, in the Kubuqi Desert, we recommend two

replanting species and their densities: A. ordosica with 60-70

individuals per 100 m-2 and C. korshinskii with 20-45 individuals

per 100 m-2 (Table 2; Supplementary Table S1).
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4 Discussion

4.1 The selection and establishment of
revegetation ameliorate the conditions for
plant survival

Consistent with our first hypothesis, plant and soil conditions

improved compared to those of the moving sand dunes and became

similar to those in natural vegetation areas following revegetation.

This study finds that herbaceous species diversity significantly

increased comparing to adjacent natural vegetation communities

after the establishment of revegetation in the Ulan Buh Desert,

whereas herbaceous biomass, woody richness, and soil water

content significantly decreased. This may be due to shrub

planting effectively stabilizing the surface of sandy soil and

improving soil nutrient conditions, thus providing a suitable

environment for the settlement and germination of herbaceous

plant seeds (Angers and Caron,1998; Miao et al., 2015; Zhong et al.,

2018). Meanwhile, the root turnover of woody plants also provides

essential nutrients for the growth of herbaceous plants. Therefore,

the abundance, richness, and diversity indices of herbaceous plants

have increased (An, 2019). However, the growth of woody species

also competed for some soil nutrients and water resources, leading

to the reduction in the herbaceous biomass and woody richness

(Rossatto et al., 2014). In addition, the root water uptake of woody

vegetation resulted in the decline soil water content (Pellissier et al.,

2008). The establishment of revegetation in the Kubuqi Desert,

herbaceous indicators, soil nutrients, silt, and clay contents all

declined when compared to natural vegetation communities,

whereas woody abundance increased. These might be illustrated

that the introduction of woody vegetation increased the abundance

of woody species. Meanwhile, the competition for nutrients and

water among these woody plants was relatively intensive,

attenuating the resource availability and thus inhibiting the

growth of original herbaceous plants (Cui et al., 2019; Zheng, 2022).

In the present study, we found that the establishment of

revegetation significantly increased the diversity of herbaceous

plants, biomass, and soil nutrients, which is attributed to the

woody vegetation creating more suitable growth conditions for

herbaceous plants and increasing the content of silt and clay in the

soil, thereby improving soil structure and stability (Ou et al., 2020;

Scotton and Andreatta, 2021; Kumar et al., 2022). Vegetation

restoration enhanced soil organic matter content through the

input of roots and residues, which in turn increased soil fertility,

beneficial for the growth of woody plants, and reduced wind

erosion, providing a more stable growth environment for plants

and promoting their reproduction and spread (Lajtha et al., 2014;

Mitchell et al., 2018; Zhang et al., 2020; Zhu et al., 2010; Mensah,

2015; Maiti et al., 2021; Luo et al., 2020). Meanwhile, vegetation

restoration improved the physical, chemical, and biological

characteristics of the soil, increased soil nutrient content and

water retention capacity, and enhanced species diversity (Xu

et al., 2010; Chen et al., 2023; Zhou et al., 2023; Sheoran et al.,

2010; Ploughe et al., 2021). In the early stages of vegetation

restoration, effective soil coverage reduced water evaporation and
FIGURE 3

Redundancy analysis of vegetation-soil system coupling results and
environmental factors. LON, Longitude; LAT, Latitude; ALT, Altitude
(m); EVP, Annual evaporation(mm); GST, Average annual ground
temperature(°C); PRE, Annual precipitation(mm); PRS, Annual mean
air pressure(hPa); RHU, Average annual relative humidity(%); SSD,
Sunshine hours per year(h); TEM, Average annual temperature(°C);
WIN, Average annual wind speed(m/s); OC, Organic carbon(g/kg);
TN, Total nitrogen(g/kg); TC, Total carbon(g/kg); TP, Total
phosphorus(g/kg); Cond, Conductivity(us/cm); SAN, Sand(%); SIL, Silt
(%); CLA, Clay(%); BUD, Bulk density(g/cm3); SWS, Soil saturated
water content(%); HA, Herbaceous abundance; HR, Herbaceous
richness; HC, Herbaceous coverage(%); HB, Herbaceous biomass(g/
m2); WA, Woody abundance; WR, Woody richness; WC, Woody
coverage(%); SSC, Shallow soil moisture content; DSC, Deep soil
moisture content.
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soil erosion, helping to maintain soil nutrients (Li et al., 2004; Zhang

et al., 2018). Overall, the vegetation subsystem, soil subsystem, and

the vegetation-soil system coupling all increased after restoration,

and these improvements collectively promoted the favorable status

and interaction of the vegetation and soil systems (Li and Liber,

2018; Guo et al., 2021).

Our findings provided scientific evidence for windbreak and

sand-stabilization in these two deserts, and gave important

guidance to future vegetation restoration in deserts. Traditionally,

the success of restoration was determined by monitoring plant

cover, individual counts, and soil characteristics after revegetation

(Cudjoe, 2011; Song, 2018) as well as by selecting suitable species by

greenhouse, field experiments, and seedling survival tests (Jusaitis

and Pillman, 1997; Gastauer et al., 2020). Here, we considered not

only the vegetation and soil systems, but also the vegetation-soil

coupling in different vegetation types to select the most suitable

revegetation strategy.
4.2 Coupling coordination of vegetation-
soil system in two deserts

Consistent with our second hypothesis, we found that different

community types exhibited variations in the vegetation-soil system

coupling in these two deserts, which indicted that species selection

was extremely important for the sustainability ecological restoration

in deserts. The consistence of the changes between vegetation and

soil indicators elucidated that plant growth and soil properties were

closely correlated. There is a feedback mechanism between

vegetation and soil. The plants exert a huge influence on soil

conditions, which in turn support plant growth (Bever et al.,

1997; Ehrenfeld et al., 2005; Miki, 2012; Maiti and Ghosh, 2020).

Vegetation alters soil properties through physical and chemical

processes during the restoration process (Cao et al., 2008; Ghestem

et al., 2011; Wu et al., 2019). Meanwhile, vegetation roots increase

soil porosity, and the decomposition of plant material adds organic

matter to soil (Wu et al., 2016). In a word, different community

types have varying impacts on soil properties, leading to disparities

in the vegetation-soil systems coupling of different community

types. The improvements of soil properties and vegetation growth

enhance soil aggregate stability and resistance to wind erosion (Dou

et al., 2020), thereby creating a positive feedback loop within the

vegetation-soil system.

In this study, we found that soil nutrient content, herbaceous and

woody indicators were positively correlated with the coupling degree

of the vegetation-soil system. These were consistent with our

hypothesis that the vegetation-soil system coupling was mainly

affected by vegetation and soil characteristics. Generally, superior

soil conditions promote plant growth, which in turn improves soil

structure and nutrient cycling, thus forming a positive feedback loop.

The mutual promotion and dependence between vegetation and soil

constituted a well-coupled ecosystem, demonstrating a positive

coupling state between vegetation-soil systems (Van der Putten

et al., 2013; Hobbie, 2015; Lehman et al., 2015; Wang et al., 2020;
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Aqeel et al., 2023). Simultaneously, this feedback loop suggests that

healthy soil and abundant vegetation maintain ecosystem stability

and functionality (Powlson et al., 2011; Mensah, 2015). Our findings

indicated that unsuitable soil pH, high sand content, high wind speed,

and high temperature adversely influenced plant growth and soil

conditions (Zuo et al., 2012). These factors can also lead to soil

degradation, nutrient loss, and reduce water availability, which in

turn reduce plant growth and survival. The plant degeneration

subsequently reduced vegetation cover and richness, exacerbating

soil degradation (Duniway et al., 2019; Huang and Hartemink, 2020;

Zhang et al., 2021; Ferreira et al., 2022). Taken together, coupling

coordination of vegetation-soil system is crucial for maintaining the

stability of ecosystems after the establishment of revegetation, as it

directly affects the normal functioning of ecological processes and the

long-term health of the ecosystem.
5 Conclusion

In our study, revegetation significantly improved the vegetation

and soil conditions in the Ulan Buh Desert and Kubuqi Desert of

Northern China. Water conditions, vegetation growth, and soil

nutrients all influenced the vegetation-soil system coupling. We

propose a method could be used for evaluating the effects of

different revegetation types on the vegetation subsystem, soil

subsystem, and the vegetation-soil system coupling. This method

can select optimum plant species and its density, as well as evaluate

the effects of revegetation on global desertification prevention. Our

findings provide important guidance for vegetation reconstruction

and ecological restoration in deserts.
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