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Seagrassmeadows are regressing due to the cumulative impacts that affect coastal

ecosystems worldwide. Seagrass restoration has been repeatedly proposed to

reverse this trend, although with contrasting results due to the difficulty in

maintaining the transplanted rhizomes. Enhancing the vegetative propagation of

the rhizome plantings (e.g., employing growth-promoters) could represent a

reliable tool to increase the success of seagrass restoration. Here we tested the

effects of physio-activators, as plant growth-promoting bacteria (PGPB), and

synthetic hormones, as plant growth regulators (PGRs), on a seagrass species to

assess their potential utilization to enhance restoration efficiency. We conducted

two separate experiments in aquaria onCymodocea nodosa fragments: in the first

one, the fragments were exposed to PGRs for six weeks, while in the second

experiment, the fragments were exposed to PGPB for four weeks. For each

experiment (PGRs and PGPB), the formation of new roots and new leaves, the

survivorship, and the trend of maximum leaf length were compared between the

treated and control (not exposed to PGRs or PGPB) fragments. It was observed that

only the PGPB had a significant effect on the fragments’ survivorship (90% in

treated fragments vs. 25% in control ones) and contributed significantly to the

formation of new leaves and roots of C. nodosa fragments. On the contrary, in the

experiments with PGRs, no significant effects were observed between treated and

control fragments, and both showed a survivorship of 100% at the end of the

experiment. Our study showed that the application of growth-promoters

(particularly PGPB) on fragments could increase their survival and the formation

of new roots and leaves. Therefore, the use of PGPB on C. nodosa fragments can

allow their re-employment in restoration interventions, without damaging the

individuals of natural populations.
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1 Introduction

Seagrasses are marine angiosperms playing a crucial role in

temperate and tropical coastal habitats, as they provide important

ecosystem services (Costanza et al., 1997; Boudouresque et al.,

2021). They include 67 species worldwide, 7 of which are present

in the Mediterranean Sea: Posidonia oceanica is the only endemic

species of the Mediterranean Sea, whereas Cymodocea nodosa,

Zostera marina and Z. noltei show a broader distribution at

temperate latitudes (Boudouresque et al., 2009; Ruiz et al., 2009),

Ruppia maritima is almost entirely restricted to brackish lagoons

and salt marshes (Shili et al., 2007), andHalophila stipulacea andH.

decipiens are non-indigenous species (Winters et al., 2020;

Gerakaris et al., 2020).

Over the last decades, seagrasses have severely declined due to

anthropogenic activities, and only a few meadows recovered

(Waycott et al., 2009; Orth et al., 2006; de los Santos et al., 2019;

Sinclair et al., 2021). As a result of direct and indirect anthropogenic

pressures, seagrass meadows are shrinking their global distribution

at a rate ranging from 1% per year (till 1940) to 7% per year (after

1990, Waycott et al., 2009). In the Mediterranean Sea, the main

causes of this decline are coastal development, increased maritime

traffic, eutrophication, and chemical contamination (Pergent et al.,

2014). Between 1973 and 1989, it was observed that the seagrass

meadows of the northern Adriatic Sea were subjected to a decrease

in extension due to the explosion of coastal urbanization, the

intensification of tourism flow, and a significant increase in

eutrophication caused by the Po River flow (Danovaro et al.,

2020). Even a long-term analysis conducted from 1869 to 2016 in

the European Seas showed that between the 1970s and 1980s, there

was a sharp decline in seagrass meadows due to disease, deteriorated

water quality, and coastal development (de los Santos et al., 2019).

Climate change and extreme events such as heat waves can

exacerbate the rapid loss of shoot density and increase the energy

needed to reproduce and produce defense compounds (Pergent

et al., 2008). In the Greek Seas, the increase in the thermal regime

over two decades (1997-2018) was followed by a decline in P.

ocenica production (Litsi-Mizan et al., 2023). Stipcich et al. (2022)

tested the effects of current and future Marine Heatwaves (MHWs)

through a manipulative experiment in Sardinia (Italy) and observed

significant changes in the morphological and biochemical variables

of P. oceanica shoots. They found that current and future MHWs

could have similar effects, with a difference depending on the

intensity of the waves: the number of leaves, the maximum leaf

length, and lipid content decreased, while the leaf necrosis and

carbohydrate content increased (Stipcich et al., 2022). Beca-

Carretero et al. (2024) applied a novel ecological and spatial

model, considering two climate scenarios (RCP 2.6 and RCP 8.5)

projected from 2020 to 2100 in four different regions within the

Mediterranean (West, Central West, Central East, East

Mediterranean). They foresee that with rising temperature and

salinity, the habitat of P. ocenica will be lost and colonized by

more resilient species such as C. nodosa and the invasive species H.

stipulacea. Under the worst scenario (RCP 8.5), the most negative

effects have been foreseen in warmer regions (Central and East
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Mediterranean), while the western region will represent a refuge

area for P. oceanica (Beca-Carretero et al., 2024).

In recent decades, thanks to the enforcement of conservation

measures (e.g., Habitat Directive, Water and Marine Strategy

Framework Directives, Marine Protected Areas institution), some

meadows displayed encouraging signs of stabilization or recovery

(de los Santos et al., 2019). Moreover, in the last two decades, several

restoration interventions have been implemented (Orth et al., 2006;

Marbà et al., 2014). Although active restoration is considered an

increasingly reliable approach to enhancing the recovery of seagrass

ecosystems, to date, restoration results have not always been fully

successful, due to many factors, such as the seagrass’s low growth

rate and complex reproduction cycle (Bekkby et al., 2020), site

selection (Paling et al., 2009; Bayraktarov et al., 2016), and used

methodology (Da Ros et al., 2020).

Previous studies demonstrated that one of the major causes of

restoration failure is the difficulty in maintaining in situ the

transplanted rhizomes (Lepoint et al., 2002). During vegetative

propagation, the formation of adventitious roots enables the plant

to remain firmly attached to the substrate and to absorb the

nutrients (Duguma, 1988; Swamy et al., 2002). Therefore,

techniques enabling the development of a robust root system

could facilitate the vegetative expansion of the transplanted

rhizomes (Balestri and Lardicci, 2006). To accelerate vegetation

expansion and improve transplant success (Loquès et al., 1990;

Balestri et al., 1998; Balestri and Cinelli, 2001), other studies

proposed the transplant of entire plants with the surrounding

sediments contained in organic and biodegradable containers (Da

Ros et al., 2020).

Several studies have shown the role of physio-activators, such as

plant growth-promoting bacteria (PGPB), and synthetic hormones,

such as plant growth regulators (PGRs), in the increase of the

growth, development, and germination abilities over a wide range of

terrestrial plants (Russo and Berlyn, 1990; Crunkilton et al., 1994;

Swaminathaan and Srinivasan, 1996; Ortıź-Castro et al., 2009; Small

and Degenhardt, 2018; Kumari et al., 2023). These molecules

promote vegetative propagation, enhancing root and leaf

formation and growth (Salisbury and Ross, 1992; Crunkilton

et al., 1994; Katiresan and Moorthy, 1994; Munoz, 1995;

Swaminathaan and Srinivasan, 1996). Moreover, the PGPB

increase plant resilience against abiotic stressors (i.e., salinity,

drought) and protect plants from diseases, inducing defense

systems (Adhikari et al., 2001; Bloemberg and Lugtenberg, 2001;

Weyens et al., 2009; O’Callaghan, 2016; Sánchez-López et al., 2018;

Rossi et al., 2021).

Only a few studies investigated the effects of PGRs on

Mediterranean seagrasses, with promising results on the plants’

growth (Munoz, 1995; Balestri and Bertini, 2003; Balestri and

Lardicci, 2006; Balestri et al., 2011), but the effects of PGRs and

PGPBs have never been investigated for enhancing the restoration

efficacy on Mediterranean seagrasses (Loquès et al., 1990; Munoz,

1995), particularly for those interventions requiring ex-situ

maintenance or growth and reproduction. The use of plant

promoters could indeed increase the restoration effectiveness

(Cebrian et al., 2021; Smith et al., 2023). The present study aims
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to test the effects of PGRs and PGPB on the survival and growth of

C. nodosa. To avoid any impact on natural populations we explored

their potential to produce new shoots and roots from fragmented

plants that could represent a potentially important source of plants

for restoration interventions (Campbell, 2002).
2 Materials and equipment

2.1 The species

C. nodosa is a pioneer seagrass (Marıń-Guirao et al., 2016),

forming dense meadows in shallow waters across the

Mediterranean Sea and the Northeast Atlantic, including the

Canary Islands (Reyes et al., 1995; Pavón-Salas et al., 2000;

Alberto et al., 2008; Cunha and Araújo, 2009). This dioecious

species is characterized by horizontal rhizomes, which at each

node bring a short vertical rhizome ending dorsally with a leaf

tuft of 3–4 leaves, and ventrally with irregularly branched roots. The

leaves have a ribbon shape and feature 7–9 parallel ribs, and a

rounded and obtuse apex (Rodrıǵuez-Prieto et al., 2013). For its role

in ecosystem structuring, C. nodosa is considered the second most

important seagrass species in the Mediterranean Sea, after P.

ocenica. It shows a wide environmental tolerance: along the sandy

coasts, it grows in shallow and sheltered areas, in clear waters, also

beyond the deep limit of P. oceanica, but also on dead matte of P.

oceanica (Rodrıǵuez-Prieto et al., 2013).
2.2 Samples’ collection

During October and November 2023, two samplings were

conducted at Torrette site (near Ancona city, North-western

Adriatic Sea; 43°36’36”N, 13°27’30”E; Figures 1A, B). In this site,

between the coastline and the breakwaters, there is a rock pool

formed by artificial reefs, hosting a meadow of C. nodosa (ca. 1

hectare wide) at about 0.5 m depth on muddy substrate.

During the two samplings, a total of 15 and 40 fragments were

collected, respectively, stranded, or manually collected by hand

from plants. Since C. nodosa is under conservationist attention, the

minimum number of fragments has been collected to run the
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experiments. For each sampling, the fragments were transported

(in transportable aerated tanks, with seawater collected in situ) to

the Aquarium Facility of the Department of Life and Environmental

Science (Polytechnic University of Marche, Ancona; 43°58’N; 13°

51’E), located 8 km from the sampling site, for ca. 14 minutes

of transport.

Once arrived, the fragments were acclimatized for one hour

through a slow mixing between the seawater used for the transport

and the water of the tanks (previously prepared at the same

temperature and salinity). The fragments collected during the first

and second sampling were used for testing the effect of PGRs and

PGPB, respectively, through 2 experiments in mesocosms,

running separately.
3 Methods

3.1 Maintenance in the mesocosms

For each experiment, 2 separate aquaria systems were used,

each consisting of 2 tanks (volume 50 L, each): one aquarium for the

treatment (2 tanks with fragments exposed to PGRs or PGPB, in the

first and second experiment, respectively) and 2 used as control (2

tanks with fragments).

The LSS (Life Support System) was used to maintain the plants

in the mesocosms. It consists of aquaria, a reserve in which there are

three socks of 100 mm for mechanical filtration, and immersed razor

clams for biological filtration. Fluorescent lamps produced 260-nm

(l) UV-C rays, sterilizing the water, damaging nucleic acids, and

preventing microbes’ proliferation. A Teco TK 500 cooler was used

to maintain the temperature. The light intensity was generated by

two light-emitting diode lamps (SilverMoon Marine 10,000 K and

SilverMoon Universal 6,500 K) 40 cm above the water surface.

Irradiance was measured with a Photometer of the Apogee Model

MQ-500. The system ensures the maintenance of constant ambient

water conditions. The photoperiod was set to a 12:12 h light: dark

cycle, with an intensity of 80-100 µmol photons m−2 s−1 to simulate

the environmental conditions present during sampling.

Temperature, salinity, pH, and light intensity were measured at

the sampling site and were set up in aquaria following Marıń-

Guirao et al. (2011) for the same sampling period. These parameters
FIGURE 1

(A) Location of the study area in the Mediterranean Sea; (B) Detail of the study area (43°36’36”N, 13°27’30”E). Map created using the Free and Open
Source QGIS.
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were maintained throughout the experiments: temperature was 20 ±

1°C, salinity was 37, and pH was 8.2. Furthermore, for routine

system maintenance, water loading and unloading, lights,

movement pumps, a cooler, and any water leaks at the pipe joints

were checked. To ensure the sterilization of the system, the socks

were washed, tubs were siphoned to remove organic debris, and

20% of the seawater was exchanged every week. The replacement

water was prepared using artificial salts.
3.2 Experimental design

The first experiment consisted of 4 tanks (volume 50 L, each), 2

used for the treatment with PGRs (n = 2) and 2 as control (n = 2).

The tanks used as control were labelled as C-PGRs1 and C-PGRs2,

containing 2 fragments each. Those used for the treatment with

PGRs were labelled as PGRs1 and PGRs2, containing 6 and 5

fragments, respectively (Figure 2). All fragments were fixed to

plastic nets with a small weight to maintain them on the bottom

of the tanks. In the tanks PGRs1 and PGRs2 it was added one pill of

Gibaifar 10 TB, containing gibberellic acid (GA3), and 80 ml of

Sprintex New® L, containing alpha-naphtaleneacetic acid (NAA).

The second experiment consisted of 4 tanks (volume 50 L, each),

2 for the treatment with PGPB (n =2) and 2 as control (n = 2). In this

case, tanks used as control were labelled as C-PGPB1 and C-PGPB2.

Those used for treatment with PGPB were labelled as PGPB1 and

PGPB2 (Figure 2). Each tank contained 10 fragments. In this case, all

the fragments were fixed to jute nets with a small weight to maintain

them on the bottom of the tanks. In the mesocosms PGPB1 and

PGPB2, 100 ml of Microtech Triple eco was added, which contains

growth-promoting bacteria and cyanobacteria.
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In both experiments, all fragments were tagged, photographed,

and their growth measured. The following variables were checked

once a week, for 6 and 4 weeks for the first and second experiment,

respectively: number of shoots, roots, and leaves, and maximum leaf

length. The collection of the abovementioned data allowed us to

estimate: the number of new roots, new leaves, survivorship

(number of individuals showing new leaves or roots), and trend

of the maximum leaf length (following Balestri and Lardicci, 2006;

Balestri et al., 2011). All the variables were measured for all the

individuals in each tank and reported as tanks’ mean ±

standard error.
3.3 Statistical analyses

To test differences in the abovementioned variables (maximum

leaf length, number of new roots and leaves, and survivorship),

separately for the 2 experiments, one- or two-way permutational

analysis of variance (PERMANOVA) was performed, applying two

experimental designs.

For the maximum leaf length, two factors of variance were

considered: “time” (fixed, 2 levels: beginning and end of the

experiments, corresponding to 6 and 4 weeks for the PGRs and

PGPB experiment, respectively) and “treatment” (fixed, 2 levels:

control and treatment, with the factor “tank” nested

in “treatment”).

All other variables (i.e., number of new roots and leaves, and

survivorship) were considered as a single factor of variance in the

“treatment” (fixed, 2 levels: control and treated, with the factor

“tank” nested in “treatment”) since at the beginning there were no

new roots and leaves.
FIGURE 2

Experimental design for the PGRs and PGPB experiments. In each experiment, C. nodosa fragments were exposed to PGR (left panel) or PGPB (right
panel) (n = 2) and compared to fragments not exposed (n = 2). Treatment = treated fragments (with PGR or PGPB, depending on the experiment);
Control = fragment not exposed during each experiment (C-PGR and C-PGPB, respectively); 1 and 2 = code of the tank used.
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Before PERMANOVA, PERMDISP tests were carried out to test

the dispersion among groups: “time x treatment(tank)” for max leaf

length or “treatment(tank)” for new roots, new leaves, and

survivorship. When PERMDISP was significant, the data were

fourth root transformed before PERMANOVA.

Statistical analyses were performed by using the software

package PRIMER7 (Clarke and Gorley, 2015).
4 Results

All the data are reported in Table 1.

The results of the PERMDISP testing for dispersion among

groups for PGRs and PGPB experiments are reported in Tables 2A,

B, respectively. The results of the PERMANOVA analyses testing

for the effect of treatment and time or only treatment, depending on

the variable, on all the considered response variables, for PGRs and

PGPB experiments, are reported in Tables 3A, B, respectively.
4.1 PGRs treatment

Maximum leaf length - A significant effect of time was observed

on the maximum leaf length (Table 2A). The maximum leaf length
Frontiers in Plant Science 05
was significantly lower at the end of the experiment only in control

fragments. However, the values were similar in the controls and

treated fragments in the PGRs experiment, both at the beginning

and the end of the experiment (i.e., after 6 weeks, Figure 3).

Formation of new roots and new leaves– The formation of new

roots and new leaves was observed at the end of the experiment (after 6

weeks), both in control and treated fragments. However, no significant

differences were observed between control and treated fragments, for

both variables (Table 2A; Figures 4A, B). A significant effect of the

factor tank was observed for new roots’ formation.

Survivorship – At the end of the experiment, in control and

treated experimental units, the 100% of individuals showed

survivorship (measured as new leaves or roots). However, no

significant difference was observed comparing control and treated

fragments (Table 2A; Figure 5). A significant effect of the factor

“tank” was observed.
4.2 PGPB treatment

Maximum leaf length – A significant effect of time and time x

treatment was observed on the maximum leaf length (Table 2B;

Figure 3). No significant differences were observed between the

control and treated fragments.
TABLE 1 Variables and data measured during the experiments.

max leaf
legth (cm)

n. new
roots/ind

n. new
leaves/ind

survivorship
(n.ind with new
roots/leaves)

survivorship
(n. new
roots or

leaves/ind)

avg se avg se avg se % avg se

PGRs Ctrl beginning 34.9 3.1 na na na na

after 6 weeks 11.8 1.0 0.4 0.1 1.0 0.8 100 1.4 0.9

Treat beginning 32.1 1.7 na na na na

after 6 weeks 12.9 4.2 0.5 0.3 0.4 0.2 100 0.9 0.5

PGPB Ctl beginning 20.6 5.0 na na na na

after 4 weeks 17.3 4.9 0.0 0.0 0.02 0.01 25.0 0.04 0.01

Treat beginning 16.3 2.7 na na na na

after 4 weeks 10.4 1.9 0.1 0.0 0.1 0.0 90.0 0.2 0.1
frontie
Data are reported as mean ± standard error, calculated based on the means values for each tank.
TABLE 2 Output of the PERDISP conducted after PGRs (A) and PGPB (B) experiments, on all variables, testing for the dispersion among groups:
“treatment(tank) x time” for max leaf length or “treatment(tank)” for new roots, new leaves, and survivorship.

Max leaf length New roots New leaves Survivorship

A) PGRs F: 2,4834 df1: 7 df2: 22 F: 1,4753 df1: 3 df2: 11 F: 1,7814 df1: 3 df2: 11 F: 4,8668 df1: 3 df2: 11

P: 0.071 P: 0.253 P: 0.267 P: 0,084*

B) PGPB F: 1,8131 df1: 7 df2: 72 F: 1,5004 df1: 3 df2: 36 F: 0,96122 df1: 3 df2: 36 F: 0,23953 df1: 3 df2: 36

P: 0.083 P: 0.222* P: 0.427* P: 0.863*
*data fourth root transformed.
df, degree of freedom; F, F statistic; P, p value.
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Formation of new roots and new leaves – The formation of new

roots and new leaves was observed at the end of the experiment

(after 4 weeks). A significant difference was observed between

control and treated fragments, with higher values observed in

treated fragments, for both variables (Table 2B; Figures 4A, B).

Survivorship – Overall, in control and treatment experimental

units, 25 and 90% of individuals showed survivorship (measured as

new leaves or roots). A significant effect of the treatment on
Frontiers in Plant Science 06
survivorship was observed (Table 2B), with higher values

observed in treated fragments (Figure 5).
5 Discussion

Mediterranean seagrasses are crucially important species, most

of which are protected by international conventions such as the
TABLE 3 Output of PERMANOVA conducted after PGRs (A) and PGPB (B) experiments, testing for differences between treatment (tanks) and times (for
the max leaf length) or treatment (tanks) (for new root, new leaves, and survivorship).

Source df MS F P

A) PGRs Max leaf length Time 1 2617.20 23.20 <0.05

Treatment 1 4.00 0.07 ns

Tank (Treatment) 2 33.90 0.22 ns

Time x Treatment 1 22.95 0.20 ns

Time x Tank (Treatment) 2 102.21 0.67 ns

Residual 22.0 151.55

New roots Treatment 1 9.84 1.09 ns

Tank (Treatment) 2 11.07 7.03 <0.05

Residual 11 1.58

New leaves* Treatment 1 0.01 0.02 ns

Tank (Treatment) 2 0.42 1.48 ns

Residual 11 0.28

Survivorship* Treatment 1 0.10 0.36 ns

Tank (Treatment) 2 0.35 23.70 <0.01

Residual 11 0.01

B) PGPB Max leaf length Time 1 146.07 305.83 <0.01

Treatment 1 504.51 5.15 ns

Tank (Treatment) 2 97.95 1.21 ns

Time x Treatment 1 51.04 106.86 <0.05

Time x Tank (Treatment) 2 0.48 0.01 ns

Residual 72 80.96

New roots* Treatment 1 1.25 16.27 <0.05

Tank (Treatment) 2 0.08 0.29 ns

Residual 36 0.27

New leaves* Treatment 1 3.88 14.85 <0.05

Tank (Treatment) 2 0.26 1.29 ns

Residual 36 0.20

Survivorship* Treatment 1 6.07 65.61 <0.05

Tank (Treatment) 2 0.09 0.44 ns

Residual 36 0.21
*data fourth root transformed.
Source, source of variance; df, degree of freedom; MS, means of squares; F, F statistic; P, p value.
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Bern Convention, the SPAMI-Barcelona Convention, and the

Action Plan for the Conservation of Marine Vegetation in the

Mediterranean Sea. They are also part of the Habitat Directive

(Curiel et al., 2021). Due to their role in blue carbon sequestration

and the coastal ecosystem functioning, marine meadows’

restoration has been proposed as a tool for climate change

mitigation (Orth et al., 2006; Marbà et al., 2014; United Nations

Environment Agency, 2019; United Nations Environment

Programme, 2019). To upscale these interventions, recent studies

highlighted the importance of improving transplanting operations

by reducing the cost and increasing intervention efficacy

(Boudouresque et al., 2021). Moreover, the restoration

intervention should be planned to avoid any possible damage to

healthy populations. This can be done only by optimizing protocols,

also considering phases implemented ex situ, and using laboratory

facilities to improve the reproduction or cultivation of individuals

used for the outplants or transplants at sea.

Compared to other Mediterranean species, C. nodosa offers the

greatest chance for restoration success, due to its high tolerance to

varying environmental conditions (Bellato et al., 1994; Rismondo

et al., 1997; Sfriso and Ghetti, 1998). The formation of new roots

allows the vegetative expansion of the plant, increasing the

probability of permanent establishment of the new seagrass beds

(Balestri and Lardicci, 2006). However, extreme environmental

events such as storm surges, which have increased in intensity

and frequency due to climate change, can cause the loss of large

portions of natural seagrass meadows (Oprandi et al., 2020).

The implementation of growth-promoters has proven to be

successful in stimulating the rooting capacity of seagrasses (Balestri

and Bertini, 2003; Balestri and Lardicci, 2006). Our study showed that

PGPB have a significantly positive effect on C. nodosa and its stranded

fragments. This response allows more efficient use of stranded

fragments of seagrasses for habitat restoration, a strategy successfully

used for macroalgal forest restoration (Marletta et al., 2024). This

would allow to use only some parts of the plants, avoiding using entire

portion of the meadow for the restoration interventions.

The effects of these growth-promoters can depend on the

molecule (PGPB or PGRs). Our results indicated survivorship (i.e.,
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formation of new roots or leaves) both in control and treated

fragments, suggesting that the cultivation conditions were optimal

in the aquaria facility. However, only the PGPB growth-promoters

had positive effects on the fragments’ survivorship and contributed

significantly to the increase in the formation of new leaves and roots

in C. nodosa, when compared with control fragments. Therefore, the

future use of growth promoters needs to be previously tested, since

different promoters (i.e., different molecules) could have a different

(or null) effect on the plants’ growth. This is particularly important

when planning a cost-effective restoration process, which includes an

ex-situ phase. In the experiment with PGPB, the fragments had a

higher survivorship when exposed to the growth-promoters (90%)

than in the control ones (25%). This could be related to the ability of

the plant to incorporate the PGPB through the leaves, with a process

possibly catalyzed by nitrogen-fixing cyanobacteria (Kollmen and

Strieth, 2022). Moreover, cyanobacteria can optimize the

mineralization of organic compounds and nutrient availability

(Tarquinio et al., 2019). In this regard, the potential role of

microbiota for holobiont health and restoration efficacy has been

recently highlighted (Corinaldesi et al., 2023).

Our study also shows that the application of growth-promoters

(particularly PGPB) on the fragments increases their survival and

the formation of new roots and leaves. The use of PGPB on C.

nodosa fragments could allow the re-employment in restoration

interventions, also when they are found broken or stranded along

the beaches, without damaging the natural populations. This could

be particularly important for restoration purposes, as already

observed for macroalgae (Marletta et al., 2024). In the

Mediterranean Sea, the probability of detached fragments

returning back to the sea is very low, also due to the limited tide

excursion, and generally, these fragments dry up on the beach

(Balestri et al., 2011), but can be salvaged and used directly as a

source for restoration/mitigation efforts (Balestri et al. (2011);

Marletta et al., 2024) to promote habitat restoration.

The implementation of these growth-promoters, particularly

PGPB, represents a yet unexplored field for marine plant research

and it can offer a new way to improve seagrass health, and resilience,

and increase restoration success (Tarquinio et al., 2019), reducing
FIGURE 3

Max leaf length measured in fragments used as control (in light blue) and those exposed to PGRs or PGPB (in orange), at the beginning and after 6
and 4 weeks, respectively. Data (in cm) are reported as the average of values measured in the tanks ± standard error. Ctrl, control; Treat, treatment.
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FIGURE 5

Survivorship observed in fragments used as control (in light blue) and those exposed to PGRs or PGPB (in orange), after 6 and 4 weeks, respectively.
Data (as the number of new roots or leaves per fragment) are reported as the average of values measured in the tanks ± standard error. Reported
are also the % of individuals developing new roots or leaves. Ctrl, control; Treat, treatment; ind., individual (= fragment); *P < 0.05.
FIGURE 4

New roots (A) and new leaves (B) observed in fragments used as control (in light blue) and those exposed to PGRs or PGPB (in orange), after 6 and 4
weeks, respectively. Data (as number of new roots and leaves per fragment) are reported as the average of values measured in the tanks ± standard
error. Ctrl, control; Treat, treatment; ind., individual (= fragment); *P < 0.05.
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the time and costs of plant maintenance in mesocosms and ensuring

long-term transplant success (Pansini et al., 2024) speeding up the

process of roots and leaves’ formation (Balestri and Bertini, 2003).

Nature-based solutions relying on microbiome analyses (and also

through omics approaches) enable health monitoring of

transplanted organisms/metacommunities and potential

identification/production of probiotics/bio-promoters to stabilize

unhealthy conditions of transplants (Corinaldesi et al., 2023). The

use of microbes in ecosystem restoration is gaining increasing

attention (Farrell et al., 2020; Watson et al., 2022). Microbe-

assisted restoration has been implemented for different purposes

in both terrestrial and aquatic environments (Robinson et al., 2023):

plants’ and animals’ health (Gao et al., 2010; Contos et al., 2021;

Birnbaum and Trevathan-Tackett, 2023), nutrient cycling (Garcia

and Kao-Kniffin, 2018; Singh Rawat et al., 2023), drought stress

tolerance (Ma et al., 2020; Sarabi and Arjmand-Ghajur, 2021),

hormone production in plants and animals (Eichmann et al.,

2021), climate regulation (Wu et al., 2022), pollination (Martin

et al., 2022) and phytoremediation in degraded habitats (Haldar and

Ghosh, 2020; Sarker et al., 2023; Agrawal et al., 2024). This study

could contribute to the knowledge of new protocols for the

conservation and restoration of seagrass meadows to reverse their

loss and to optimize both the biodiversity and ecosystem services

they provide (Possingham et al., 2015). This is an important target

for the “UN Decade on Ecosystem Restoration” (Waltham et al.,

2020) and the EU Biodiversity Strategy for 2030, aiming at restoring

ecosystems across land and sea, especially those with considerable

value in terms of goods and services such as seagrasses (Costanza

et al., 2014; Vassallo et al., 2013).

Recent scientific advancements indicate that marine habitat

restoration is feasible and should be upscaled, but it is

constrained by: 1) the high costs when compared with terrestrial

restoration and 2) the potential impact on source populations. This

is particularly critical for habitat-forming species, a key targets of

marine ecosystem restoration. Due to their successful application

on terrestrial plants, growth promoters can be useful to enhance the

recovery also of marine plants. In particular, we suggest the use of

growth promoters in stranded plants, which would otherwise be

lost. This phenomenon is expected to become more frequent as a

consequence of climate change, or due to the increasing occurrence

of storms. The use of the plant promoters tested here could make

stranded organisms an important resource of viable material to be

used in transplanting interventions. The set up and implementation

of restoration methodologies are particularly important in the

framework of the Nature Restoration Regulation recently

approved by the European Union, which has binding restoration

targets also for marine habitats (at least 30% of the EU’s land and

sea areas by 2030, 60% by 2040 and 90% by 2050).
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