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PD-YOLO: a novel weed
detection method based on
multi-scale feature fusion
Shengzhou Li, Zihan Chen, Jialong Xie, Hewei Zhang
and Jianwen Guo*

School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
Introduction: The deployment of robots for automated weeding holds

significant promise in promoting sustainable agriculture and reducing labor

requirements, with vision based detection being crucial for accurate weed

identification. However, weed detection through computer vision presents

various challenges, such as morphological similarities between weeds and

crops, large-scale variations, occlusions, and the small size of the target objects.

Methods: To overcome these challenges, this paper proposes a novel object

detection model, PD-YOLO, based on multi-scale feature fusion. Building on the

YOLOv8n framework, the model introduces a Parallel Focusing Feature Pyramid

(PF-FPN), which incorporates two key components: the Feature Filtering and

Aggregation Module (FFAM) and the Hierarchical Adaptive Recalibration Fusion

Module (HARFM). These modules facilitate efficient feature fusion both laterally

and radially across the network. Furthermore, the inclusion of a dynamic

detection head (Dyhead) significantly enhances the model’s capacity to detect

and locate weeds in complex environments.

Results and discussion: Experimental results on two public weed datasets

demonstrate the superior performance of PD-YOLO over state-the-art models,

with a modest increase in computational cost. PD-YOLO improves the mean

average precision (mAP) by 1.7% and 1.8% on the CottonWeedDet12 dataset at

thresholds of 0.5 and 0.5-0.95, respectively. This research not only presents an

efficient and accurate weed detection method but also offers new insights and

technological advances for automated weed detection in agriculture.
KEYWORDS

weed detection, object detection, YOLO, multi-scale feature fusion, dynamic
detection head
1 Introduction

Weeds are one of the major factors affecting agriculture. Currently, the damage caused

by weeds to agriculture reaches as high as 34% (Oerke, 2006). For decades, herbicides have

been widely adopted as the preferred method for weed management in global agriculture;

however, herbicides often have adverse environmental side effects (Kudsk and Streibig,
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2003). With the development of precision agriculture and the

widespread use of intelligent agricultural machinery, robots for

weed control hold great potential in building environmentally

friendly agriculture and reducing labor demands (You et al.,

2020). Intelligent robots rely on real-time weed detection systems

with high accuracy to locate weeds, but weed detection in actual

farmland environments still faces the following challenges.

Firstly, the coexistence of inter-class phenotypic similarity and

intra-class morphological variation poses significant challenges.

Weeds and crops exhibit substantial overlap in color features,

particularly during the seedling stage, with notable similarities in

leaf shape and texture characteristics during growth (Hasan et al.,

2021). For instance, Italian ryegrass (Lolium multiflorum) and

wheat are visually indistinguishable without expert knowledge

(Bansal et al., 2024), rendering traditional detection methods

ineffective. Compounding this complexity, dynamic variations in

leaf color, morphology, and texture occur across different growth

stages of the same weed species (Veeragandham and Santhi, 2021),

hindering the establishment of stable feature representations in

detection models. Studies have shown that YOLOX and YOLOv8

models experienced accuracy declines of 14.5% and 14.2%,

respectively, in identifying eight cross-season weed categories

common in cotton fields. This degradation primarily stems from

seasonal variations in lighting, background conditions, and weed

growth states (Deng et al., 2024).

Secondly, the sheer diversity of weed species (Chen et al., 2024),

combined with the simultaneous presence of weeds at varying

developmental stages within agroecosystems, creates scale

differences spanning three orders of magnitude. Empirical

analysis using the Weed25 dataset revealed significant disparities

in recognition performance: Asiatic smartweed (Polygonum

aviculare) achieved a mean average precision (mAP) of 62.92%,

while velvetleaf (Abutilon theophrasti) reached 99.70% (Wang

et al., 2022). Such scale heterogeneity complicates the

development of algorithms capable of effectively detecting multi-

category weeds. Furthermore, leaf overlap and weed occlusion in

dense scenarios exacerbate differentiation and detection challenges

(Wang et al., 2019). In cabbage fields, weed detection not only

struggles with color similarity but also contends with illumination

variations and leaf occlusion, leading to suboptimal performance in

direct detection methods addressing these issues (Sun et al., 2024).

Finally, the high-density distribution and small size of weed

targets frequently result in missed detections and false positives.

Wu et al. (2023). proposed an enhanced YOLO-V4 model tailored

for small weed detection in farmland, improving the mAP by 4.2%.

However, despite advancements in lightweight performance, the

parameter count of model remains high at 42.54 million, posing

deployment challenges.

To address the aforementioned challenges, this paper proposes

an PD-YOLO method based on a multi-scale feature fusion

network, building on YOLOv8n. The method introduces an

innovative Parallel Focusing Feature Pyramid (PF-FPN), which

effectively improves the accurate classification and localization of

different types of weeds in complex environments. The PF-FPN

includes the Feature Filtering and AggregationModule (FFAM) and
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the Hierarchical Adaptive Recalibration Fusion Module (HARFM).

The FFAM module utilizes deep convolution and attention

mechanisms to preliminarily filter and extract features, adaptively

adjusting and fusing multi-scale features to capture rich semantic

information. This enhances small object detection and multi-scale

feature fusion, thereby improving the model’s accuracy and

robustness. The HARFM module leverages attention mechanisms

to fuse features at different levels, achieving adaptive optimization

and enhancing the model’s expressive power. To further improve

detection performance, a dynamic detection head (Dyhead) (Dai

et al., 2021) is introduced, enhancing the model’s stability and

accuracy in complex backgrounds. Ultimately, the proposed PD-

YOLO model integrates the PF-FPN network and Dyhead

architecture, using YOLOv8n as the base framework. This

optimization of feature fusion and model representation

capabilities significantly enhances the overall accuracy of

weed detection.

The remainder of this paper is organized as follows: Section 2

introduces related research work; Section 3 presents the PD-YOLO

model; Section 4 describes the experiments conducted on the

model; Section 5 provides relevant discussions; and Section 6

concludes the paper.
2 Related works

Early research in weed detection primarily relied on traditional

image processing techniques (Wu et al., 2021). These methods

involved extracting features such as color, texture, and shape from

images, which were then used in conjunction with machine learning

algorithms like Random Forests or Support Vector Machines for

weed identification (Sabzi et al., 2020). For example, Islam et al

(Islam et al., 2021). achieved efficient weed detection in Unmanned

Aerial Vehicle (UAV) imagery through image orthorectification

combined with machine learning algorithms, reaching accuracy

rates of 98.40% on the original dataset and 94.72% on an extended

dataset. The success of these techniques heavily depended on the

quality of image acquisition, preprocessing, and feature extraction,

as these factors directly influenced the performance and

generalization ability of the algorithms.

With the advent of deep learning, object detection methods

have revolutionized weed detection due to their superior efficiency

and accuracy. Tang et al. (2017). pioneered the use of K-means

unsupervised feature learning in conjunction with Convolutional

Neural Networks (CNNs), improving the identification accuracy of

soybean seedlings and associated weeds to 92.89% through fine-

tuning optimization. This approach effectively addressed the issues

of instability and limited generalization found in manually designed

feature-based methods. Similarly, dos Santos Ferreira et al (Tang

et al., 2017) applied a ConvNets network to detect weeds in soybean

crop images, classifying them into grass and broadleaf categories.

This categorization enabled the targeted application of specific

herbicides, achieving over 98% identification accuracy.

Currently, classical deep learning-based object detection methods

are mainly categorized into single-stage and two-stage detection
frontiersin.org
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algorithms. Single-stage algorithms directly use neural networks to

extract features from images and perform detection. Representative

algorithms include SSD (Liu et al., 2016), the YOLO series (Redmon

et al., 2016; Chen et al., 2021), and RT-DETR (Chen et al., 2021).

Single-stage algorithms generally have the advantage of faster speed

and better real-time detection performance, but they often suffer from

lower localization accuracy. In contrast, two-stage algorithms first

generate candidate regions and then classify and localize these

regions. They usually achieve higher detection accuracy but are

relatively slower and require more computational resources, with

Faster R-CNN (Ren et al., 2015) being a representative example.

In weed detection, two-stage algorithms first generate potential

weed-containing regions using object detection algorithms, followed

by deep learningmodel classification to distinguish weeds from crops.

Veeranampalayam Sivakumar et al (Veeranampalayam Sivakumar

et al., 2020). constructed Faster R-CNN and SSD models and

evaluated their performance for weed detection in soybean fields

using UAV images. The results showed that both models performed

well in weed detection, but Faster R-CNN outperformed SSD in

terms of performance. This approach typically improves detection

accuracy and reduces false positive rates, but its high computational

complexity makes it difficult to meet real-time requirements.

To address the challenges of morphological diversity, scale

variations, and complex backgrounds in farmland weed detection,

researchers have proposed various improvements based on the

YOLO series models. These methods enhance model performance

in specific agricultural scenarios through strategies such as

integrating attention mechanisms, optimizing multi-scale feature

fusion, and improving small-target detection capabilities. Table 1

systematically compares representative models in terms of

improvement methods, parameter counts, computational costs,

and performance metrics.

Current YOLO-based farmland weed detection models

generally suffer from scenario limitations and methodological

homogenization. Most models, such as GTCBS-YOLOv5s (Shao

et al., 2023) and YOLOv8-DMAS (Zheng et al., 2024), are optimized

solely for single environments like rice or cotton fields, relying on

repetitive technical approaches including attention mechanisms,
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multi-scale feature fusion, and loss function improvements, while

lacking differentiated designs for weed morphological diversity and

crop coexistence scenarios. Some models like RMS-DETR (Guo

et al., 2024) with 40.8M parameters and 187 GFLOPs

computational cost achieve only 85.1% accuracy, showing

significant efficiency-accuracy imbalance. Lightweight models

such as YOLOV7-G (Yu et al., 2024), though compressed to

0.57M parameters, suffer from high missed detection rates

resulting in mAP as low as 56.6%, limiting practical applicability.

Although a few models like YOLO-Riny (Xu et al., 2024) achieve

edge device compatibility through structural lightweighting, their

improvements remain confined to specific weed types Corydalis

edulis and Setaria viridis in cornfields, failing to address complex

multi-target interaction detection needs. While YOLO-CWD (Ma

et al., 2025) achieves lightweight design with 75.1% mAP@50 and

9.6 GFLOPS in cornfield weed detection through hybrid attention

mechanisms and PIoU loss function, its detection accuracy and

model compactness still require further optimization. Existing

studies generally lack cross-scenario generalization validation,

showing weak support for multi-category weed interaction

detection, environmental robustness, and crop-weed coexistence

mechanisms, which constrains practical agricultural applications.

Existing weed detection methods based on general deep

learning architectures face challenges due to the diversity in weed

morphology and environmental conditions, making algorithm

development for different plant species difficult (Hu et al., 2024).

Additionally, Convolutional Neural Networks (CNNs), while

extracting image features, are limited by the local receptive field

of convolutional operators, making it hard to capture global

information, which affects accurate image localization and

classification (Luo et al., 2016). To overcome this limitation,

researchers often employ multi-scale feature fusion techniques,

with parallel multi-branch networks and serial skip-connection

structures being two commonly used approaches.

In the Inception module of GoogLeNet, the parallel multi-branch

network extracts multi-scale and hierarchical feature information

from the same feature map using convolutional kernels of different

sizes (Szegedy et al., 2015). Although this method takes advantage of
TABLE 1 Systematic comparison of YOLO-based improvement methods and performance metrics for farmland weed detection tasks.

Model
Application
Scenario

Improvement Methods
Parameters

(M)
GFLOPS

(G)
mAP
0.5 (%)

GTCBS-YOLOv5s (Shao et al., 2023)
Rice field

weed identification
YOLOv5 + Ghost + C3Trans + CBAM + BiFPN +

SIoU loss
4.63 25.1 91.1

YOLOV7-G (Yu et al., 2024)
Sesame field

weed identification
YOLOv7 + SimAM + C3 module + SPPFCSPC +

Focal-SIoU loss
0.57 0.48 56.6

YOLO-Riny (Xu et al., 2024)
Herbal field
weed tracking

YOLOv7-tiny + FasterNet backbone + lightweight
upsampling + ByteTrack

10.1 11.2 91.7

YOLOv8-DMAS (Zheng et al., 2024)
Cotton field

weed detection
YOLOv8 + DWR + MSBlock + small-target layer

+ ASFF + SoftNMS
19.03 51.2 95.5

RMS-DETR (Guo et al., 2024)
Rice field

weed identification
DETR + multi-scale feature fusion + global

context modeling
40.8 187 85.1

YOLO-CWD (Ma et al., 2025) Corn-weed detection YOLOv8 + hybrid attention + PIoU loss 3.49 9.6 75.1
fr
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convolution kernels with different receptive fields and carefully

designed modules to learn rich multi-scale features, it overlooks

semantic differences between features of different scales, which can

lead to the loss of semantic information. High-level feature maps

generated by the backbone network contain rich semantic

information but lack the detailed information of objects, while low-

level features, although containing precise object locations, lack

sufficient semantic information.

To address this issue, high-dimensional features are typically

upsampled and aligned with downsampled low-dimensional

features, followed by pixel-wise summation to enhance semantic

information. However, this method does not perform feature

selection, merely summing pixel values across multiple feature

layers, which may lead to redundant and repetitive information.

Consequently, this approach fails to fully integrate and utilize

diverse features (Chen et al., 2024).

In addition, feature fusion networks represent an efficient method

for multi-scale fusion. The classic Feature Pyramid Network (FPN)

(Lin et al., 2017) employs a top-down pyramid structure to achieve

multi-scale feature fusion. However, due to its structural characteristics,

FPN lacks sufficient high-level semantic information. To enhance local

localization information, PANet (Liu et al., . 2018) added a bidirectional

feature fusion module on top of FPN. Building on these approaches,

BiFPN (Tan et al., 2020) introduced bidirectional connections in the

process of information propagation, allowing information to flow both

top-down and bottom-up within the network. This bidirectional flow

effectively addresses issues of information loss and blurring in feature

pyramid networks.

The Gold-YOLO model introduced an advanced gather and

distribute mechanism (GD mechanism), which uses a unified

module to collect and fuse information from all levels and

distribute it to different levels, addressing the information fusion

issues in traditional object detection models (Wang et al., 2024).

Although multi-scale feature fusion methods have significant

reference value for image processing tasks, current networks

struggle to meet the practical requirements of weed detection

tasks due to challenges such as limited weed features, varying

lighting conditions, and occlusion problems. Therefore,

developing more efficient feature fusion networks is crucial for

improving the accuracy of weed detection.
3 Method

3.1 PD-YOLO model

YOLOv8 is an end-to-end optimized model known for its high

performance and accuracy in detection and segmentation tasks in

computer vision (Redmon et al., 2016; Chen et al., 2021; Reis et al.,

2023). It builds upon the improvements made in YOLOv5 (Zhang

et al., 2022), and its specific structure is shown in Figure 1. The C2f

module is a key component of YOLOv8’s backbone network,
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enhancing the richness of information flow through gradient-

splitting connections while maintaining a lightweight model. The

neck part uses a PA-FPN structure, inspired by PANet (Liu et al., .

2018), and the head adopts a decoupled structure designed

separately for object classification and bounding box regression,

utilizing different loss functions to improve detection accuracy and

model convergence speed. This design, combined with a dynamic

sample allocation mechanism, further enhances YOLOv8’s

detection accuracy and robustness.

The YOLOv8 series includes multiple versions, offering more

refined model parameter tuning options, making it highly effective

in both high-precision and real-time applications. YOLOv8n

(Nano) is the smallest and fastest version of the YOLOv8 series,

suitable for mobile devices, embedded systems, and applications

that require real-time processing. Its efficient performance in terms

of processing speed and computational resources makes it ideal for

weed detection applications.

Based on the lightweight YOLOv8n model, we designed an

improved weed detection model—PD-YOLO. The structure of PD-

YOLO is shown in Figure 2, and it primarily enhances the accuracy

and efficiency of weed detection through the organic combination

of three key components: the Backbone, the Parallel Focusing

Feature Pyramid (PF-FPN), and the DyHead.
(1) The Backbone utilizes multiple convolutional layers to

extract multi-scale features from the input image, and the

C2F module enhances the feature map’s expressive

capability, effectively capturing and integrating information

from different levels to support efficient and accurate object

detection tasks.

(2) The PF-FPN is a multi-layer feature fusion pyramid that

enables efficient multi-scale feature fusion, addressing the issue

of similar features between weeds and plants as well as between

different weeds, thereby improving the detection capability of

various weed types. PF-FPN includes the Feature Filtering and

Aggregation Module (FFAM) and the Hierarchical Adaptive

Recalibration Fusion Module (HARFM). The FFAM module

first filters and fuses features, and then extracts them,

achieving multi-scale feature extraction. The HARFM

module, based on attention mechanisms, further enhances

feature expression, effectively improving the model’s feature

fusion capability.

(3) The detection head is responsible for object localization and

classification based on the fused features. In field

environments, weeds exhibit diverse scales and complex

morphologies, which increases the difficulty of detection.

To tackle these challenges, this study introduces dynamic

head technology, which adaptively adjusts the parameters

and structure of the detection head to more effectively

capture information from different feature layers,

enhancing the model’s adaptability to complex scenarios.
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3.2 Parallel focusing feature pyramid

The structure of PF-FPN is shown in Figure 3. It consists of two

parts: the FFAMmodule and the HARFMmodule. “Fuse” represents

the process of fusing multi-scale features. The features C1, C2, and C3

are derived from different levels of the backbone network,

representing information at various scales: C1 originates from

lower levels, containing high resolution and rich details; C2 comes

from the intermediate levels, balancing resolution and semantic

information; and C3 comes from the higher levels, containing

deeper semantic information despite lower resolution. The {C1, C2,

C3} features are aggregated into the FFAM module, where efficient

multi-scale feature fusion is achieved through attention mechanisms

and convolutional layers. The fused features are then distributed
Frontiers in Plant Science 05
across various detection scales through convolutional Downsampling

or Upsampling, concatenated with features of the same level, and

passed to the C2F module in Figure 2 for further fusion. The HARFM

module fuses low-level and high-level features along the same path

before aggregating them into the FFAMmodule. This parallel feature

fusion, from left to right and from the center to the edges, produces

the final {P1, P2, P3} feature layers, achieving complementary

enhancement of multi-level features. This parallel dynamic feature

fusion mechanism takes into account the diversity of feature

hierarchies and effectively avoids information loss and bias through

parallel fusion, significantly improving the model’s ability to handle

large-scale variations and similar feature targets. Compared to the

traditional FPN, which uses a unidirectional top-down feature fusion

path, this parallel fusion approach better preserves the detailed
FIGURE 1

The overall architecture of the YOLOv8 model.
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FIGURE 3

The structure of the Parallel Focusing Feature Pyramid.
FIGURE 2

Overall architecture of FD-YOLO. PF-FPN is the feature fusion network proposed in this study, which fuses three scale features from the backbone
network based on the FAFM module. Meanwhile, the HARFM module fuses low-level and high-level features within the same path and aggregates
them into the FFAM module.
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information of low-level features, avoiding the loss of detail features

that may occur in traditional methods.
3.3 Feature filtering and
aggregation module

During feature extraction, unfiltered features often introduce

noise and redundant information, which can negatively impact
Frontiers in Plant Science 07
subsequent analysis and decision-making processes. Therefore, a

method of filtering before extraction is proposed. The structure of

the FFAM module is shown in Figure 4.

The filtering step for multi-scale features benefits from the ELA

attention mechanism (Xu and Wan, 2024), which can dynamically

adjust and filter based on the characteristics of the input data. It

helps suppress background noise, such as soil textures, and

enhances small target regions like weed leaves. Compared to SE

attention (Hu et al., 2018), which only focuses on channel
FIGURE 4

Feature Filtering and Aggregation Module.
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relationships, ELA is more suitable for agricultural scenarios with

irregular spatial distributions. The feature extraction method

involves using a set of parallel depthwise separable convolutions

to extract multi-scale detailed features from the filtered and

fused features. This channel fusion mechanism helps integrate

features with different receptive field sizes, capturing extensive

contextual information.

The input feature map F of the module consists of three features

at different scales: a low-level feature Flow ∈  RH1�W1�C1, a high-

level feature Fhigh ∈  RH2�W2�C2, and a mid-level feature Fmid ∈
 RH�W�C.The mathematical expression for this process is as follows,

as shown in Equation 1:

F }low = f2d(Flow)

F }mid = f2D(Fmid)

F }high = fup(Fhigh)

(1)

Where f 2d denotes 2D convolution and; f 2D denotes

downsampling using a 2D convolution with a kernel size of 3 and

a stride of 2; f up denotes upsampling. On this basis, the high-level

feature F  }high generates the corresponding attention weight through

the ELA attention mechanism, which is used to filter the low-level

features. Meanwhile, the mid-level feature F  }mid also generates

corresponding attention weights through the ELA module to filter

its own redundant information. Subsequently, the filtered multi-

scale features are added and fused to obtain MS ∈ RH 0 �W 0 �C 0
. The

mathematical expression for this process is as follows, as shown in

Equation 2:

MS = fELA(F
 }
high)� F }low + F }high + fELA(F

 }
mid)� F }mid (2)

Where fELA represents the attention weights generated by the

ELA module. The ELA attention mechanism is crucial in the FFAM

module, as shown in Figure 4. ELA is a novel attention mechanism

that uses a simple and lightweight structure, enabling the network

to precisely focus on regions of interest. It first uses adaptive average

pooling to pool the input feature map x vertically and horizontally,

with horizontal direction as (1, H) and vertical direction as (W, 1).

For the cth  channel, the height h and width w are expressed as

shown in Equations 3 and 4:

Zh
c (h) =

1
H
 o0≤i<wxc(h, i) (3)

Zw
c (w) =

1
wo0≤j<Hxc(j, w) (4)

The two obtained feature vectors, Zh
c and Zw

c , are respectively

processed through a 2D convolution, followed by a group

normalization layer (GN), and finally a Sigmoid activation

function to generate the attention weights. The process is

illustrated in Equations 5 and 6:

f h = s(fGN(f 2d(Z
h
c  )) (5)

fw = s(fGN(f 2d(Z
w
c  )) (6)
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where f 2d denotes 2D convolution, fGN denotes group

normalization with 16 groups, and s denotes the Sigmoid

function.The horizontal and vertical outputs are multiplied to

obtain the resulting attention weights, represented as shown in

Equation 7:

fELA = fh � fw (7)

On the basis of initially filtered features, the module employs a

set of parallel depthwise separable convolutions to extract multi-

scale detailed features, enhancing the capability to capture small

targets and rich semantic information, thus improving the model’s

generalization and robustness. Inspired by PKI (Cai et al., 2024), an

Inception-style feature extraction module (Yu et al., 2024) is

introduced, as shown in Figure 4, which demonstrates good

performance in handling multi-scale target detection tasks. The

large convolutional kernels can recognize larger weed shapes, while

the small convolutional kernels focus on small target weeds.

Compared to the single-scale convolutions in the BiFPN network,

this design is more flexible in adapting to the scale variations of

weed shapes. The module uses a set of parallel depthwise separable

convolutions to capture small target features and contextual

semantic information, with direct connections added. Specifically,

according to the parameter settings of the PKI module, the optimal

kernel size for the mth DWConv is set to: km = (m + 1)� 2 + 1.The

module uses a total of 4 DWConv layers, with kernel sizes of 5, 7, 9,

and 11. These are followed by a 1×1 pointwise convolution

(Pwconv) to fuse the local and contextual features, generating the

output feature MC ∈ RH0�W0�C0
. The expression for MC is as

follows:

MC = fp(  o
1≤m≤4

fDKm
(MS)  + MS) (8)

Where fDKm
the mth 3×3 depthwise separable convolution; f p

represents the pointwise convolution. Finally, MC is combined with

the original input feature MS to obtain the rich semantic output

feature F} ∈ RH0�W0�C0
. The expression is given in Equation 9:

F0 = MS(F) + MC(MS(F)) (9)
3.4 Hierarchical adaptive recalibration
fusion module

In the feature pyramid structure, high-level features contain

rich semantic information due to their deep receptive fields but have

lower spatial resolution, while low-level features retain high-

resolution detail information but lack global semantic context.

The traditional Feature Pyramid Network (FPN) fuses multi-scale

features through simple linear summation, which can dilute

semantic information, especially making it less sensitive to low-

contrast overlapping leaf regions. Therefore, the HARFM module

recalibrates the attention weights obtained by concatenating high-

level and low-level features, enhancing the network’s focus on key

features and improving the overall performance of weed detection.

Specifically, group normalization (GN) is used instead of batch
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normalization (BN) to avoid the statistical bias issues during small-

batch training, which is crucial for agricultural images with complex

data distributions. The HARFM structure is shown in Figure 5.

The low-level feature Xl ∈  RC1�H1�W1 and the high-level

feature X2 ∈  RC2�H2�W2 have a large difference in the number of

channels, which would result in high computational cost if

concatenated directly. Therefore, the input low-level feature Xl is

passed through a 3×3 convolution to reduce the number of channels

to C2, making its dimensions consistent with X2, and then they are

concatenated to obtain a feature map Fc in 2 C2 �H2 �W2.The

process is represented as shown in Equation 10:

FC = fC(fCBS(Xl), X2) (10)

where fCBS represents the low-level feature processed by 2D

convolution, batch normalization (BN), and activation function (Silu).

The function fC denotes concatenation. The concatenated features are

then passed through a series of convolutions to generate the attention

weights. To reduce computational cost, the concatenated feature is first

passed through a 2D convolution to reduce the number of channels to 2

C2=r, resulting in F1 ∈  RC2=r�H2�W2 , expressed as Equation 11:

F1 = d(f 2d(FC)) (11)

where f 2d represents 2D convolution and d represents the ReLU

activation function. Then, two depthwise separable convolutions are

used to effectively extract low-level features while reducing the number

of parameters: The process is represented as shown in Equation 12:

F2 = d(fD(d(fD(F1))) (12)

where fD represents depthwise separable convolution. Finally, a

1×1 convolution is applied to restore the channel number to 2C2,

resulting in F3 ∈  R2C2�H2�W2 . The process is represented as shown

in Equation 13:

F3 = d(f 2d(F2)) (13)

The ReLU activation function is introduced to improve

computational efficiency. Finally, the feature map is processed through
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a Group Normalization (GN) layer and a Sigmoid function to generate

the attention weights. The output is obtained by multiplying the original

features with the weight matrix and then adding them together. The

mathematical expression is given as Equation 14:

Fout = s(fGN(F3))� FC + FC (14)
3.5 Dynamic head

The structure of the Dynamic Head is illustrated in Figure 6.

The Dynamic Head incorporates multiple attention mechanisms:

Scale-aware, Spatial-aware, and Task-aware. This design enables the

Dynamic Head to address scale variations, spatial changes, and

different task requirements, thereby improving the efficiency and

accuracy of weed detection. Specifically, multi-level features from

the feature pyramid are adjusted to the same scale and reshaped into

three-dimensional tensors. The attention mechanism is applied

according to the formula in Equation 15:

W(F) = p(F) · F (15)

where p represents the attention function, implemented

through fully connected layers. The attention mechanism operates

along three dimensions, with each attention mechanism focusing

only on a specific dimension to ensure computational efficiency.

The attention function is defined as in Equation 16:

W(F) = pC(pS(pL(F) · F) · F) · F (16)

Where pL, pS, and pC are three distinct attention functions

applied to dimensions L, S, and C respectively.

The description of the multiple attention mechanisms—Scale-

aware, Spatial-aware, and Task-aware—is as follows:

3.5.1 Scale-aware attention
The Scale-aware Attention module is designed to handle targets

of different scales by distinguishing the relative importance between
FIGURE 5

HARFM structure.
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feature layers and dynamically adjusting feature representations to

adapt to various target scales. The input features first go through an

average pooling layer to reduce the number of parameters, then are

passed through a convolution layer with a kernel size of 1, using the

ReLU activation function to better capture non-linear relationships

in the input data. Finally, a Sigmoid activation function is applied to

produce the final output. The mathematical expression is as follows

in Equation 17:

pL(F) · F = s(f (
1
SCoS,c

F)) · F (17)

where F represents the input feature tensor, F is a linear

function approximating a 1×1 convolution, and s represents the

Sigmoid activation function.

3.5.2 Spatial-aware attention
The Spatial-aware Attention module is designed to capture the

spatial consistency of targets. This module enhances the

understanding of weed locations and shapes in complex

environments by identifying consistent regions across spatial

positions and feature hierarchies. To reduce the dimensionality of

high-dimensional features, the module operates in two steps: first,

deformable convolutions are applied to achieve sparse attention

learning, followed by aggregation of feature information from

different levels at the same spatial locations. The mathematical

expression is shown as follows in Equation 18:

pS(F) · F =
1
Lo

L

l=1
o
K

k=1

Wl,k · F(l; pk + Dpk; c · Dmk) (18)

In this context, L represents the number of feature layers, and K

denotes the number of sparse sampling positions. The term pk +

Dpk indicates the spatial offset that is self-learned to focus on a

distinct region, while Dmk reflects the self-learned importance

scalar at a specific location, pk. Both Dpk and Dmk k are derived

from the median-level input features of F.
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3.5.3 Task-aware attention
The Task-aware attention module adapts to different detection

tasks. Specifically, the input feature map x is first passed through

an average pooling layer to reduce feature dimensions. Then, two

fully connected layers and a normalization layer map the features

into the range of -1 to 1. The normalized results are fed into a

hyperfunction for further computation. This design enhances the

model’s adaptability and performance across various detection

scenarios. The mathematical expression is as follows in Equation

19:

pC(F) · F = max(a1(F) · FC + b1(F),a2(F) · FC + b2(F)) (19)

where FC represents the feature slice of the cth channel, ½a1,a2

, b1, b2�  T = q( · ) is as a meta-function that learns to control

activation thresholds through dimension reduction, neural

network layers, normalization, and sigmoid transformation.
4 Experiments

4.1 Datasets

In this study, two widely varying and challenging datasets,

CottonWeedDet12 (Dang et al., 2023) and Lincoln beet (Salazar-

Gomez et al., 2021), were chosen instead of a single weed dataset or

datasets from specific environments. This approach comprehensively

tests the detection capabilities of the PD-YOLOmodel under different

environments and conditions, validating the generality, effectiveness,

and robustness of PD-YOLO in real-world applications.

(1) CottonWeedDet12 is one of the largest publicly available

multi-class weed detection datasets. The dataset covers 12 common

weed species found in cotton fields in southern U.S. states,

containing 5648 RGB images annotated for weed identification

using the VGG Image Annotator (version 2.10), with a total of 9370

bounding boxes. These images were collected under natural field
FIGURE 6

The detailed design of the Dynamic Head and the structure of each attention module.
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lighting conditions using smartphones or handheld digital cameras

from June to September 2021. The dataset is characterized by weed

occlusion, large scale differences, and small targets. Figure 7 shows

some original images from the CottonWeedDet12 dataset.

(2) Lincoln beet is a dataset designed for beet and weed

detection, specifically focused on addressing the challenge of

occlusion. The dataset contains 4405 images with a resolution of

1902×1080 pixels, and each image is annotated with bounding

boxes for both beets and harmful weeds, totaling 39,246 bounding

boxes. It is a dense dataset with small targets. These images were

extracted from videos recorded in different fields in Lincoln, UK.

The video recordings were conducted between May and June 2021,

using two cameras, with each beet field scanned at least four times

per week to capture weed development at various growth stages,

showcasing different soil types, plant distributions, and weed

species. Figure 8 shows some original images from the Lincoln

beet dataset.

Although the experiments focus on cotton and beet field

scenarios, the multi-scale features and weed morphology

similarities of the CottonWeedDet12 dataset, along with the high

density, occlusion, and small object challenges of the Lincoln Beet

dataset, are highly representative and can validate the generalizability

of FD-YOLO in complex agricultural environments. Additionally, the

PF-FPN design concept of FD-YOLO gives it a certain level of cross-

crop adaptability. The global semantic information and local detail
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features captured by PF-FPN can be generalized to weed detection

tasks in other crops (such as corn and wheat). However, the

morphological differences, planting densities, and background

complexities of different crops may affect model performance,

requiring further validation and optimization across datasets.
4.2 Performance experiment of PD-YOLO

The experiments were conducted on a 64-bit Windows 11

operating system using an NVIDIA GeForce RTX 3050Ti GPU

with 16GB of memory. The PD-YOLOmodel was implemented in a

deep learning environment using Python 3.9.16, torch 2.2.0, and

CUDA 12.1. The input image size for the model was set to 640×640,

and the model was trained for 200 epochs. During training, mosaic

data augmentation was applied, but it was turned off after the 15th

epoch. The learning rate was set to 0.01, weight decay to 0.0005, and

momentum to 0.937. The CottonWeedDet12 dataset was split in an

8:1:1 ratio for training, validation, and testing, while the Lincoln

beet dataset was split in a 7:1:2 ratio.

We conducted experiments comparing PD-YOLO with Faster R-

CNN (Ren et al., 2015), SSD (Liu et al., 2016), Yolov7-tiny (Wang

et al., 2023), Yolov8n, Yolov8s, Yolov10 (Wang et al., 2024), and RT-

DETR (Zhao et al., 2024) to evaluate the performance of PD-YOLO.

The experiments were conducted using the CottonWeedDet12 and
FIGURE 7

Illustration of images from the CottonWeedDet12 dataset.
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Lincoln beet datasets, with precision, recall, mAP@0.5, mAP@

0.5:0.95, parameters, and FLOPs as evaluation metrics.

(1) Precision, as follows in Equation 20, measures the accuracy

of the model when predicting positive classes, which is the ratio

of correctly predicted positive samples to all samples predicted

as positive.

Precision =  
TP

TP + FP
(20)

Where TP (True Positive) refers to correctly identified positive

samples, and FP (False Positive) refers to incorrectly identified

negative samples as positive.

(2) Recall, as follows in Equation 21 evaluates the model’s ability

to identify positive samples, which is the ratio of correctly

predicted positive samples to all actual positive samples.

Recall =
TP

TP + FN
(21)

Where FN (False Negative) refers to the positive samples missed

by the model.

(3) mAP, as follows in Equation 22, is a core evaluation metric in

object detection. It calculates the Average Precision (AP) for each

class, then averages them to comprehensively evaluate the model’s

detection accuracy, taking into account different classes and various
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IoU thresholds. The mathematical expression is as follows:

AP =
Z 1

0
p(r)dr

Map = 1
Co

c

j=1
Api

8>>><
>>>:

(22)

Where c represents the number of classes, and Apirepresents

the average precision for the i class.

(4) FLOPs measure the hardware performance and algorithmic

complexity, while FPS represents detection speed by measuring

the number of frames processed per second.

The experimental results on the CottonWeedDet12 are shown

in Table 2. PD-YOLO demonstrates a high precision (P) of 94.3%,

outperforming all other models. Its recall (R) reached 87.0%,

slightly lower than Yolov8s’s 90.6%, but still excellent at 87.0%,

showcasing its superior ability to identify targets. To evaluate

detection performance under different IoU thresholds, we used

the mean average precision (mAP). The results show that PD-

YOLO achieved an mAP@0.5 of 95.0%, the best among all models,

surpassing Faster-RCNN by 27.9%. When compared to other high-

performance models such as Yolov10 and RT-DETR, PD-YOLO

outperformed them by 2.3% and 2.5%, respectively. The mAP@0.5-

0.95 was 88.3%, proving its ability to maintain high detection
FIGURE 8

Illustration of images from the Lincoln beet dataset.
TABLE 2 Performance experiment of PD-YOLO on the CottonWeedDet12 dataset.

Model Precision (%) Recall (%) mAP 0.5 (%) mAP 0.5-0.95 (%) FPS

Faster-RCNN 67.1 78.6 67.1 63.9 7.05

SSD 71.9 68.8 71.9 65.0 49.9

Yolov7-tiny 92.5 88.6 94.0 84.1 102.3

Yolov8n 93.8 87.6 93.3 86.5 109.7

Yolov8s 89.8 90.6 94.2 87.1 87.9

RT-DETR 90.1 90.3 92.5 85.9 31.8

Yolov10s 89.7 86.7 92.7 86.5 72.4

PD-YOLO 94.3 87.0 95.0 88.3 42.5
The bold values in the table indicate the optimal performance of each method
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accuracy across different IoU thresholds, highlighting its strong

generalization and robustness.

The experimental results on the Lincoln beet dataset are shown

in Table 3. Compared with the baseline model Yolov8n, PD-YOLO

achieved improvements of 0.6% in precision (P), 1% in recall (R),

1.3% in mAP@0.5, and 0.9% in mAP@0.5:0.95, demonstrating that

the optimizations in PD-YOLO effectively enhance model

performance. PD-YOLO outperforms most comparison models in

both precision and recall. Specifically, PD-YOLO achieved a

precision of 75.4%, 3.9% higher than Faster-RCNN, 13.1% higher

than SSD, and slightly higher than Yolov7-tiny. In terms of recall,

PD-YOLO reached 71.4%, equal to Yolov10s and 3.6% higher than

Faster-RCNN.

The mAP@0.5 reached 76.8%, slightly lower than Yolov8s’s

76.9%, but still 3.2% and 1.2% higher than RT-DETR and Yolov10s,

respectively. Regarding mAP@0.5:0.95,PD-YOLO also led with a

score of 53.6%, outperforming SSD, RT-DETR, and YOLOv10 by

14.1%, 2.2%, and 1.7%, respectively. These results demonstrate that

PD-YOLO maintains high detection accuracy even under more

stringent evaluation criteria, showcasing the model’s robustness and

broad adaptability.

FPS measures the number of image frames processed by the

model per second, which is a critical metric for evaluating real-time

performance. PD-YOLO achieved FPS values of 42.5 and 42.9 on

the CottonWeedDet12 and Lincoln beet test sets, respectively,

meeting the requirements for real-time performance. Table 4

presents the parameter counts and computational complexity of

different detection models. Compared to some lightweight models,

such as YOLOv7-tiny, which achieved FPS values of 102.3 and 108.9

on the CottonWeedDet12 and Lincoln beet test sets, respectively,

with a computational complexity of 13.1 GFLOPs and 6.04M

parameters, PD-YOLO has a lower FPS. However, with a

computational complexity of 10.6 GFLOPs and 3.96M

parameters, PD-YOLO maintains a moderate level of

computational complexity and parameter count, achieving a good

balance between real-time performance and resource requirements.

In summary, the PD-YOLO model outperformed other

detection models on most metrics in the CottonWeedDet12 and

Lincoln Beet datasets, especially in terms of precision and mAP@

0.5:0.95. The model provides efficient processing speeds while
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maintaining moderate computational demands, making it suitable

for resource-constrained environments. It achieves an excellent

balance between detection accuracy and real-time performance.
4.3 Ablation study

We introduced the TIDE metric to comprehensively evaluate

the impact and performance of different components on the PD-

YOLO model. The TIDE metric allows us to gain a more in-depth

and holistic understanding of the role each component plays within

the overall detection system, as well as the interpretability of the

model design. The effectiveness of weed detection is significantly

influenced by the size and quality of the dataset used. Compared to

the Lincoln beet dataset, which only annotates two classes (weeds

and plants), the CottonWeedDet12 dataset provides detailed

annotations of 12 different weed categories, making it more

challenging. Given this, we selected the CottonWeedDet12 dataset

for the ablation study.

4.3.1 Comparison of different multi-scale feature
fusion strategies

Considering the morphological similarity of weeds, we designed

the Parallel Focusing Feature Pyramid (PF-FPN). To demonstrate

the ability of PF-FPN in multi-scale feature fusion, we conducted

comparative experiments with FPN (Lin et al., 2017), PA-FPN (Liu

et al., . 2018), BiFPN (Tan et al., 2020), and AFPN (Yang et al.,

2023). The experimental results are shown in Table 5.

The experimental results in Table 5 show that PF-FPN

demonstrates significant advantages across multiple metrics

compared to other multi-scale feature fusion methods.

Specifically, PF-FPN’s mAP@0.5 is 1.8% higher than FPN, 0.7%

higher than BiFPN, 1.9% higher than AFPN, and 0.8% higher than

PA-FPN. In terms of mAP@0.5:0.95, PF-FPN also achieves the

highest score, reaching 88.3%. Compared to other methods, PF-

FPN’s mAP@0.5:0.95 is 1.5% higher than FPN and AFPN, 2.4%

higher than BiFPN, and 0.6% higher than PA-FPN.

Although the parameter count and computational complexity

are higher, resulting in a lower FPS compared to other methods, the

significant improvements in precision and recall demonstrate PF-
TABLE 3 Performance experiment of PD-YOLO on the Lincoln beet dataset.

Model Precision (%) Recall (%) mAP 0.5 (%) mAP 0.5-0.95 (%) FPS

Faster-RCNN 71.5 67.8 71.4 49.8 6.90

SSD 62.3 63.0 62.3 39.5 49.9

Yolov7-tiny 76.5 71.0 76.4 51.0 108.9

Yolov8n 74.8 70.4 75.5 52.7 101.8

Yolov8s 75.6 71.9 76.9 53.7 86.6

RT-DETR 77.8 70.3 73.6 51.4 29.9

Yolov10s 74.3 71.4 75.5 51.9 67.3

PD-YOLO 75.4 71.4 76.8 53.6 42.9
The bold values in the table indicate the optimal performance of each method
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FPN’s superiority in multi-scale feature fusion. These results

suggest that PF-FPN can more effectively fuse multi-scale

features, leading to a substantial improvement in the model’s

detection performance.

We used the Grad-CAM (Selvaraju et al., 2017) heatmap

visualization method to present the results in the form of

heatmaps, which helps improve the interpretability and reliability

of the network. Figure 9 shows the heatmaps generated by different

multi-scale methods. The first row (a-e) represents the original

images, while the second to fifth rows show the heatmaps generated

by different models. In the heatmaps, darker regions indicate where

the model’s attention is more focused. Compared to other methods,

the heatmap generated by PD-YOLO shows a more pronounced

focus on weed regions. This concentrated attention helps better

capture multi-scale features in the image, thereby improving

detection accuracy, particularly when dealing with small objects

and reducing the likelihood of missed detections.
4.3.2 Comparison of different modules
This section presents the detailed experimental results of the

proposed PD-YOLO method. We conducted a comprehensive

comparison of PD-YOLO, including the FFAM module, HARFM

module, and Dyhead framework, with the baseline model YOLOv8n.

We evaluated the performance differences of the baselinemodel when

using and not using FFAM, HARFM, and Dyhead. To investigate the

specific impact of each module on model performance, we treated

FFAM and Dyhead as independent functional modules based on
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YOLOv8n, with the FFAM and HARFM modules together forming

PF-FPN. Subsequently, by applying the controlled variable method,

we analyzed the performance improvements of these modules on the

CottonWeedDet12 dataset.

By introducing the TIDE metric (Bolya et al., 2020) for model

evaluation and conducting a series of carefully designed ablation

experiments, we validated the functionality and performance of

each module in PD-YOLO. The TIDE evaluation method identifies

the following types of errors in single-class detection problems:
(1) Classification Error (Cls): The model correctly locates the

object but misclassifies its category.

(2) Localization Error (Loc): The model correctly identifies the

target category, but the bounding box is inaccurate.

(3) Classification and Localization Error (Both): The model

makes errors in both classification and localization.

(4) Duplicate Detection Error (Dupl): The model generates

multiple high-scoring bounding boxes for the same object.

(5) Background Misclassification (Bkg): The model mistakenly

classifies a generated bounding box as the background.

(6) Missed Ground Truth Bounding Box (Miss): The model

fails to detect an object that actually exists.

(7) False Positive (FP): The model incorrectly classifies a

negative instance as a positive one.

(8) False Negative (FN): The model incorrectly classifies a

positive instance as a negative one.
Table 6 presents the results of ablation experiments conducted on

the CottonWeedDet12 dataset, showing significant improvements in

several key metrics compared to the original YOLOv8n baseline.

Specifically, to address the issue of missed and false detections caused

by morphological similarity, the FAFM module was introduced,

resulting in increases of 0.5% in mAP@0.5 and 0.9% in mAP@

0.5:0.95, demonstrating the effectiveness of FAFM in enhancing small

object detection. The HARFM module strengthens weed feature

representations, improving the model’s accuracy. The combination

of the HARFM and FAFM modules forms PF-FPN, which shows

significant improvements in both mAP@0.5 and mAP@0.5:0.95,

reaching 94.2% and 87.4%, respectively. This indicates that PF-PFN

enhances the performance of multi-scale feature fusion in weed

detection. The Dyhead architecture was introduced to improve the

model’s stability and accuracy.
TABLE 4 Parameter count and computational complexity of different
detection models.

Model Parameters(M) GFLOPS(G)

Faster-RCNN 41.41 121.4

SSD 14.50 15.8

Yolov7-tiny 6.04 13.1

Yolov8n 3.01 8.1

Yolov8s 11.20 28.5

RT-DETR 19.89 57.0

Yolov10s 8.04 24.5

PD-YOLO 3.96 10.6
TABLE 5 Performance results of different feature fusion methods.

Model
Parameters

(M)
GFLOPS (G)

Precision
(%)

Recall (%) mAP0.5 (%) mAP0.5-0.95 (%) FPS

FPN 3.15 9.0 93.4 86.1 93.2 86.8 56.4

BIFPN 2.00 7.1 92.5 87.4 93.2 85.9 97.6

PA-FPN 3.49 9.6 92.4 88.2 94.2 87.7 56.3

AFPN 2.60 8.4 93.7 87.2 93.1 86.8 54.4

PF-FPN 3.96 10.6 94.3 87.0 95.0 88.3 42.5
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Compared to the baseline model, PD-YOLO showed a 0.6%

decrease in recall (R), while precision (P), mAP@0.5, and mAP@

0.5:0.95 increased by 0.5%, 1.7%, and 1.8%, respectively. PD-

YOLO’s parameter count increased by 0.95M, and GFLOPs

increased by 2.5G, resulting in only marginal computational cost
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increases but significantly better performance across multiple

key metrics.

Table 7 presents the results evaluated using the TIDE method,

providing a deeper understanding of the performance improvements

in the modified model. The YOLOv8n model had a relatively high
FIGURE 9

Heatmaps of different images. The first row (a-d) shows the original images of different weeds, while the second to fifth rows (a-d) display the
corresponding heatmaps generated by the model.
TABLE 6 Performance results of the ablation experiments.

Yolov8 FAFM HARFM Dyhead Parameters (M) GFLOPS (G) P (%) R (%) map0.5 (%) map0.5-0.95 (%)

✓ 3.01 8.1 93.8 87.6 93.3 86.5

✓ ✓ 3.10 8.4 93.1 89.3 93.8 87.6

✓ ✓ 3.49 9.6 92.4 88.2 94.2 87.7

✓ ✓ ✓ 3.51 9.3 93.4 87.7 94.2 87.4

✓ ✓ ✓ ✓ 3.96 10.6 94.3 87.0 95.0 88.3
"✓" indicates the activation of the corresponding module.
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background misclassification rate (Bkg). After adding the FAFM

module, the Bkg rate decreased by 0.6%. As shown in the TIDE

metric statistics in Figure 10, the proportion of background

misclassification significantly decreased, demonstrating that FAFM

effectively reduces background errors in weed detection.

After combining FAFM and HARFM, the model performed

well across multiple metrics, achieving low classification error (Cls)

and missed detection (Miss) rates of 0.87% and 0.99% respectively.

This indicates that PF-FPN classifies similar weeds more accurately.

The PD-YOLO model excels in multiple aspects, with reductions in

Cls, localization error (Loc), both classification and localization errors

(Both), duplicate detection (Dupl), missed detections (Miss), false

positives (FP), and false negatives (FN) by 0.43%, 0.17%, 0.04%, 0.05%,

0.2%, 1.43%, and 0.31%, respectively, while Bkg remained unchanged.

This shows that PF-FPN enhances the accuracy of classifying similar

weeds. As shown in Figure 10, PD-YOLO demonstrates superior

performance in both localization and classification, with only 0.02% of

Dupl errors, indicating that the model rarely makes simultaneous errors

in classification and localization. This further validates the improvements

in the model’s accuracy and its ability to reduce the risks of

misclassification, localization errors, and missed detections.

The PD-YOLO model significantly reduces false positive and

background error rates while maintaining high precision and recall,

thus improving overall detection performance, though its

processing speed is slower. These experimental results clearly

demonstrate that, compared to the original YOLOv8n algorithm,

the PD-YOLO model significantly optimizes and enhances

performance, validating the effectiveness of the algorithm

improvements proposed in this study.

We evaluated the performance of weed detection in various

scenarios, including dense weed clusters, partial occlusion, multi-

class detection, small-sized weeds, and other complex conditions. The

detection results were visualized and compared to observe the

algorithm’s ability to identify targets in terms of location, size, and

category information. Figure 11 shows some of the results, where the

first row displays the original YOLOv8 results and the second row

shows the improved PD-YOLO model’s detection outcomes. In

Figure 11, due to the small weed target on the left edge, YOLOv8

exhibited missed detections and false positives, while the improved

model successfully avoided these issues. In Figure 11, the model was

able to address detection errors caused by morphological differences

within the same weed species, resulting in more accurate bounding

boxes. In Figure 11, the improved model reduced false positives in

scenarios involving occlusion. Figure 11 presents a challenging sample
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with dense, small targets, and the improved model significantly

enhanced detection performance in this difficult scenario.

With these improvements, the model’s detection performance

in complex conditions was significantly enhanced. In practical

applications, especially when detecting multiple weed species in

complex environments, PD-YOLO can more reliably identify and

locate targets, reducing both false positives and missed detections.
5 Discussion

This study improves and optimizes the YOLOv8 model,

enhancing its performance in weed detection tasks and

developing a novel weed detection model, PD-YOLO. The FAFM

and HARFM modules were introduced in this study, and based on

these modules, a Parallel Focusing Feature Pyramid was proposed

to replace the original PA-FPN, improving the model’s feature

fusion capability. Additionally, a dynamic detection head was

incorporated to enhance the model’s detection stability. These

methods improve the classification accuracy of the traditional

YOLOv8n model in weed detection and reduce both missed

detections and false positives.

Section 4.1 focuses on the performance comparison of different

object detection models. The results in Tables 1 and 2 show that FD-

YOLO achieves an mAP@0.5 of 95.0% on the CottonWeedDet12

dataset and 76.8% on the Lincoln Beet dataset. This difference may be

attributed to several factors: first, the Lincoln Beet dataset only

contains two labeled categories—”weeds” and “beetroot”—while

CottonWeedDet12 includes 12 subcategories of weeds, which tests

the model’s fine-grained classification ability; second, the weed

distribution in the Lincoln Beet dataset is denser, and the target

sizes are smaller, leading to increased difficulty in localization in

dense occlusion scenarios; furthermore, the images in the Lincoln

Beet dataset were captured under the variable field lighting conditions

in the UK, with diverse background soil types, further increasing the

detection complexity. FD-YOLO’s PF-FPN enhances multi-category

feature discrimination through the FFAM and HARFM modules,

demonstrating clear advantages on CottonWeedDet12, but the high-

density targets in Lincoln Beet require stronger spatial context

modeling capabilities. The current model still has room for

improvement in the spatial awareness attention mechanism of the

Dynamic Head (DyHead). Future work could focus on introducing

adaptive resolution adjustment strategies or enhancing spatial

attention weight distribution to further improve the model’s
TABLE 7 TIDE metrics of the ablation experiments.

Yolov8 FAFM HARFM Dyhead Cls (%) Loc (%) Both (%) Dupl (%) Bkg (%) Miss (%) FP (%) FN (%)

✓ 1.30 0.86 0.06 0.11 1.47 1.30 4.74 2.06

✓ ✓ 1.05 1.87 0.01 0.06 0.97 1.66 2.73 3.76

✓ ✓ 1.18 0.86 0.86 0.04 1.18 1.25 4.03 2.00

✓ ✓ ✓ 0.87 0.99 0.09 0.11 1.47 1.11 3.76 2.06

✓ ✓ ✓ ✓ 0.87 0.69 0.02 0.06 1.47 1.10 3.31 1.75
"✓" indicates the activation of the corresponding module.
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performance in high-density scenarios. These differences indicate

that FD-YOLO requires fine-tuning or data augmentation for specific

environments in cross-regional and multi-crop scenarios.

The results in Table 4 show that PD-YOLO has fewer

parameters and lower computational complexity than lightweight

models like YOLOv7-tiny, positioning it as an efficient lightweight

model. However, its FPS performance still lags significantly, and it
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may face challenges such as insufficient frame rates and image blur

in high-speed agricultural robots. Further optimization of

computational efficiency or the adoption of hardware acceleration

solutions is needed. Additionally, future research could explore

techniques such as model pruning, quantization, and hardware

acceleration to better adapt to low-power embedded devices,

ensuring its wide applicability in real-time agricultural applications.
FIGURE 11

(a-d) represent different weed images. The first row shows the YOLOv8 results, and the second row shows the FD-YOLO results. Green boxes
represent correct detections, blue boxes represent false detections, and red boxes represent missed detections. Compared to YOLOv8, FD-YOLO
reduces missed detections in small target edge weeds (a), morphological differences (b), Mutually occluded weeds (c), and dense occlusion (d)
scenarios, with more accurate bounding boxes, thanks to the multi-scale feature fusion of PF-FPN and the dynamic attention mechanism
of DyHead.
FIGURE 10

Statistical charts of various TIDE metrics. (a) Yolov8, (b) Yolov8n+FAFM, (c) Yolov8n+Dyhead, (d) Yolov8+FAFM+HARFM, (e) Yolov8+FAFM
+HARFM+Dyhead.
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In practical agricultural robotics applications, FD-YOLO can

integrate with SLAM technology to enable “detection-navigation-

operation” integration. Following Zhang W et al (Zhang et al.,

2024), combining 2D LiDAR and visual sensors with YOLOv3

algorithm allows target detection and information mapping onto

2D grid maps for efficient path planning, eliminating

computational latency-induced trajectory deviations in traditional

models. Researchers applied the trained DIN-LW-YOLO model to

autonomous laser weeding robots in strawberry fields, with robot

speed set at 0.50 m/s and Intel Realsense D435i camera mounted

600 mm above ground at 30 fps. Field tests demonstrated 92.6%

weed control rate and 1.2% seedling damage rate (Zhao et al., 2025).

Moreover, FD-YOLO’s lightweight design enables edge device

deployment for future weed management. Similar studies

deployed customized YOLOv7 models on NVIDIA Jetson Xavier

NX platforms, integrating robotic frame spraying systems that

recognize Amaranthus palmeri in cornfields for real-time spot

spraying (Balabantaray et al., 2024).

Furthermore, the ablation experiments validated the roles and

necessity of each module and their impact on model size, as

discussed in Section 4.2. The experimental results demonstrated

the impact of each module on the model’s recognition accuracy, as

well as a comparison of different feature pyramids. In PF-FPN, the

excessive upsampling and downsampling during feature

aggregation and distribution by the FFAM module led to a loss of

detailed features. Therefore, the introduction of the HARFM

module reduced this loss, showcasing efficient feature fusion

capabilities. Despite the increase in computational cost and

detection speed, the improvements in multi-scale feature fusion

and small object detection enable the PD-YOLO model to perform

well in scenarios involving high-density, partial occlusion, and

multi-class weeds. However, in practical applications,

environmental adaptability still needs to be considered. The

robustness of the model under low-light conditions or extreme

weather has not been validated. The current dataset is primarily

based on natural lighting conditions, which may limit the model’s

stability in complex lighting scenarios.

The systematic analysis of the TIDE metrics provides clear

directions for model optimization. Experimental results show that

FD-YOLO significantly outperforms the baseline model in terms of

classification errors and localization errors, but there is still room

for further optimization. To address classification errors, future

work could introduce fine-grained feature alignment strategies to

enhance the model’s ability to distinguish between morphologically

similar weeds. The residual localization errors may stem from

blurred object boundaries in complex occlusion scenarios, which

could be improved by integrating deformable convolutions or

refining the bounding box regression loss function to boost

localization accuracy. Additionally, the background misdetection

rate remains relatively high, indicating that the current model lacks

sufficient suppression of background noise such as soil texture. To

address this, more diverse background samples should be included

during data augmentation, or a lightweight background-aware

attention module could be designed.
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6 Conclusions and future work

This study proposes PD-YOLO, a novel computer vision

method specifically designed for real-time weed detection. The

architecture of PD-YOLO combines the Parallel Focusing Feature

Pyramid (PF-FPN) and Dyhead framework, built upon the

YOLOv8n framework. The FAFM module optimizes feature

fusion, enhancing the model’s representational capabilities, while

the HARFM module strengthens weed-specific features, improving

weed identification. The PF-FPN network, developed with

consideration of weed morphological characteristics, serves as an

effective feature fusion network for weed detection. The Dyhead

framework improves the design of the detection head, ensuring

both accuracy and stability in detection results.

The research results show that, compared to the baseline model,

PD-YOLO improves mAP by 1.7% and 1.8% (at thresholds of 0.5

and 0.5-0.95, respectively). While maintaining a lightweight

structure, PD-YOLO outperforms current mainstream object

detection algorithms, demonstrating superior performance.

Moreover, although the model’s detection speed meets real-time

detection requirements, there is potential for further optimization

in real-world field environments.

Future research will focus on the following directions:

(1)Data Augmentation and Multimodal Fusion: Integrating

multispectral imaging data to enhance the model’s detection

capability under complex lighting and occlusion conditions, and

expanding data diversity through synthetic data augmentation (e.g.,

simulating rain, fog, and shadows).

Lightweight and Efficiency Optimization: Developing an

FD-YOLO-Tiny variant that combines the vMamba (Zhu et al.,

2024) architecture to improve the model’s backbone, reducing

computational overhead while maintaining accuracy, and adapting

it for deployment on edge devices.

(2)Error-Driven Model Improvement: Based on the analysis

results from the TIDE metrics, specifically optimizing the false

negative and false positive modules. This can be achieved by

strengthening the training of negative samples, improving the loss

function, or adjusting the post-processing stage of the detection

algorithm to reduce misdetections and missed detections.

(3)Cross-Scene Validation and Transfer Learning: Expanding

experimental validation to include different crops, such as corn and

wheat, and varying agricultural environments. Combining transfer

learning techniques to enhance the model’s generalization ability,

ensuring its practicality in diverse agricultural settings.
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