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Incorporating gene expression
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Tanya Phongkham1, Adam Norman4, Russell Eastwood4,
Eric Stone2 and Shannon Dillon1

1Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO),
Canberra, ACT, Australia, 2Biology Data Science Institute (BDSI), College of Science, Australian
National University, Canberra, ACT, Australia, 3Environment, Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Canberra, ACT, Australia, 4Australian Grain Technologies, Roseworthy,
SA, Australia
Introduction: The adoption of novel molecular strategies such as genomic

selection (GS) in crop breeding have been key to maintaining rates of genetic

gain through increased efficiency and shortening the cycle of evaluation relative

to conventional selection. In the search for improved methodologies that

incorporate novel sources of variation for the assessment of genetic merit, GS

remains a focus of crop breeding research globally. Here we explored the role

transcriptome data could play in enhancing GS in wheat.

Methods: Across 286 wheat lines, we integrated phenotype and multi-omic data

from controlled environment and field experiments including ca. 40K single

nucleotide polymorphisms (SNP), abundance data for ca. 50K transcripts as well

as meta-data (e.g. categorical environments) to predict individual genetic merit

for two agronomic traits, flowering time and height. We evaluated the

performance of different model scenarios based on linear (GBLUP) and

Gaussian/nonlinear (RKHS) regression in the Bayesian analytical framework.

These models explored the relative contributions of different combinations of

additive genomic (G), transcriptomic (T) and environment (E), with and without

considering non-additive epistasis, dominance and genotype by environment

(G × E) random effects.

Results: In controlled environments, where traitsweremeasured under contrasting

daylength regimes (long and short days), transcriptome abundance outperformed

other random effects when considered independently, while the model combining

SNP, environment and G × Emarginally outperformed the transcriptome. The best

performing model for prediction of both flowering and height combined all data

types, where the GBLUP framework showed slightly better performance overall

compared with RKHS across all tests. Under field conditions, we found that models

combining all variables were superior using the RKHS framework. However, the

relative contribution of the transcriptome was reduced.

Discussion: Our results show there is a predictive advantage to direct inclusion of

the transcriptome for genomic evaluation in wheat breeding for traits where G × E
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is a factor. However, the complexity and cost of generating transcriptome data are

likely to limit its feasibility for commercial breeding at this stage. We demonstrate

that combining less costly environmental covariates with conventional genomic

data provides a practical alternative with similar gains to the transcriptome when

environments are well characterised.
KEYWORDS

Bayesian analysis, environmental factor, genomic prediction, omics transcriptome, wheat
1 Introduction

Over the last decade, genomic selection (GS, Meuwissen et al.,

2001) has driven significant advancements in animal and plant

breeding by allowing breeders to efficiently identify and select

individuals with the highest genetic merit in relation to a trait of

interest. These approaches work best for highly heritable traits that

are complex in their genetic control. GS leverages genomic

information to predict the genomic breeding value (GEBVs) of

individuals within a population. These predictions are typically

derived from high-density single-nucleotide polymorphism (SNP)

markers and observed training data using a statistical model. This

model fits the relationship between genotypes (SNP) and

phenotypic trait(s) based on training population data and

partitions the contribution of different genomic effects (e.g.,

genomic additive and nonadditive effects, including epistasis and

dominance) on trait variance. Traditional statistical approaches for

GS include genomic best linear unbiased prediction (GBLUP, Clark

and van der Werf, 2013) and reproducing kernel Hilbert space

regression (RKHS, see, e.g., Gianola and Van Kaam, 2008), a

nonlinear Gaussian kernel regression model. GBLUP, based on

the linear mixed model, typically uses genomic SNP markers to

capture genomic effects from well-defined fixed and random

components (Mardia et al., 2024) and is often considered a gold-

standard for GS. Due to its nonlinearity, RKHK can effectively

capture complex genomic effects from both low- and high-order

perspectives, e.g., Heffner et al. (2009).

The potential for other omics data types (e.g., transcriptome,

proteome, metabolome) to improve the accuracy of GS in crops has

recently gained attention (Li et al., 2019). These biological data

layers function between the genome and phenotype expression and

can be serve as molecular proxies for phenotype, or

endophenotypes (Te Pas et al., 2017). Some studies have

demonstrated the value of integrating omics data through prior

analysis to elucidate the biological mechanisms driving phenotype

variation, thereby informing which genome regions receive greater

attention in GS models, such as by weighting gene-based markers

(Fang et al., 2017; Ye et al., 2020). This approach relies on detailed

experimental work and an in-depth understanding of trait biology

and genetics to guide model development, but it carries the risk that

biases in interpretation may be propagated in predictions.
02
A data-driven alternative is to include multi-omics data directly

in the predictive framework. Typically, GS is conducted with sparse

genomic SNP data, leveraging linkage to capture global genomic

variation. Alternate data layers, such as the transcriptome, may offer

one avenue to improve the density of biologically relevant markers

by focusing on functionally active regions of the genome. It has also

been proposed that omics data layers like the transcriptome could

improve GS predictions by better capturing computationally elusive

epistatic interactions. Computing higher-order interactions among

tens of thousands to millions of SNP markers rapidly becomes

intractable. The transcriptome provides a biologically informed

form of dimensionality reduction, as epistatic interactions among

multiple genomic loci may collectively influence transcript

abundance (Li et al., 2019). In a mechanistic sense, the

transcriptome functions between the genome and phenotype,

indirectly capturing both genetics (G) and environmental (E)

effects, as well as their interactions (G × E). When G × E

significantly mediates trait expression, incorporating transcriptome

information provides one avenue to capture these dynamics in

prediction frameworks, particularly in cases where environmental

effects are poorly characterised.

The majority of studies investigating the utility of

transcriptomes in GS have been conducted in maize (Frisch et al.,

2009; Fu et al., 2011; Guo et al., 2016; Zenke-Philippi et al., 2017; Xu

et al., 2017; Schrag et al., 2018; Westhues et al., 2017; Wang et al.,

2019; Azodi et al., 2019). These studies largely illustrate that the

transcriptome provides equal or better prediction accuracy than the

genome alone. By combining additional omic strata, prediction

accuracy can often be improved further, with performance varying

slightly depending on the choice of prediction algorithm. However,

there are exceptions: for example, Xu et al. (2017) found that

genome SNP data were better predictors of yield traits (e.g., ear

length, weight) than transcriptome or metabolome data layers in

maize. This result potentially points to the opportunistic use of

omics data, in which the tissue and the time point for sample

collection (immature seed) were not optimised to predict yield traits

in the field at maturity. This highlights a significant challenge in

implementing large-scale transcriptome studies for trait prediction,

where careful factoring of temporal, developmental, and

environmental cues in the sampling of endophenotypes is needed.

Furthermore, in applied settings, integrating omics data collected in
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the field for GS will be desirable, though this challenge is

exacerbated by greater temporal environmental variability.

Despite being a potentially important question to resolve, few

studies to date have explored the use of endophenotypes under

field conditions for GS applications, including feasibility in

commercial breeding programs, suggesting that more work is

needed across a broader range of crops. While numerous studies

have focused on maize, none have examined wheat. Significantly,

the application of multi-omics for GS in wheat, an important staple

crop in Australia and globally, has yet to be explored.

Wheat productivity has been maximised by optimising

flowering time to match local climates through genetic and

environmental selection (Reynolds et al., 2012; Hyles et al., 2020).

This involves understanding genetic and environmental (G × E)

interactions, some of which are well-characterised (Crossa et al.,

2021; Tolhurst et al., 2022). Flowering time in wheat could serve as a

model for studying genomic, endophenomic, and environmental

influences on trait variation. As a deterministic trait, its molecular

regulation is established early in development, with detectable

expression patterns before floral transition (VanGessel et al.,

2022; Shi et al., 2019). This makes flowering a valuable platform

for exploring whether early-stage endophenotypes can predict later

developmental traits, facilitating breeding efficiency. Environments

experienced at all growth stages can shift the variation in phenology

via G × E. Thus, another important question is the extent to which

such variation impacts the efficacy of endophenotypes for GS in the

field relative to static conditions in controlled environments. This

will be particularly relevant for broad-acre, dryland crops such as

wheat. Lastly, given that endophenotypes are an expression of

underlying genetics and environment, something that has

received less attention in the literature is whether they can be

more efficiently represented by robustly capturing G, epistasis, and

G × E interactions in prediction frameworks.

This study evaluates two widely used genomic selection

approaches to predict agronomic traits in wheat using a diverse

wheat panel and data collected in both field and controlled

environments. Specifically, we use a linear mixed model, GBLUP,

as a benchmark to compare with a nonlinear Gaussian kernel

regression (RKHS) under the Bayesian framework and compare

different model scenarios designed to test the relative merits of

applying different combinations of predictor variables: additive

genomic (G), transcriptomic (T), and environmental (E)

covariates, with and without considering nonadditive random

genomic effects (epistasis and dominant) and G × E. We highlight

the value of including transcriptome for prediction and its potential

for application in wheat breeding. We also consider challenges

associated with field-based transcriptome-wide experiments,

including the importance of choosing the appropriate

endophenotype tissue and timing of sampling in settings where

the environment changes throughout plant development.

Considering these limitations and the greater cost of data

generation, we ask whether the inclusion of the transcriptome is

feasible for commercial breeding and explore the role of lower-cost

alternatives, such as including G × E, in supporting improvements

for GS.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Data and experiments

This study used the OzWheat diversity panel, a collection of 286

wheat lines that includes land races and progenitors of early

Australian varieties, additional founders that emerged through the

Green Revolution, and a larger number of modern Australian elite

varieties (Hyles et al., 2024; Dillon et al., 2025). The 286 selected

wheat lines (Triticum aestivum) from the whole panel (ca. 600

lines) were used in controlled environments. Across field

experiments, there were slight variations in which of the 286 lines

were used, depending on the quantities of seed available at the time

of sowing.
2.1.1 Controlled environment experiments
All data collected in controlled environments were reported in

detail by Dillon et al. (2025). In brief, panel genotypes were grown

under contrasting “long” (16 h light) and “short” (8 h light)

photoperiods in controlled-environment growth chambers

(PGC20 Conviron®, Winnipeg, Canada). For each variety, there

were six biological replicates in a randomised complete block

experiment design, all of which were analysed. Panel genotypes

were also grown under contrasting “long” (12 h light) and “short” (8

h light) photoperiods in a double-coated plastic growth house with

temperature control in Canberra.

2.1.1.1 Trait data

Plants were subject to twice-weekly assessments to detect

flowering. This was based on plants having reached stage Z61

(the Zadoks stage, Zadoks et al., 1974), or “anthesis”, measured in

days after sowing and marked by the extrusion of anthers from the

spikelets. The height (cm) of each plant was measured at maturity

and included the total above-ground stem length plus the total spike

length. Both of these traits are highly heritable with strong genetic

control and, in the case of flowering, exhibit strong environmental

and G × E interactions with photoperiod variation.

2.1.1.2 Transcriptome data

The crown plus coleoptile was harvested at the two-leaf stage

(Z12) from all seedlings grown in the cabinet experiment, which

were immediately stored in prelabelled tubes and frozen in liquid

nitrogen. Samples were subsequently transferred to − 80°C for long-

term storage. Sample collection was timed to occur over the 2 h

leading up to midday in each treatment (long and short day

lengths). Cabinet time of day was staggered by 2 h between

treatments to allow for both treatments to be sampled on the

same day. Ribonucleic acid (RNA) was extracted from entire

frozen tissue sampled from a single biological replicate of each

panel variety, and libraries were prepared for RNA-seq. Sequenced

reads were quality-checked, trimmed, and mapped against the

Chinese Spring reference coding sequence v1.0 using the Trinity

package (Haas et al., 2013), for the estimation of expression

abundance for 44,054 coding genes.
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2.1.1.3 Genome SNP data

SNP data were obtained from two sources. Trimmed paired-end

sequence reads for each sample were merged across treatments and

aligned to the Chinese Spring coding sequence (CDS) reference v1.0

(IWGSC, 2018) using BWA-MEM (Li, 2013, settings), and SNP

variants were called using GATK3.7 haplotype caller as described by

Dillon et al. (2025), yielding ca. 12,000 SNP markers. These were

combined with ca. 21,000 SNPs from the 90,000 Illumina Infinium

SNP array (Wang et al., 2014) to make up a total set of 33,174 SNP

markers for downstream analysis.

2.1.2 Field experiments
In total four field experiments were conducted at the CSIRO

Ginninderra Experimental Station (GES) near Canberra in 2018

(35°11′59″S 149°04′48″E) and 2019 (35°10′58″S 149°03′30″E), and
at the Australian Grain Technologies (AGT) breeding site, Kabinga

near Wagga Wagga in 2018 (35°03′28″S 147°02′44″E) and 2019

(35°03′29″S 147°02′51″E), as previously described by Hyles et al.

(2024). Two replicates of each line were sown in a randomised

complete block design at each site (n = 260 at Wagga, n = 280 in

Canberra). Experiments were sown at GES on the 5th of June and

30th of April, and on the 25th of May and 28th of May at Kabinga in

2018 and 2019, respectively. In Canberra, each plot comprised eight

rows with 18 cm spacing and a length of five linear metres. At

Wagga Wagga, plots comprised two rows only, with total plot

dimensions of 0.75 linear metre × 2.5 linear metres. Environmental

covariates were not used to characterise experiments in our analysis;

rather, we treated the site as a categorical variable in our models.

Nevertheless, environmental conditions varied significantly

between our chosen locations. Canberra was consistently cooler

throughout the growing season compared to Wagga Wagga during

the years our experiments were conducted, as shown in Figure 1.

The sites are similar in terms of latitude and, hence, photoperiod

during the growing season.

2.1.2.1 Trait data

For each plot, we obtained estimates of the date to heading (Z51,

the date when 50% of plants in the plot had spikes fully emerged

from the boot), with the exception of WaggaWagga 2019, where the

heading date was only obtained from a single replicate block. Height

(cm) at maturity was measured for three representative plants per

plot and included the total aboveground stem length and the total

spike length. Both traits are highly heritable with strong genetic

control, and in the case of flowering, exhibit strong G × E

interactions with thermal and vernal accumulation. The same

technique for trait data collection was used as described by Hyles

et al. (2024).

2.1.2.2 Transcriptome data

The crown plus coleoptile was harvested at the Z12 from two

representative seedlings per field plot in the first block. The samples

were immediately stored in prelabelled tubes, frozen in liquid

nitrogen, and stored on dry ice for transport back to the

laboratory. They were subsequently transferred to − 80°C for

long-term storage. Sample collection was timed to occur over the
Frontiers in Plant Science 04
2 h leading up to midday. RNA was extracted from frozen tissue

using the Maxwell® RSC Plant automated extraction system

following the manufacturer’s instructions (Promega, Australia,

catalogue number AS1500), and quality was checked according to

the method described above. RNA libraries were generated using

the method of Wang et al. (2014) with modifications. The same

method was used to collect the transcriptome data as described in

Dillon et al. (2025). The multiplexing design used 384 polymerase

chain reaction (PCR) primer combinations to introduce the dual-

end 8-bp index sequence to the final library product using the

TruSeq backbone, which was compatible with the Illumina Novaseq

6000 sequencing platform. Libraries from each experiment were

sequenced on one lane of a Novaseq 6000 S4 flow cell. Using the

same workflow as described above for the controlled environment

experiments, the abundance of 70,606 coding genes was obtained

from the sequence data and represented as a sparse matrix for

downstream analysis. The SNP data used in combination with the

field trait data are the same as those described above for the

controlled environment experiments.
2.2 Statistical models for genomic
selection and prediction

2.2.1 GBLUP
The conventional genomic best linear unbiased prediction

(GBLUP) model only considers the genomic additive random

effect, additive random effect with a simple expression as follows:

y = m1 + ɡ + e , (1)

where y is the trait of interest, m is a n� 1 vector that describes

the fixed effect, the noise term e ∼ N (0, Il�ls 2
e ). We have the

genomic random effect ɡ = (ɡ1,ɡ2,⋯,ɡl)
T ∼ N (0,s 2

ɡG), which

follows a multivariate Gaussian distribution (MVN) with zero

mean and a covariance matrix defined as the product of genomic

variance s2
ɡ and the genomic relationship matrix (GRM), G

(VanRaden, 2008; Casella and Berger, 2024), representing the

covariance between pairwise wheat lines (genotype). We use a

method proposed by Endelman and Jannink (2012) to estimate

GRM via the linear kernel, G = WWT

2o
k

pk(1 − pk)
where W is the
cantered genotype matrix, with Wik = Xik − 2pk, k = 1,2,···,m. The

matrix X is a l × m matrix containing genomic SNP markers for l

individual lines and m biallelic (AA, AB, and BB) SNP markers

coded as [−1,0,1] or [0,1,2] for each line. The allele frequency pk is

given by pk = (2l)(−1)ol
i=1Xik and is calculated from DNA SNP

sequences for each individual line (see Müller et al., 2015). This

setting ensures that the proper scaling of the diagonal element of the

estimated GAM is equal to 1 + f, where f is the inbreeding coefficient

of the current population of interest. When n ≠ l, meaning the

number of trait observations does not match the number of

individual lines, an incidence matrix Zg (Li et al., 2019) (0

absence and 1 presence) can be introduced, such that g ∼ N (0,s 2
g

ZgGZ
T
g ), to ensure that the genotypes relate to the phenotype
frontiersin.org

https://doi.org/10.3389/fpls.2025.1506434
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1506434
observations. For example, suppose G is a 3 × 3 GRM that describes

correlations between three individual lines, and we have 10 trait

observations: five from the first line, three from the second line, and

two from the third line, then we have an incidence matrix ZT
g with

the dimension 3 × 10 given by

ZT
ɡ =      

1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1

:

Nonadditive genomic random effects include epistasis (or gene-

by-gene, G # G) and dominant (A). Epistasis refers to gene–gene

interactions between loci and can appear in biallelic and/or high

orders. Epistasis has been reported to modify phenotypic traits in

crops and may offer advantages for GS, as noted by Doust et al.
Frontiers in Plant Science 05
(2014). In contrast, the dominant effect describes interactions

between alleles at the same locus and typically refers to

heterozygous alleles (AB). To analyse the dominant effect of the

biallelic SNP markers, we can encode the SNP markers as 1 (AA,

BB) and 0 (AB).

To integrate nonadditive genomic random effects with the additive,

the traditional GBLUP model in Equation 1 can be extended by

y = m1 + g + gep + ga + e , (2)

Where g1 is the genetic additive random effects as g in Equation

1, g2 stands for the epistasis, and ga represents the dominant effect.

Due to the property of epsitasis, we can assume gep follows a

Gaussian distribution with zero means and a product of the linear

kernel G, that is, g ∼ N (0,s 2
epG#G), where G # G denotes the

epistatic relationship matrix calculated using the Hadamard
B

A

FIGURE 1

Means of maximum (A) and minimum (B) temperatures from five different field trials in Canberra and Wagga Wagga over four different years
between 2017 and 2020.
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product between the GRM (Henderson, 1985; Jiang and Reif, 2015),

and s 2
ep is the epistasis variance. The dominant random effect ga ∼

N (0,s 2
aA) follows a MNV with zero means and covariance derived

from the dominant relation matrix A and the variance s2
a . If n ≠ l,

the same incidence matrix Zg can be introduced to each random

effect in Equation 2.

Li et al. (2019) extended the GBLUP model to a GTBLUPmodel

in Equation 3 by integrating omics transcriptome (T) data using the

mathematical model below

y = m1 + g + t + e , (3)

Where the transcriptome effect is indicated by t, which can be

assumed to follow aMVN, t ∼ N (0,s 2
t ZtTZ

T
t ) as g, Zt is an incidence

matrix. The corresponding n × n variance–covariance matrix T is a

linear kernel calculated from normalised transcriptome data.

The influence of gene-by-environment (G × E) interactions in

crops has been studied in recent decades (Doust et al., 2014; Jarquin

et al., 2014; Bandeira e Sousa et al., 2017; Lopez-Cruz et al., 2015). G

× E interactions refer to certain situations in which the effects of a

relative allele vary across environments. It has been claimed to have

a strong effect on some visible traits, such as branching and seed size

(Sadras and Slafer, 2012). In this paper, we analyse two agronomic

traits in wheat—height and flowering time—that are affected by

multiple random effects introduced earlier. We thus extend the

model in Equation 3 by incorporating G × E,

y = m1 + g + t + gE + e , (4)

Where gE is the random effect of GxE interactions and gE ∼
N (0,s 2

gEZgGZ
T
g ∘ZEZ

T
E ), where ZE is the incidence matrix for the

effects of environments on the traits, and ∘ denotes the Hadamard or

Schur product, which describes the element-to-element product

between two matrices of the same order (Bandeira e Sousa et al.,

2017; Jarquin et al., 2014). Additionally, s 2
gE is a vector of J variance

components ofG × E interactions, and each s 2gE ̲ j in s 2gE indicates

the G × E variance for jth environment.

2.2.1.1 Modelling G X E

Equations 1–3 described the regression of a single environment.

When extending to multiple environments, we introduce the foot

index j so that in the jth environmental stratification, the model in

Equation 4 becomes

yj = mj1 + g j + tj + (gE)j + e j : (5)

The observed trait data in Equation 4 is structured from all j

environments from Equation 5, which is given by

y : =

y1

⋮

yj

⋮

yJ

2
666666664

3
777777775
:

We apply the multi-environment single-variance model

proposed by Bandeira e Sousa et al. (2017) to capture the G × E

interactions by
Frontiers in Plant Science 06
ZɡGZ
T
ɡ ∘ZEZ

T
E = ⌈

G1 ⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋱ ⋮

0 ⋯ Gj 0 ⋯

⋮ ⋱ ⋮ ⋱ ⋮

0 ⋯ 0 ⋯ Gj

⌉ , (6)

Where Gj represents correlations between wheat lines in the jth

environment. The main reason for applying this model is that our

data were collected under environmental scenarios. Other possible

G × E models can be found in, e.g., Jarquin et al. (2014); Bandeira e

Sousa et al. (2017), and Lopez-Cruz et al. (2015).
2.2.2 RKHS
RKHS, as introduced by Berlinet and Thomas-Agnan (2004),

defines a kernel function: k   :  X � X → R named a reproducing

kernel over a nonempty feature set X through a map f   :  X   → H
over a Hilbert space H such that:

∀ x ∈ X , k(x, x0),∈ H
∀ x ∈ X ,∀ f ∈ H,< f, k( :, x) >H= f(x) :

In genomic prediction, the RKHS model introduces a nonlinear

Gaussian kernel on the SNPmarker matrix,K(X,X 0) = exp ( − (X−X 0)2
h )

(Li et al., 2019; Jarquin et al., 2014; Costa-Neto et al., 2021) to capture a

mixed genomic random effect that includes additive effects as well as

complex cryptic interactions, which we refer to as epistasis, between

pairwise SNPmarkers, along with dominant effect (A). This represents a

major difference between the RKHS model and the GBLUP models,

where a linear kernel is applied in GBLUP to capture additive (GAM)

and nonadditive (epistasis and dominant) genomic random effects

separately. Additionally, this nonlinear kernel can be used to describe

other random effects in the model. The parameter h in the above

Gaussian kernel describes a bandwidth parameter that controls the

decay rate of correlations between individuals.

2.2.3 Bayesian inference for prediction
2.2.3.1 Bayesian theorem and the hierarchical model

Let u represent the unknown random effects of interest in the

model, and denote the corresponding variance as s 2
u. We assume

s 2
e = {µ,su,q,sЄ}, where q includes all possible hyperparameters in

the kernel functions. The likelihood can then be expressed as

p(yju, x) =
Yn
i=1

N(yijui, x) (7)

By the Bayesian theorem (Gelman et al., 1995), the joint

posterior can be approximated by the product of the likelihood in

Equation 7 and the prior defined in Equation 9, and is given by

p(u, xjy) ∝
Yn
i=1

N(yi ui, x)N(uij j0,Ksu)
Yq
k=1

p(xk) (8)

Where N(ui|0, Ksu) is the Gaussian prior of the unknown

random effects. The variance–covariance matrix K captures the

correlations from different types of input data. The hyperprior

density of the hyperparameter x can be expressed by
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p(x) =
Yq
k=1

p(xk) = p(m)p(sЄ)p(su)
Yq−3
k=1

p(qk) : (9)

We optimise the model in Equation 8 by maximising the

logarithmic posterior up to a constant w.r.t. x,

arg max
x o

i

log p(yijui, x) +o
k

log p(xk)

 !
: (10)

We then use the posterior predictive density, which follows a

Gaussian distribution from the trained model with the optimal

value x̂ to do the prediction at new input data X∗,

p(u(X*)jy, u(X), x̂ ) (11)

By choosing conjugate priors for the model parameters, e.g. p(µ) is
constant, p(u) follows the multivariate Gaussian distributions, p(se)
and p(su) follow the scaled inverted c2 distributions (see Chapter 16 of
Mrode, 2014 for more details), we can obtain close forms of the full

conditional posterior distributions of each parameter and

hyperparameter of interest. Predictive values at new input data can

then be computed from the posterior predictive distribution in

Equation 11; see Rasmussen (2006) for reference. There are multiple

ways to train the model. In this work, we apply the Gibbs sampler

through the Markov chain Monte Carlo (MCMC) method to optimise

x; see Robert and Casella (2005) for more details.

2.2.3.2 The eigen-decomposition transformation

The eigen-decomposition is widely used in computations to

ensure stability and efficiency by maintaining a well-conditioned

and symmetric variance–covariance matrix. Through the eigen-

decomposition, we obtain

K = ULUT , (12)

where U is a n × n square matrix whose ith column is the

corresponding eigenvector of K, and U is orthogonal such that UUT

= In. The elements in the diagonal matrix L are the eigenvalues of K.
By the eigen-decomposition transformation, we have a new

random vector s : = UTu ∼ N(0,Ls2
u ) such that L = UT KU. This

transformation immediately results in the likelihood in Equation 7

to be:

p(tjs, x) =
Yn
i=1

N(tijsi, x), (13)

Where t : = UTy. In other words, when updating x in Equation

10 by replacing the likelihood by Equation 13, we only need to use a

diagonal matrix L in Equation 12 with eigenvalues from K instead

of referencing the variance–covariance matrix K in MCMC or

alternative methods.
2.2.3.3 GEBV

GEBV refer to the sum of all breeding values at each locus

(Mrode, 2014). They can be approximated by the posterior mean

and posterior predictive mean of genetic random effects in

Equations 1 or 2 for the training and test populations, respectively.
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2.2.4 Model scenarios
We examined the value of different explanatory variables—

genomic (G), transcriptomic (T), environment (E)—their

interactions (G × E, G # G), and alternate model frameworks

(linear/nonlinear) for predicting flowering time and height,

structuring our analyses across 13 model scenarios. The

traditional GBLUP model was applied as our benchmark as follows:

2.2.4.1 Models 1–3, additive genomic and nonadditive
genomic random effects (epistasis and dominance)

y = m1 + g + є, ðGÞ (14)

y = m1 + g + gep + є, ðG + G#GÞ (15)

y = m1 + g + gep + ga + є, ðG + G#G + AÞ (16)

2.2.4.2 Models 4–5, additive genomic plus genomic and
environmental random effects

y = m1 + g + gE + є, ðG + G� EÞ (17)

y = m1 + g + gE + gep + є, ðG + G� E + G#GÞ (18)

2.2.4.3 Models 6–7, additive transcriptomic and genomic
plus nonadditive genomic random effects

y = m1 + g + t + є, ðG + TÞ (19)

y = m1 + g + t + gep + є, ðG + T + G#GÞ (20)

2.2.4.4 Models 8–9, plus all interaction between omic
and environmental random effects

y = m1 + g + t + gE + gep + є, ðG + T + G� E + G#GÞ (21)

y = m1+ g + t + gE + gep + ga + є, ðG + T + G�E +G#G +AÞ: (22)

Due to the nonlinearity of the Gaussian kernel, genomic additive

and nonadditive random effects are captured together with G∗, which

includesG, epistasis (EPI,G #G), and dominant (A). Therefore, we only

compare the following RHKS models with the GBLUP benchmark:

2.2.4.5 Models 10–11, genomic and transcriptome
random effects and their interaction

y = m1 + g� + є, ðG�Þ (23)

y = m1 + t + є, ðTÞ (24)

y = m1 + g� + t + є, ðG� + TÞ (25)

2.2.4.6 Model 12, plus environmental interactions

y = m1 + g� + t + g�E + є, ðG� + T + G� EÞ (26)

2.2.5 Model validation and assessment
We evaluated the predictive accuracy of the model by fivefold

crossvalidation (CV, e.g., Allen, 1974) because the ground truth is
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unknown. This involved randomly partitioning the whole

population into five equal-sized subsamples. In the CV procedure,

each subsample, representing around 20% of the test population

from raw data of each environment, was used to validate the

respective model splits trained on the remaining 80% of the

population. This process was repeated five times. For single-

environment models, stratification analysis (Lopez-Cruz et al.,

2015) was applied, and the mean predictive accuracy was

computed between two environments. The environments from

field experiments were represented by two site indicators (GES

and Wagga). Due to the balanced data in the experiments and the

simple categorical environmental variables, this validation scenario

was used for model comparison in both controlled and field

experiments. In addition, height phenotypic values from field

experiments were collected three times, with independent

analyses carried out, and the mean performance demonstrated.

Overall model accuracy was obtained by averaging the fivefold

model accuracies. Additional validation scenarios, such as CV1 and

CV2 (Alemu et al., 2024), may be necessary to evaluate model

performance across different environmental conditions; however,

this is beyond the scope of the present study.

For model assessment, we compute Pearson correlation r using

Equation 27 between the true trait values, yt  from the test

population and the predictive traits ŷt from the predictive model.

This ratio measure provides a statistic for model predictive accuracy.

Despite training and test populations, the general formula of

Pearson correlation is given by

r = oi(yi − �y)(ŷ i − ŷ )

‖ yi − �y ‖ ŷ i − ŷ
�� �� : (27)

In this work, we study the impacts of genomic additive and

nonadditive random effects, omics data, and G × E interactions on

phenotypic traits over two different day lengths to improve GP and

GS in wheat traits. We construct a Bayesian hierarchical model by

estimating the parameters of interest in order to compare the

predictive models listed in Sect. 4.2. We chose a Gaussian prior for

the unknown random effects u and conjugate priors for x, specifically
assigning the scaled inverse c2 distribution to all the variance

parameters, with hyperparameters set to fixed values from the R

software package, Bayesian generalised linear regression (BGLR; see

more details in Pérez and De Los Campos, 2014). The

aforementioned models were trained by optimising the unknown

parameters using theMCMCmethod, specifically by simulating each

parameter using the Gibbs sampler from its full conditional posterior

distribution formed by the likelihood in Equation 13 after the eigen-

decomposition transformation and the selected prior. We also

utilised the R software package BGGE to compute G × E

interactions in Equation 6. All of our work was implemented using

the R software.
3 Results

In controlled environments (Figures 2, 3), where traits were

measured under contrasting long and short day length regimes,

transcriptome abundance (T) in Equations 19, 20 outperformed
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genomic SNPs (G) in Equations Equations 14-16 when they were

modelled without environmental factors in the GBLUP regression

framework. The improvement was more pronounced for flowering

time than for height, supporting the hypothesis that the

transcriptome, as an intermediate state between genome,

environment, and final phenotype, is a good predictor of trait

variation. In our study, models combining SNP data and G × E

effects marginally outperformed transcriptome for both traits. The

best-performing models combined all data types—G × E

interactions, and epistasis—with both the GBLUP and RHKS

frameworks. Notably, GBLUP demonstrated slightly better overall

performance compared to RHKS in all tests. This finding aligns

with previous research indicating that GBLUP often provides

higher predictive accuracy than RKHS, particularly for traits

where additive genetic effects are predominant.

In terms of nonadditive interaction effects, the inclusion of G ×

E had the most positive impact on prediction accuracy, particularly

for flowering time. Prediction of height was less dependent on

interactions with the environment; hence, the G and G + G × E

models (Equations 14, 17) performed better relative to anthesis.

Explicitly fitting epistatic (EPI) and dominance (A) interactions

based on SNP covariance slightly reduced model accuracy under the

GBLUP for both agronomic traits. While we cannot test this trend

precisely with RHKS because G and G # G cannot be disentangled,

the RHKS model scenarios (Equation 23) including nonadditivity

outperformed their GBLUP equivalents (Equation 16) in

field experiments.

Predictive accuracy for height and days to heading measured

in four field experiments over 2 years suggests similar outcomes

for the tested model scenarios as observed in controlled

environments, with the following exceptions. Under field

conditions, (Figures 4, 5) the predictive accuracies were lower

for height across all model scenarios, whereas predictions for

flowering for the best-performing scenarios were higher than in

controlled environments. In particular, the improvement gained

from including G × E (Equations 17, 18, 21, 22, 26) into the

predictions for flowering time was substantial and improved on

that observed in controlled environments. Of course, any direct

comparisons need to be treated carefully here. The environment

contrasts in controlled (day length) and field (rainfall and

temperature) experiments are based on different underlying

variables, which could potentially explain some differences,

including the magnitude of improvement from including G × E

under both the GBLUP and RHKS regression.

The transcriptome alone again performs better than G for

predicting flowering time, though the relative improvement is not

as large as seen in controlled environment experiments (Table 1).

For height, there was no discernible advantage to including the

transcriptome over SNP data alone, which underperformed relative

to the model scenarios including G and G × E under the GBLUP

framework. Inclusion of nonadditive effects (G × E, epistasis and

dominance) under the GBLUP framework all improved model

accuracy, counter to day length experiments. The improvement in

prediction accuracy for both traits, particularly flowering time,

through the inclusion of G × E remained substantial relative to

epistasis and dominance effects. As with the controlled
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environments, RHKS outperformed the GBLUP equivalents.

Finally, in contrast to controlled environments, the RHKS

framework, for the best-performing models combining all data

types, outperformed or performed equally well to the equivalent

GBLUP model.

In summary, the most predictive models were those that

combined all data types. In both sets of experiments, the

transcriptome is predictive of both traits, but much more so in

controlled environments. This is somewhat expected because gene

expression better captures how genes contribute to trait

development under different environments, as noted by Michel

et al. (2021). The inclusion of the transcriptome (Equations 19-22,

24-26) potentially helps capture key genes and pathways involved in

trait expression, which can refine predictive models. The nonlinear

regression model did not show many advantages over the

traditional linear mixed models from these two data sets,

especially for the controlled environmental data. It outperformed

or was similar to GBLUP in field conditions, possibly reflecting that

in controlled environments, genotype and environment effects and

interactions are less complex and more easily delineated, allowing

for the isolation of these variables from more complex

environmental interactions, with implications for suitability of

different model frameworks. In both data sets, the site/treatment

covariates simplify the environmental variation, which can reduce

the impact of complex nonadditive genomic interactions that are

more pronounced in variable natural conditions, as discussed by

Teressa et al. (2021) and Becker and Leon (1988).
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4 Discussion

Crop breeding is at a pivotal point, driven by the need to

address challenges such as population growth, limited arable land,

and environmental changes. To achieve profitable and sustainable

crop production, the industry requires solutions that enable

accurate, high-throughput decision-making to expedite the

development of improved crop cultivars. This involves targeting

staple crop genetics, environmental factors, and management

practices. Modern statistical breeding technologies, including

advanced methods for integrating multiple objectives into genetic

evaluations, are fundamental for decision-making.

We examined the potential of the transcriptome as an

alternative predictor in GS for wheat developmental traits,

specifically flowering time and height. The use of transcriptomic

data to enhance GS has gained attention in recent years (Xu et al.,

2017). Studies have explored the transcriptome’s predictive value in

crops such as maize (Zheng et al., 2017; Schrag et al., 2018; Azodi

et al., 2019) and rice (Wang et al., 2019), but its application in

wheat, a major global food crops, remains underexplored.

Furthermore, most studies focus on controlled conditions,

whereas applying omics data in real-world settings is crucial for

assessing its utility in practical breeding programs.

We selected flowering time and plant height for this study

because these traits are well-characterised, with extensive datasets,

including transcriptomes, available to support testing of the

framework. Importantly, this framework also holds value for
FIGURE 2

Performance metrics (Pearson correlation) for genomic predictive accuracy on FT across two regression models: GBLUP and RKHS (nonlinear) from
controlled environmental data. Error bars represent model performance among 13 different model scenarios. The x-axis provides abbreviated model
names consistent with the detailed scenarios described: GBLUP: G, G + G × E (GE), G + G # G (EPI) + A (dominant) (GEPIA), G + G × E + G # G
(GEEPI), G + T (GT), G + T + G # G (GTEPI), G + T + G × E + G # G (GTEEPI), G + T + G × E + G # G + A (GTEEPIA); RHKS: G + G # G + A
(nonlinearG), T (T), G + G # G + A + T (nonlinearGT), G + G # G + A + T + G × E (nonlinearGTE).
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FIGURE 3

Performance metrics (Pearson correlation) for genomic predictive accuracy on height across two regression models: GBLUP and RKHS (nonlinear)
from controlled environmental data. Error bars represent model performance among 13 different model scenarios. The x-axis provides abbreviated
model names consistent with the detailed scenarios described: GBLUP: G, G + G × E (GE), G + G # G (EPI) + A (dominant) (GEPIA), G + G × E + G #
G (GEEPI), G + T (GT), G + T + G # G (GTEPI), G + T + G × E + G # G (GTEEPI), G + T + G × E + G # G + A (GTEEPIA); RHKS: G + G # G + A
(nonlinearG), T (T), G + G # G + A + T (nonlinearGT), G + G # G + A + T + G × E (nonlinearGTE).
FIGURE 4

Performance metrics (Pearson correlation) for genomic predictive accuracy on DH across two regression models: GBLUP and RKHS (nonlinear) from
field experiment data. Error bars represent model performance among 13 different model scenarios. The x-axis provides abbreviated model names
consistent with the detailed scenarios described: GBLUP: G, G + G × E (GE), G + G # G (EPI) + A (dominant) (GEPIA), G + G × E + G # G (GEEPI), G
+ T (GT), G + T + G # G (GTEPI), G + T + G × E + G # G (GTEEPI), G + T + G × E + G # G + A (GTEEPIA); RHKS: G + G # G + A (nonlinearG), T (T),
G + G # G + A + T (nonlinearGT), G + G # G + A + T + G × E (nonlinearGTE).
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selecting these key agronomic traits within wheat breeding

programs. Although both traits are primarily regulated by major

quantitative trait loci (QTL) and can be optimised in elite

germplasm through early-stage phenotypic selection, there is
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additional genomic variation within elite backgrounds. This

includes complex genetic loci and interactions that can be

leveraged to enhance trait optimisation through genomic

selection. For example, while the major dwarfing and semi-
TABLE 1 Pearson correlation, as defined by Equation 27, was used to indicate the predictive accuracy of model performance from the controlled
experiment data.

Controlled environment

Model Height (cm) (std) Athesis (DAS) (std)

(1) G 0.789 (0.027) 0.275 (0.070)

(2) G + G # G (EPI) 0.785 (0.029) 0.268 (0.058)

(3) G + G # G +A (dominant) 0.782 (0.030) 0.253 (0.064)

(4) G + G × E 0.837 (0.025) 0.837 (0.011)

(5) G + G × E + G # G 0.836 (0.024) 0.834 (0.013)

(6) G + T 0.840 (0.030) 0.822 (0.016)

(7) G + T + G # G 0.838 (0.026) 0.819 (0.017)

(8) G + T + G × E + G # G 0.840 (0.023) 0.843 (0.013)

(9) G + T + G × E + G # G + A 0.836 (0.025) 0.839 (0.015)

(10) RHKS: G + G # G + A 0.784 (0.030) 0.240 (0.067)

(11) RHKS: T 0.836 (0.028) 0.811 (0.011)

(12) RHKS: G + G # G + A + T 0.836 (0.028) 0.811 (0.011)

(13) RHKS: G + G # G + A + T + G × E 0.838 (0.023) 0.837 (0.015)
The mean and standard deviation (std; shown in parentheses) of Pearson correlations were calculated from fivefold cross validation between training and test populations based on 13 different
model scenarios described in Sect. 2.2.4.
Bolded values indicate the best models for the two traits of interest.
FIGURE 5

Performance metrics (Pearson correlation) for genomic predictive accuracy on height across two regression models: GBLUP and RKHS (nonlinear)
from field experiment data. Error bars represent model performance among 13 different model scenarios. The x-axis provides abbreviated model
names consistent with the detailed scenarios described: GBLUP: G, G + G × E (GE), G + G # G (EPI) + A (dominant) (GEPIA), G + G × E + G # G
(GEEPI), G + T (GT), G + T + G # G (GTEPI), G + T + G × E + G # G (GTEEPI), G + T + G × E + G # G + A (GTEEPIA); RHKS: G + G # G + A
(nonlinearG), T (T), G + G # G + A + T (nonlinearGT), G + G # G+ A + T + G × E (nonlinearGTE).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1506434
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1506434
dwarfing alleles (RHT1 and RHT2) largely control variation in plant

height, numerous additional QTL have been identified in recent

studies (Shaheen et al., 2024). Regarding flowering time, VRN1

accounts for a substantial portion of variation under nonvernalising

conditions. However, under vernalising conditions, smaller-effect

loci—responsive to day length, drought, and heat—also influence

flowering time (Hyles et al., 2020). When considering the epistatic

interactions and genotype–environment (G × E) effects associated

with these loci, GS becomes particularly advantageous because of its

ability to capture these complex effects, enabling more accurate and

effective selection. Consistent with previous findings, we found the

transcriptome to be an effective phenotype predictor within both

GBLUP and RHKS regression models, particularly outperforming

genomic SNPs for anthesis and heading date and height in

controlled conditions when the environment was excluded from

the model.

The underperformance of genomic SNP models in predicting

flowering time likely stems from the trait’s strong dependence on

genotype–environment interactions, such as day length and

temperature (Susila et al., 2018; Ausin et al., 2005). This effect

may have been more pronounced under nonvernalising conditions

in controlled environments, due to interactions between the VRN1

locus, which can delay flowering in vernalisation-sensitive lines, and

photoperiod-sensitive genes (PPD1) and the FT locus under

different day length conditions (Hyles et al., 2020). Excluding
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environmental factors as in model scenarios (Equations 14-16,

23), which considered only genetic factors in isolation, led to

poor cross validation accuracy in genomic prediction. In contrast,

when G × E were included, the model explained a much higher

proportion of the variation in flowering time. The transcriptome’s

improved performance suggests it captures these genotype–

environment interactions intrinsically, making it a more reliable

predictor of flowering time (see Tables 1, 2). This aligns with the

hypothesis that the transcriptome, as an intermediary between the

genome, environment, and phenotype, effectively captures these

effects and should be a reliable predictor of trait variation (Te Pas

et al., 2017).

In the case of height, we observe a different pattern. While

incorporating G × E interactions enhances model predictive

accuracy in both controlled conditions and field settings, the

relative gain is less pronounced compared to flowering time. This

suggests that the simpler genetics underlying height, primarily

major genes from the Rht family (Zheng et al., 2017; Achard

et al., 2009), exhibit fewer environmental interactions in these

experiments. Notably, in the field, using transcriptome data did

not offer an advantage over genomic SNPs. This could be explained

by the fact that these key height-controlling genes are not expressed

until later in development (Borrill et al., 2022); hence

transcriptomes collected at the earlier stage in this study would be

unlikely to capture the G × E effects at these loci.

Although the transcriptome offers predictive benefits for

flowering time, particularly in controlled environments, its

effectiveness in field conditions is reduced. This likely reflects the

incompleteness with which a transcriptome taken at a single time

point early in development can capture the G × E effects

experienced throughout development to maturity in the field. The

controlled environment experiments would not suffer this

limitation, as environmental conditions were maintained

throughout development, preserving the relationship between the

regulatory signal captured in the early-stage transcriptome and the

trait. This highlights a challenge in using highly plastic omics data,

such as the transcriptome, for GS in variable environments, where

multiple tissues and time points might be needed to capture

relevant interactions, reducing its feasibility in commercial

breeding programs. Nonetheless, it is notable that the early-stage

transcriptome offers some predictive power for flowering time in

field conditions.

Our findings indicate that while incorporating the

transcriptome or directly modelling genotype–environment

interactions is essential for reliable predictions, especially for

flowering time, other nonadditive factors such as epistasis and

dominance made only minor contributions. Consistent with

expectations (Gianola and Van Kaam, 2008), RHKS was slightly

better at capturing complex genomic random effects compared to

the GBLUP model (e.g., model scenarios 13 and 9; 10 and 3),

although the advantage was marginal.

The best-performing models for both traits combined all data

types, genotype–environment interactions, and epistasis under the

GBLUP framework in controlled conditions and the RHKS
TABLE 2 Pearson correlation, as defined by Equation 27, was used to
indicate the predictive accuracy of model performance from field
experiment data.

Field experiments

Model Height
(cm) (std)

Days to
heading (std)

(1) G 0.533 (0.065) 0.245 (0.087)

(2) G + G # G (EPI) 0.539 (0.066) 0.247 (0.084)

(3) G + G # G + A 0.545 (0.076) 0.251 (0.073)

(4) G + G × E 0.644 (0.041) 0.925 (0.005)

(5) G + G × E + G # G 0.650 (0.044) 0.924 (0.004)

(6) G + T 0.625 (0.033) 0.602 (0.042)

(7) G + T + G # G 0.627 (0.036) 0.603 (0.041)

(8) G + T + G × E + G # G 0.656 (0.033) 0.967 (0.009)

(9) G + T + G × E + G # G + A 0.660 (0.042) 0.966 (0.009)

(10) RHKS: G + G # G + A 0.548 (0.072) 0.253 (0.095)

(11) RHKS: T 0.536 (0.030) 0.591 (0.044)

(12) RHKS: G + G # G + A + T 0.558 (0.134) 0.566 (0.058)

(13) RHKS: G + G # G + A + T
+ G × E

0.662 (0.044) 0.966 (0.015)
The mean and standard deviation (std; shown in parentheses) of Pearson correlations were
calculated from fivefold cross validation between training and test populations based on 13
different model scenarios described in Sect. 2.2.4.
Bolded values indicate the best models for the two traits of interest.
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framework in the field. The RHKS model’s marginal advantage in

field conditions may reflect the greater complexity of environmental

variables that the nonlinear Gaussian kernel can better capture, e.g.,

Cuevas et al. (2017). However, in controlled environments, where

conditions are simplified and G × E interactions are likely less

complex, the GBLUP model is promising. Despite the predictive

advantages of the transcriptome, the high cost and complexity of

incorporating it into breeding programs currently limit its

practicality. Additionally, the need to structure sampling around

developmental and environmental cues for effective trait prediction

adds another layer of complexity, which affects the utility of omics

data for GS in commercial breeding programs. For the time being,

the strength of population-scale transcriptomics lies in enhancing

our biological understanding of complex genomic interactions,

which can then be integrated into breeding selection models in

alternative ways (Khalilisamani et al., 2024).

This study demonstrates a proof of concept for integrating

genomic, multi-omic, environmental, and phenotypic data into an

advanced statistical analytic framework to improve genomic

prediction in wheat breeding. In both controlled and field

experiments, transcript data perform well relative to SNPs or

environmental data alone in predicting plant height and flowering

time. This is likely due to the transcriptome’s ability to capture both

genetic and environmental signals and their interactions, thereby

enhancing the effectiveness of GS. By integrating the transcriptome

with genetic SNPs and G × E interactions, our models provide a

highly accurate and comprehensive solution to predict both

flowering time and height. In both the GBLUP and RHKS

frameworks, the models integrating SNPs and G × E interactions

outperformed the transcriptome-based predictions, including all

three types of predictors (SNPs, transcriptome, and G × E) provides

only a marginal gain in predictive accuracy. Given the practical and

cost-related constraints of implementing transcriptome data in GS,

incorporating SNP and G × E effects remains a more feasible

approach, provided that environmental factors can be accurately

characterised. Recent studies (Varona et al., 2018; Morais Junior

et al., 2017) support this, showing that accounting for G × E

interactions improves suitability and prediction accuracy,

allowing for more reliable genetic evaluation in diverse

environments. Breeders can thus identify the performance of

genotypes for targeted traits and their adaptation across

multiple environments.

The statistical framework we present is agnostic regarding the

crop and trait, providing flexibility for predicting genetic merit in

various scenarios and identifying variations in multiple data

streams for any target trait, thereby reducing uncertainty in GS

and accelerating the development of new wheat varieties. However,

effectively scaling this interaction model to large-scale datasets in

breeding programs may become infeasible. For example, complex

traits such as yield and disease resistance are influenced by a variety

of environmental factors, e.g., soil, weather, and pathogens.

Incorporating multiple environmental factors with real value is
Frontiers in Plant Science 13
essential for analysing G × E interactions (Smith et al., 2021), which

requires further development to improve G × E modelling

framework and computational efficiency in handling large-scale

crop data. Furthermore, complex traits arise from the interaction of

multiple genetic factors, resulting in different weights of marker

data associated with their QTL. Multiple traits can also work

together to influence a single gene. To enhance genomic

predictive accuracy in wheat breeding, it may be necessary to

apply marker-weighted techniques (Montesinos-López et al.,

2023) and develop multi-trait interaction modelling (Mardia

et al., 2024).
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