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Barnyard grass, a pernicious weed thriving in rice fields, poses a significant

challenge to agricultural productivity. Detection of barnyard grass before the

four-leaf stage is critical for effective control measures. However, due to their

striking visual similarity, separating them from rice seedlings at early growth

stages is daunting using traditional visible light imaging models. To explore the

feasibility of hyperspectral identification of barnyard grass and rice in the seedling

stage, we have pioneered the DeepBGS hyperspectral feature parsing

framework. This approach harnesses the power of deep convolutional

networks to automate the extraction of pertinent information. Initially, a sliding

window-based technique is employed to transform the one-dimensional

spectral band sequence into a more interpretable two-dimensional matrix.

Subsequently, a deep convolutional feature extraction module, ensembled

with a bilayer LSTM module, is deployed to capture both global and local

correlations inherent within hyperspectral bands. The efficacy of DeepBGS was

underscored by its unparalleled performance in discriminating barnyard grass

from rice during the critical 2-3 leaf stage, achieving a 98.18% accuracy rate.

Notably, this surpasses the capabilities of other models that rely on

amalgamations of machine learning algorithms and feature dimensionality

reduction methods. By seamlessly integrating deep convolutional networks,

DeepBGS independently extracts salient features, indicating that hyperspectral

imaging technology can be used to effectively identify barnyard grass in the early

stages, and pave the way for the development of advanced early

detection systems.
KEYWORDS

hyperspectral features, rice, barnyard grass, convolutional neural network, DeepBGS,
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1 Introduction

Barnyard grass, a pernicious weed with global ramifications,

presents a formidable threat to agricultural ecosystems. Competing

relentlessly with rice for essential resources such as light, water,

nutrients, and space, it undermines the productivity of rice crops.

Moreover, its presence fosters a conducive environment for pests

and diseases, exacerbating the risk of diminished crop quality and

yield. Early intervention is paramount in mitigating the spread of

barnyard grass, ideally before it attains the 3-4 leaf stage, as its

resistance to herbicides escalates with maturity. The eradication of

mature barnyard grass poses considerable challenges, often

necessitating excessive chemical interventions. Such practices not

only foster herbicide resistance but also precipitate environmental

degradation, jeopardizing the health of rice crops.

Precise field monitoring stands as the linchpin for timely

barnyard grass control. However, conventional methods of

manual identification are marred by their labor-intensive and

time-consuming nature, rendering large-scale monitoring of

barnyard grass outbreaks impractical. Hence, there arises an

urgent need for the development of high-throughput and precise

early detection techniques to effectively curb its proliferation, curtail

herbicide usage, and enhance overall operational efficiency. In

contrast to the conventional dryland weed identification methods,

the recognition of weeds in rice fields predominantly relies on

unmanned aerial vehicle (UAV) remote sensing image

segmentation techniques. For instance, Huang et al. (2018)

proposed a weed mapping and prescription map generation

model, leveraging an enhanced fully convolutional network -4

(FCN-4) architecture for identifying Cyperus iric and Leptochloa

chinensis in rice fields. Their approach yielded impressive overall

accuracy and mean intersection over union (mean IU) scores of

0.9196 and 0.8473, respectively. Moreover, Ma et al. (2019)

introduced a semantic segmentation method based on a fully
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convolutional network with the segmentation network (SegNet)

model, achieving a mean average precision (MAP) of 0.927 by

directly extracting features from initial RGB images and recognizing

pixels corresponding to rice, background, and Sagittaria trifolia in

paddy field images. Additionally, Lan et al. (2021) proposed

improved feature fusion branch-bilateral segmentation network

V2 (FFB-BiSeNetV2) models for real-time identification of rice

weeds by UAV low-altitude remote sensing, achieving a pixel

accuracy of 93.09% and a mean Intersection over union ratio of

80.28%. Furthermore, Kamath et al. (2020) investigated multiple

classifier systems built using support vector machines (SVM) and

random forest (RF) classifiers for classifying paddy crops and weeds

from digital images, achieving an accuracy of 91.36%. Peng et al.

(2022) devised the weed detection model based on RetinaNet,

specifically addressing the challenge of overlapping between rice

and various weed species. Their model achieved exceptional results

with a high MAP of 94.1% on a dataset containing rice and eight

distinct weed categories for object detection. Indeed, discerning

barnyard grass from rice seedlings during their initial growth phases

presents a formidable challenge, primarily owing to their

remarkably similar visual appearances (Figure 1). This visual

conundrum poses a significant obstacle for traditional visible-light

imaging models, which often struggle to differentiate between the

two with precision. Consequently, as of now, there exists no viable

method leveraging visible light imaging models for accurately

identifying barnyard grass seedlings.

Hyperspectral (HS) emerges as a potent tool for extracting both

structural and physiological insights from plants, effectively

circumventing the limitations of RGB imaging in distinguishing

species with similar phenotypes (Mishra et al., 2017; Amigo and

Grassi, 2019; Liu et al., 2021; Sarić et al., 2022). Li et al. (2021)

demonstrated the efficacy of hyperspectral imaging data coupled

with machine learning techniques in discriminating between two

broadleaf weed species, Ranunculus acris (Giant buttercup) and
FIGURE 1

Comparison of seedling morphology between rice and barnyard grass. Plants designated as 1, 3, 5, and 7 represent rice, while those marked as 2, 4,
6, and 8 correspond to barnyard grass.
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Cirsium arvense (Californian thistle), achieving an impressive

accuracy of 89.1%. Similarly, Diao et al. (2022) proposed a

practical technical approach for rapidly training and identifying

hyperspectral images of corn seedlings and weeds using a

lightweight three-dimensional convolutional neural network,

achieving an outstanding average recognition accuracy of 98.58%.

It’s noteworthy that while Zhang et al. (2019) developed a SVM-

based classification model leveraging six crucial spectral features

selected by successive projections algorithm (SPA), yielding a

commendable recognition rate of 97% for barnyard grass, weedy

rice, and rice. However, their focus was primarily on the tillering

stage rather than the seedling stage.

A plethora of wavebands in HS data offers rich information but

also presents analytical challenges (Sarić et al., 2022). Crafting

algorithms to dissect hyperspectral image data is pivotal in

maximizing the potential of hyperspectral technology. In this

study, we propose an automatic framework, deep learning-based

identification model for barnyard grass in seeding stage (DeepBGS),

for hyperspectral feature extraction based on convolutional neural

networks (CNNs), aimed at precisely recognizing barnyard grass

and rice at the seedling stage. Initially, preprocessed hyperspectral

band sequences undergo segmentation into multiple overlapping

subsequences, which are then transformed into a sequence matrix.

Subsequently, a convolutional module featuring an attention

mechanism is constructed to automatically extract correlation

information between local and global bands. Independent tests

unequivocally the superiority of DeepBGS over the reference

model, achieving 98.18% accuracy in distinguishing barnyard

grass and rice at the 2-3 leaf stage.
2 Materials and methods

2.1 Data acquisition

The study employed rice and barnyard grass specimens cultivated

indoors under meticulously controlled conditions. These conditions

ensured a temperature range of 25-28°C, humidity levels ranging

between 40-70%, and a regulated 12-hour exposure to light. Only

specimens of impeccable quality, devoid of any pest infestations or

diseases, were chosen for leaf hyperspectral data collection. Spectral

reflectance measurements of the leaves were conducted using a ground

truth spectrometer (Field Spec Pro FR2500 spectrometer). This device

boasted a wavelength range spanning from 350 to 2500 nm, with a

sampling interval of 1.4 nm and a spectral resolution of 3 nm within

350-1000 nm range, and a sampling interval of 2.0 nm with a spectral

resolution of 10 nm within 1000-2500 nm range. Leaf blade

measurements were meticulously performed using leaf clamps within

the canopy position of plants. Prior to each measurement, adjustments

to the spectrometer parameters were meticulously carried out using the

RS3 software, and spectral calibration against a whiteboard was

conducted. To ensure robustness and accuracy, five consecutive

samples were collected for each measurement, and the average value

was calculated. A total of 660 samples were collected across three

batches, comprising 313 rice and 347 barnyard grass specimens. The

training set included 495 samples, incorporating data from the first two
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batches, with 243 rice and 252 barnyard grass samples. The test set,

derived from the third batch, consisted of 70 rice and 95 barnyard

grass specimens.
2.2 Data preprocessing

The dataset amassed in this investigation comprises spectral band

reflectance data, with each sample encapsulating 2151 band reflectance

values (Figure 3A). To fortify the reliability of the spectral data for

subsequent analysis, four preprocessing methodologies were employed:

standard normal variate transformation (SNV) (Bi et al., 2016), moving

average (MA) (Timothy and Anuradha, 2023), savitzky golay

smoothing (SG) (Luo et al., 2005), and mean centering (MC)

(Ijomah, 2019). These methods served to mitigate data noise and

rectify wavelength shifts, thus enhancing the overall quality and

integrity of the spectral data. SNV, for instance, functions to rectify

scale differences such as tilts or spikes, thereby accentuating the

dynamic components of the spectral data. MA, on the other hand,

operates by smoothing the dataset through point averaging within a

window, effectively mitigating noise influence and suppressing periodic

noise. SG, renowned for its efficacy in managing spikes and data

variations, smooths the signal by attenuating high-frequency noise

components. Lastly, MC plays a pivotal role in dataset rectification,

eradicating biases stemming from measurement disparities, inherent

variations, or substantial value discrepancies. The original spectral

reflectance data and preprocessed data are shown in Figure 2.
2.3 Subsequence division

Consider a comprehensive breakdown of the preprocessing

steps: employing a window length denoted as “w” and a sliding

step designated as “s”, the preprocessed hyperspectral data,

comprising “m” bands, is meticulously partitioned into (m-w)/s+1

segments. Notably, the final subsequence necessitates an extension

in reverse to address any potential length discrepancies. Following

this segmentation process, the divided subsequences undergo

transformation into a two-dimensional matrix, as depicted in

Figure 3B. This transformation sets the stage for the extraction of

local band correlation features through the utilization of a

sophisticated deep convolutional network.
2.4 Feature extraction module of DeepBGS

Following the subsequence transformation, each sample is

epitomized by an n×w two-dimensional matrix, wherein n signifies

the number of subsequences and w denotes the window length. This

matrix stands as the foundational input layer of DeepBGS.

Subsequently, the tensor of the n×w matrix traverses through the

initial convolutional layer, endowed with rectified linear unit (ReLU)

activation and a batch normalization (BN) layer. This layer, housing 16

filters of size 3×4 with a stride of 1, amplifies the dimensionality of the

initial single-channel data, thus enhancing network expressiveness. The

data then progresses through three consecutive feature extraction
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convolutional modules, each composed of two 3×3 convolutional

layers, an attention mechanism layer, and a 2×2 max pooling layer.

Notably, the attention mechanism layer harnesses a 3×3 convolutional

kernel from the convolutional block attention module (CBAM),

bolstering network feature expression and local region expression by

integrating both channel and spatial attention. Meanwhile, the

maximum pooling layer down samples the feature layer with a step

size of 2×2. These three convolutional modules contain 32, 64, and 128

filters, respectively. Subsequent to this, the data is downscaled using

two convolutional layers, each containing 64 filters, and then merged

into a two-layer long-short term memory (LSTM) module with 32

hidden units, and two ReLU-based fully connected layers, featuring 32

and 64 output units, respectively, are incorporated. Regularization is

implemented with a dropout probability of 50%, fortifying model

generalization. Finally, the output layer employs the Softmax function

to yield the probability of a sample belonging to rice. The parameters of

DeepBGS are optimized using the Adam Optimizer, with a learning

rate of 5e-6, a weight decay parameter of 0.0001, and training epochs

and batch sizes set at 150 and 11, respectively. The structure of

DeepBGS is shown in Figure 3C.
2.5 Reference models

Four traditional machine learning methods, including decision tree

(DT) (Song and Lu, 2015), random forest (RF) (Breiman, 2001), SVM

(Hearst et al., 1998) and extreme gradient boosting (XGBoost) (Osman

et al., 2021) classifiers were used alongside four deep learning models—

DeepBGS-NoLSTM, ResNet, VGG andmulti-layer perceptrons (MLP)
Frontiers in Plant Science 04
(Riedmiller, 1994)— to evaluate the performance of DeepBGS model.

The DT model was implemented using the R package part 4.1-15, and

the tree was pruned by the optimal C parameter value with the least

cross-validated error. For the RF model, The R package random Forest

4.6-14 was utilized, with parameters ntree and mtry set to 500 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

No :  of features
p

, respectively. The radial basis function (RBF) based-

SVM model was executed using the Library for SVM, available at

https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/index.html, A 10-fold

cross-validation (10 CV) approach on the training set was used

to optimize penalty parameters C (C∈[2-5, 215]) and g parameter g

(g∈[2-15, 23]). XGBoost was implemented based on the Python

sklearn library with default parameters. The MLP consists of

three fully connected layers, where each hidden layer followed by

a non-linear transformation employing the ReLU activation

function. The output parameters of the initial two hidden layers

were configured to have 1024 units, while the output layer

employed the softmax activation function. DeepBGS-NoLSTM

was akin to DeepBGS but the LSTM module was replaced by full

connectivity layer. ResNet and VGG adopted 18-layer and 10-layer

network architectures, respectively, which were implemented using

the PyTorch framework.
2.6 Feature engineering

The primary challenge inherent in the analysis of multivariate

hyperspectral data analysis lies in the necessity to represent a

considerable number of wavebands, which significantly elevates

the dimensionality of the data. Therefore, performing hyperspectral
FIGURE 2

Raw spectral reflectance data and preprocessed data. The plots marked as (A–E) represent the reflectance map of the original spectral data, the SNV
preprocessing result, the MA preprocessing result, the SG preprocessing result and the MC preprocessing result.
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data dimension reduction becomes essential to mitigate data

redundancy and extract valuable knowledge (Sarić et al., 2022). In

this study, three types of feature engineering methods were

explored, including feature dimensionality reduction, feature

selection, and vegetation indices, to enhance the model’s

prediction performance with high-dimensional bands.

Two techniques, principal component analysis (PCA) (Wold et al.,

1987) and t-distributed stochastic neighbor embedding (t-SNE)

(Belkina et al., 2019), were employed for feature dimensionality

reduction. The determination of final dimensions was grounded on

the principle of achieving optimal 10-fold cross-validated accuracy

within the training set. Implementation of both PCA and t-SNE was

facilitated through the Python sklearn library. Successive projections

algorithm (SPA, https://gitee.com/aBugsLife/SPA) (Araújo et al.,

2001) and consecutive adaptive reweighted sampling (Li et al.,

2009) (CARS, https://gitee.com/aBugsLife/CARS) were utilized for

the selection of important hyperspectral spectral bands. SPA

employs a method that initially selects variables with the lowest

covariance and redundancy while maximizing the projection vector

in vector space. Subsequently, the final retained bands are

determined based on the optimal principle of 10-fold cross-

validated accuracy within the training set. Conversely, CARS

utilizes a different approach. It began by retaining points with

larger absolute weights of the regression coefficients in the partial

least squares regression (PLS) model through adaptive reweighted

sampling (ARS). It then iteratively builds PLS models based on the

new subset, selecting wavelengths with the smallest root mean

square error (RMSE) of cross-validation for the PLS model as the

characteristic wavelengths after several calculations.
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Ultimately, we diminished the dimensionality of the original

data features by extracting spectral vegetation indices. A total of

types of vegetation indices were extracted, including normalized

difference vegetation index (NDVI), ratio vegetation index (RVI),

triangular vegetation index (TVI), photochemical reflectance index

(PRI), and normalized pigment chlorophyll ratio index (NPCI).

These indices were constructed using the following formula:

NDVI(r1, r2) =
NIR(r1) − VR(r2)
NIR(r1) + VR(r2)

(1)

RVI(r1, r2) =
NIR(r1)
VR(r2)

(2)

TVI = 0:5� ½120� (R750 − R550) − 200� (R650 − R550)� (3)

PRI =
R531 − R570

R531 + R570
(4)

NPCI =
R680 − R430

R680 + R430
(5)

The bands r1 and r2 correspond to distinct regions of the light

spectrum, with r1 encompassing the near-infrared region and r2
encompassing the infrared region. Specifically, r1 comprises wave

lengths of 724nm, 738nm, 750nm, 764nm, 776nm, 790nm, 802nm,

and 814nm, while r2 consists of 601nm, 605nm, 614nm, 627nm,

6336nm, 644nm, 652nm, 660nm, 669nm, and 677nm. Leveraging

these bands, we derived 80 features for the NDVI and 80 features for
FIGURE 3

Workflow of DeepBGS. (A) illustrates the process of raw data acquisition and preprocessing. (B) shows the process of subsequence partitioning. (C)
depicts the backbone of DeepBGS.
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the RVI. Additionally, we formulated a TVI feature utilizing

wavelengths 750nm, 550nm, and 650nm, a PRI feature using wave-

lengths 531nm and 570nm, and an NPCI feature using wavelengths

680nm and 430nm. In total, 163 vegetation index features were

extracted from the hyperspectral data.
2.7 Evaluation indicators

Accuracy (ACC), area under the curve (AUC), and matthews

correlation coefficient (MCC) are utilized as evaluation metrics to

assess the performance of the model predictions. These metrics are

defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(6)

MCC =
(TP + TN) − (FN + FP)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FN)� (TN + FP)� (TP + FP)� (TN + FN) 
p

(7)

Where TP, TN, FP, and FN represent true positive, true negative,

false positive, and false negative, respectively. The receiver operating

characteristic (ROC) curve illustrates the true-positive rate against the

false-positive rate (1 - specificity) for various thresholds. The AUC of

the ROC curve is analyzed to provide a comprehensive metric for

evaluating prediction methods. Higher values of ACC, MCC, and

AUC indicate better prediction ability.
3 Results

3.1 A conventional machine learning-based
model for classifying barnyard grass and
rice at seedling stage

We initially assessed the performance of traditional machine

learning models in aiding the hyper-spectral differentiation between

barnyard grass and rice during the seedling stage. Additionally, we
Frontiers in Plant Science 06
investigated the impact of various data preprocessing methods on

model performance. Hyperspectral data, subjected to diverse

various preprocessing techniques, constituted the input data for

the traditional machine learning models, and the prediction results

for independent test set of each model are illustrated in Figure 4.

Among the four traditional machine learning models, XGBoost

exhibited the most predictive performance, with average ACC,

MCC, and AUC values reaching 0.9261, 0.8499, and 0.9579,

respectively. Following XGBoost, the SVM model emerged as the

second best, achieving average ACC, MCC, and AUC of 0.9224,

0.8415, and 0.9565, respectively. In contrast, the DT model

displayed the lowest prediction accuracy, with average ACC,

MCC, and AUC metrics of only 0.8982, 0.7920, and 0.8920,

respectively. Compared to the original data, all four types of

preprocessing methods effectively improved the model prediction

performance, with SNV exhibiting the most notable improvement.

SNV yielded average ACC, MCC, and AUC values of 0.9212,

0.8420, and 0.9653, respectively. Overall, irrespective of

preprocessing or the choice of machine learning algorithms, the

ACC and MCC of the hyperspectral-based machine learning model

consistently surpassed 0.88 and 0.76, respectively, in distinguishing

between barnyard grass and rice during the seedling stage. These

findings underscore the potential of hyperspectral data in

distinguishing between barnyard grass and rice at the seedling stage.
3.2 Classification model based on feature
dimensionality reduction

To enhance the predictive accuracy of our models, we employed

three distinct feature engineering strategies aimed at reducing its

dimensionality: feature dimensionality reduction, feature selection,

and vegetation index conversion. We applied spectral data after

SNV pre-processing for both feature dimensionality reduction and

feature selection, while vegetation index conversion was conducted

based on the original spectral reflectance data. For PCA and t-SNE,

we determined the optimal retained dimensionality by evaluating

10-fold cross-validation ACC using XGBoost on training set.
FIGURE 4

Comparative analysis of various evaluation metrics for traditional machine learning with different preprocessing techniques. (A–C) show the
performance comparison of ACC, MCC, and AUC respectively. The numbers above the bars in the figure indicate the average scores of the metrics
for the five models under each preprocessing algorithm.
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PCA retained thirty principal components, while t-SNE retained

twelve features. The SPA band selection process and the CARS band

selection process were visualized in Figure 5. As the number of

characteristic bands increases, the RMSE value decreases and levels

off. When the RMSE stabilizes and reaches its optimum, the value is

0.2462. At this point, the SPA retained 16 bands, comprising

wavelengths such as 678nm, 457nm, 693nm, 1410nm, 2182nm,

1951nm, 354nm, 2481nm, 376nm, 2483nm, 381nm, 374nm,

1619nm, 2485nm,2486 and 2488nm. In Figure 5A, the number of

bands gradually decreases and stabilizes, while Figure 5B shows a

decreasing trend followed by an increase. At a sampling number of

21, the RMSECV reaches its minimum, leading to the selection of

the bands obtained from the 21th sampling as the characteristic

wavelengths, totaling 108 wavelengths. Additionally, we derived 163

vegetation index features through band conversion.

Drawing from important features retained by various feature

engineering strategies, we constructed traditional machine learning

models and presented the results of independent tests in Table 1.

Utilizing vegetation index features, the average ACC and MCC of
Frontiers in Plant Science 07
the four machine learning models were 0.9152 and 0.8311,

respectively, notably lower than those of the prediction model

based on the full band, where the average ACC and MCC were

0.9212 and 0.8420, respectively. Following PCA downscaling, the

model prediction accuracy showed slight improvement Compared

to the full band except for the DT model, registering an average

ACC andMCC of 0.9353 and 0.8712, yet, the DTmodel experiences

a slight reduction, primarily observed in the decline of ACC and

MCC to 0.8242 and 0.6583. However, t-SNE, SPA, and CARS

feature downscaling methods exhibited enhanced model

prediction performance compared to full-band modeling. Among

these, the t-SNE feature dimensionality reduction method

demonstrated the most significant improvement, with an average

ACC and MCC of 0.9409 and 0.8800, respectively. The SVM model

based on the retained features of SPA exhibited the best prediction

outcomes, attaining an ACC and MCC of 0.9455 and 0.8886,

respectively. These findings indicate the effectiveness of feature

dimensionality reduction methods, particularly t-SNE, in

enhancing the performance of traditional machine learning models.
FIGURE 5

Feature selection process. The plots marked as (A, B) represent the CARS feature selection process, and those marked as (C, D) represent the SPA
feature selection process. (A) shows how the number of selected variables changes as the sample size increases and (B) illustrates the variation in
cross-validation RMSE values with an increasing number of samples. the process of variable selection and the results of variable selection based on
SPA algorithm are presented in the diagrams labeled (C, D), respectively.
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3.3 DeepBGS-based model for
classification of barnyard grass and rice at
seedling stage

Transforming linear hyperspectral reflectance data into 2D

matrix data through subsequence division is crucial for extracting

spectral global and local correlation features by DeepBGS.

Therefore, our initial focus lies in optimizing the subsequence

window length and sliding step length to select appropriate

parameters for the DeepBGS model. Through grid optimization

grounded in 10-fold cross-validation of the training set, we explored

various combinations of window lengths and sliding step lengths

within the range of 50-300, with a step length of 50. Previous results

have shown that the models achieve the best prediction

performance following the preprocessing of original data using

SNV. Hence, DeepBGS modeling exclusively relies on SNV

preprocessed data, and the 10-fold cross-segmentation of the

training set remains consistent across all combinations of window

length and sliding step length. The model prediction outcomes

across different combinations of window length and sliding step

length were visualized in Figure 6. Notably, when the window
Frontiers in Plant Science 08
length is set to 200 and the sliding step length to 150, the DeepBGS

model attained its highest training performance, with ACC, MCC,

and AUC reaching 0.9979, 0.9958, and 0.9999, respectively.

Based on the optimal combination of window length and sliding

step (w = 200, s = 150), we further compared the performance of deep

convolutional networks for extracting sequence matrix features. As

illustrated in Table 2, Figure 7, all five deep learning models

demonstrate robust capabilities in distinguishing seedling barnyard

grass from rice, with ACC surpassing 0.93 and MCC exceeding 0.87.

Remarkably, the DeepBGS model emerges as the top performer,

achieving a flawless differentiation rate of 98.18%. All 95 barnyard

grass samples were correctly classified, with only 3 out of 70 rice

samples misclassified as barnyard grass (Table 3). In contrast, the

DeepBGS-NoLSTM model, which excludes the LSTM module,

experiences a slight reduction in independent test accuracy, primarily

observed in the decline of ACC and MCC to 0.9697 and 0.9379. The

VGG model, without the batch normalization layer, exhibited a more

pronounced decrease in prediction performance, with ACC and MCC

plummeting to only 0.9515 and 0.9014, respectively, comparable to

traditional machine learning models. And the MLP module attained

ACC and MCC scores of 0.9394 and 0.8779. Meanwhile, the Resnet18
FIGURE 6

Effects of various combinations of window length and sliding step size on model performance. (A–C) show the performance of ACC, MCC, and AUC
respectively. The horizontal axis is the step size, and the vertical axis is the window size.
TABLE 1 Performance impact of different feature dimensionality reduction methods on traditional machine learning models.

Feature engineering
strategies

Evaluation Measures Dt RF SVM Xgboost Average

PCA ACC 0.8242 0.9394 0.9333 0.9333 0.9076

MCC 0.6583 0.8806 0.8639 0.8691 0.8180

T-SNE ACC 0.9455 0.9394 0.9394 0.9394 0.9409

MCC 0.8896 0.8779 0.8767 0.8759 0.8800

SPA ACC 0.9030 0.9091 0.9455 0.9333 0.9227

MCC 0.8112 0.822 0.8886 0.8664 0.8471

CARS ACC 0.9394 0.9333 0.9273 0.9394 0.9349

MCC 0.8779 0.8639 0.8519 0.8759 0.8674

Vegetation indices ACC 0.9152 0.8909 0.9212 0.9333 0.9152

MCC 0.8329 0.7867 0.8385 0.8664 0.8311
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model, which featured an 18-layer network, attained ACC and MCC

scores of 0.9636 and 0.9256, respectively, underscoring its efficacy in

distinguishing between barnyard grass and rice at the seedling stage.

However, augmenting the network depth to 50 layers resulted in

diminished prediction accuracy for the Resnet50 model, with ACC

and MCC declining to 0.9455 and 0.8886, respectively.
4 Discussion

Controlling barnyard grass is particularly challenging due to its

strong resistance to herbicides. Effective control of barnyard grass in the

early stages can significantly reduce both economic and environmental

costs. Establishing a dependable early identification system for weeds is

paramount, with HS emerging as a promising avenue over RGB

imaging. Unlike the latter, HS focuses on phytochemical composition

indicators rather than solely shape, size, and color, offering distinct

advantages (Farooq et al., 2018). Hyperspectral data furnishes intricate

reflectance information across numerous narrow spectral bands.

However, grappling with the high redundancy and multicollinearity

inherent in these bands presents a formidable obstacle. Extracting

actionable insights from such data stands as a pivotal requirement for

effective weed early identification. Prior studies, exemplified Zhang

et al. (2019), have demonstrated promising outcomes utilizing

methodologies like the SPA in tandem with weighted SVM models

for the identification of barnyard grass, weedy rice, and rice, achieving

high recognition rates. In the present study, we employed three feature

engineering methods: feature dimensionality reduction, feature
Frontiers in Plant Science 09
selection, and vegetation index conversion. While certain methods

like PCA and vegetation index conversion failed to bolster model

accuracy, others such as t-SNE for dimensionality reduction and

feature selection techniques like CARS and SPA exhibited

enhancements in prediction performance. However, achieving

accurate differentiation between barnyard grass and rice at the

seedling stage remains an ongoing challenge.

This study compares the performance of traditional machine

learning models and deep learning methods in identifying barnyard

grass and rice at the seedling stage. Unlike traditional approaches, deep

learning eliminates the need for complex feature engineering,

autonomously extracting meaningful patterns from raw data to

achieve superior classification results (Perez-Sanz et al., 2017; Sarić

et al., 2022). Although a defining feature of deep learning is that the

input data can be unstructured (Murphy et al., 2024), the non-imaging

hyperspectral data in this study is inherently structured.When a simple

fully connected network is used, its prediction accuracy reaches 0.9394,

comparable to that of traditional machine learning models. To fully

capture both local and global associations among hyperspectral bands,

we introduce a subsequence conversion method based on sliding

windows. This approach transforms the hyperspectral bands from

one-dimensional vectors into two-dimensional matrices, enabling

them to serve as input for a deep learning model that combines

convolutional networks and LSTM. This method leverages the robust

feature extraction capabilities of deep learning. Building on the ResNet

model, we examined the effect of network depth onmodel performance

and found that excessive depth can lead to overfitting. As shown in

Figure 7, the Resnet18model, despite its lower network depth, achieved
TABLE 2 Independent test performance of deep learning models.

EvaluationMeasures DeepBGS
DeepBGS-
NoLSTM

VGG Resnet18 Resnet50 MLP

ACC 0.9818 0.9697 0.9515 0.9636 0.9455 0.9394

MCC 0.9632 0.9379 0.9014 0.9256 0.8886 0.8779
FIGURE 7

Training performance of Resnet models with different depths. (A) is Resnet18 and (B) is Resnet50.
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stable training results after only 31 rounds of training, with both

training ACC and MCC stabilizing at 0.9778 and 0.9556, respectively.

In the independent test, the ACC and MCC remained stable at 0.9636

and 0.9256, respectively. Conversely, after 28 rounds of training for the

Resnet50 model with increased network depth, although the loss

stabilized, the training ACC and MCC reach slightly lower values of

0.9687 and 0.9394, respectively. However, the final independent test

performance exhibited more significantly decline, with the ACC and

MCC dropping to 0.9455 and 0.8886, respectively. This phenomenon

may arise from the limited training data, which makes models with

complex network architectures more susceptible to overfitting.

Consequently, DeepBGS in this study employs only a 9-layer

convolutional module.

This study investigates the hyperspectral characteristics distinction

between barnyard grass and rice at the seedling stage and proposes a

deep learning-based framework for hyperspectral feature extraction.

However, the current approach relies solely on indoor non-imaging

methods to extract spectral features, and the limited number of training

samples necessitates further work before it can be applied in the field.

First, the spectral data from crop canopies in the field are filtered by

various factors, such as sunlight, angle, cloud absorption, and shadows,

leading to significant differences from the controlled laboratory

environment. Therefore, acquiring more field-labeled samples is

crucial for enhancing the model’s practical applicability. Additionally,

transfer learning may offer a solution for developing effective models

with limited training data. For real-time weed recognition models

deployed in the field, those with lower costs and higher computational

efficiency may be preferable, even at the expense of reduced accuracy

(Murphy et al., 2024). Therefore, extending the model to field-based

hyperspectral imaging data and using tools such as deep learning

important features (DeepLiFT) and class activation mapping (CAM) to

enhance the interpretability of deep learning models—by identifying

key spectral bands—could guide the development of more cost-

effective multispectral devices, significantly advancing early weed

detection technology in the field.
5 Conclusion

Barnyard grass resistance to pesticides increases with growth,

making early identification and precise control essential for reducing

pesticide use and advancing precision agriculture. To address the

challenge of distinguishing barnyard grass from rice seedlings at the

early growth stage, this study explores hyperspectral imaging for

identification. A combined model incorporating multiple spectral

preprocessing techniques, feature engineering methods, and traditional

machine learning was evaluated, achieving a maximum classification
Frontiers in Plant Science 10
accuracy of 93.94%. Finally, we developed a deep learning-based

framework for extracting hyperspectral features, achieving 98.18%

accuracy in distinguishing seedling barnyard grass from rice.
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TABLE 3 Confusion matrix for the prediction results of the DeepBGS.

Predicted classes

Barnyard
grass Rice

Actual classes
Barnyard grass 95 0
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