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Dahongpao mother tree affects
soil microbial community and
nutrient cycling by increasing
rhizosphere soil characteristic
metabolite content
Weiting Cheng1,2†, Shuqi Zhang3†, Yuhua Wang1, Lei Hong1,
Miaoen Qiu1, Yulin Wang3, Yangxin Luo3, Qi Zhang1,2,
Tingting Wang3, Xiaoli Jia 1,2, Haibin Wang1,3*

and Jianghua Ye1,2*

1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China, 2College of Tea
and Food Science, Wuyi University, Wuyishan, China, 3College of Life Science, Longyan University,
Longyan, China
Cuttings are an important way of propagating tea trees (Camellia sinensis). In this

study, Dahongpao mother tree (MD) and cutting Dahongpao (PD) were used as

research objects and their rhizosphere soil were collected and performed

metabolomics analysis. At the same time, soil nutrient content, microbial

physiological indexes, and microbial carbon source utilization were

determined, which in turn obtained the effect of cuttings on metabolites,

microorganisms, and nutrient cycling in rhizosphere soil of tea trees. The

results showed that available nitrogen, available phosphorus and available

potassium in the rhizosphere soil of MD were significantly higher (p < 0.05)

than in PD. Secondly, microbial biomass carbon, microbial biomass nitrogen,

microbial respiration, bacterial number, fungal number, and actinomycete

number were also significantly higher in rhizosphere soil of MD than in PD.

There were six groups of rhizosphere soil characteristic metabolites that

differentiated MD from PD, of which the content of acid, amine, phenol,

heterocyclic compound, alcohol and lipid was significantly higher in MD

compared to PD, while carbohydrate content was significantly less in MD.

There were five groups of rhizosphere soil microorganisms that differentiated

MD from PD, in which microorganisms with carboxylic acid, amines, fatty acid

and phenolic acid as carbon sources were significantly larger in MD than in PD,

whereas microorganisms with carbohydrates as carbon sources were

significantly smaller in MD than in PD. It can be seen that the number and

content of rhizosphere soil characteristic metabolites were higher in MD than in

PD. This enhanced the number of microorganisms with different carbon source

utilization rates, increased microbial diversity and abundance, promoted nutrient
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transformation, increased the content of available nutrients, which in turn

facilitated the growth of tea trees. This study provides an important reference

for the use of metabolites to regulate soil microbial colonization, improve soil

nutrient transformation, and maintain healthy growth of tea trees.
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1 Introduction

There are numerous methods of artificial asexual propagation of

plants, and cuttings are the predominant method of seedling production

due to their rapid and efficient characteristics (Megersa, 2017). Cuttings

are propagated asexually from mature and good parent plants, whose

genomes are theoretically identical to those of the parents and can

efficiently inherit the basic characteristics of the parents (Nybom and

Lācis, 2021). However, plants from cuttings are susceptible to

disturbances from external environmental factors during the growing

process, leading to changes in the intensity of gene expression within

their different tissues, which in turn affects their metabolic functions (Gil

et al., 2020). Second, from the point of view of growth and resistance,

even if parents and cuttings are planted in the same environment, there

are significant differences in both age and growth, which in turn lead to

significant differences in growth rate and resistance strength (Hewitt,

2020; Xiao et al., 2023). It can be seen that although plant cuttings are

asexually propagated, there are still some differences between them and

their parents, which in turn may affect their growth.

Soil is the medium in which plants are grown, and the rhizosphere

is the area in which plants are in close contact with the soil. Changes in

the community structure and function of rhizosphere soil

microorganisms directly affect the rhizosphere micro-ecosystem,

which in turn affects plant growth (Zhao et al., 2021). Singh (2021)

found that rhizosphere soil microbial diversity remained significantly

different when parent plants and their asexually propagated cuttings

were planted in the same plot and managed in the same way. Wang

et al. (2024a) subjected Gastrodia to multi-generation asexual

propagation and analyzed the effect of multi-generation asexually

propagated cuttings on soil microorganisms and found that the

microbial diversity of the rhizosphere soil of Gastrodia declined

significantly with the increase in the number of generations of

propagation, and the microbial community structure underwent a

significant change, which was manifested by the gradual decrease of

probiotic bacteria and the continuous increase of pathogenic bacteria.

Lin et al. (2024) investigated microbial changes in the rhizosphere soil

after asexually propagated sugarcane planting and found significant

changes in rhizosphere soil microbial functions, particularly a

significant decrease in microbes related to nutrient transformation,

which in turn led to a decrease in soil enzyme activities and a reduction

in soil nutrient biotransformation. Adomako et al. (2022) explored the

rhizosphere soil nutrient transformation capacity of asexually
02
propagated Solidago canadensis and found that the nitrogen-

phosphorus ratio of the rhizosphere soil of the asexually propagated

cuttings was significantly altered, soil nutrient ratios were imbalanced,

and the productivity of Solidago canadensis was significantly reduced,

as compared to the parent. It can be seen that asexually propagated

cuttings, although inheriting the characteristics of the parent, have

undergone changes in their rhizosphere soil microbial diversity and

function during planting, which in turn may have affected the

biotransformation of soil nutrients and plant growth.

Tea tree is an important economic plant, and Dahongpao mother

tree (Camellia sinensis) is an icon of the tea industry inWuyishan City,

Fujian, China, and has been listed by the local government as a key

protected object (Chen, 2015). In the mid-1980s, a batch of cuttings

were successfully produced by asexual propagation of cuttings for the

first time using Dahongpao mother tree as the mother tree (Hou and

Wu, 2019). From 2006 to now, in order to effectively protect

Dahongpao mother tree, the local government has banned its

harvesting for tea production (Ng et al., 2018). As a result, most

Dahongpao tea sold on the market today is processed from tea leaves

from cuttings of Dahongpao mother tree that were raised into tea

trees. Ye et al. (2024) analyzed the quality of Dahongpao mother tree

and cutting Dahongpao and found that compared to the parent plant,

cuttings had significantly lower aromas such as floral, fruity, green and

woody, and significantly lower taste characteristics such as fresh and

brisk taste and mellowness. Jia et al. (2024b) analyzed the rhizosphere

soil microbial diversity of Dahongpao mother tree and their cuttings

and found that the rhizosphere soil microbial diversity of cuttings was

significantly reduced, and function was reduced, which in turn affected

nutrient uptake by tea trees, and tea leaf quality was reduced. It has

been reported that the accumulation of root secretions in rhizosphere

soil during plant cultivation is highly susceptible to altering the

structure and function of soil microbial communities, which in turn

affects soil nutrient transformations and influences plant growth and

quality (Shen and Lin, 2021; Tan et al., 2022). The type and content of

rhizosphere soil metabolites significantly influence the number and

function of soil microorganisms that are addicted to different types of

metabolites (Withers et al., 2020). Soil metabolites regulate changes in

microbial function, thus affecting soil nutrient transformation and

plant growth (Brown et al., 2021; Sun et al., 2022; Wu et al., 2022). It is

hypothesized that the changes in growth and quality of cutting

Dahongpao may be related to changes in the type or quantity of

their rhizosphere soil metabolites. It is of great significance to deeply
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reveal the metabolite differences between Dahongpao mother trees

and cutting Dahongpao, and to search for characteristic metabolites

and their effects on soil microbes and nutrient cycling, in order to

utilize the metabolites to regulate the reproduction of soil microbes, to

regulate the transformation of soil nutrients, and to maintain the

healthy growth of tea trees.

Accordingly, in this study, Dahongpao mother tree (MD) and

the first asexually propagated cuttings of Dahongpao (PD) in the

1980s were used as objects, and their rhizosphere soils were

collected to determine available nutrient content, microbial

number, and physiological indexes. Carbon source utilization by

rhizosphere soil microorganisms of MD and PD was determined

using BIOLOG ECO microplate method. At the same time,

metabolomics technology was used to determine rhizosphere soil

metabolite compositions and their contents of MD and PD, and to

screen for characteristic metabolites distinguishing MD and PD. On

this basis, the interactions between soil characteristic metabolites,

microorganisms and soil nutrients were further analyzed, with a

view to laying a theoretical foundation for metabolites to regulate

soil microbial reproduction, improve soil nutrient transformation,

and maintain the healthy growth of tea trees.
2 Materials and methods

2.1 Collection of experimental samples

The sampling site of this study was located in Jiulongke Scenic

Area (117°57′19.098″ E, 27°40′17.8212″ N), Wuyishan, Fujian

Province, China. In May 2023, rhizosphere soils were collected

fromMD and PD with three independent replicates of each sample.

Among them, MD is about 390 years old, while PD is about 40 years

old, and both tea trees are planted in the same plot at a distance of

about 20 m. The soil is red gravelly rock. The average annual

temperature of the planting site is about 13°C, the precipitation is

above 2000 mm and the relative humidity is up to 85%. The

sampling method of tea tree rhizosphere soil was as follows: 2

plants of each tea tree were randomly selected, and the surface soil

was shoveled layer by layer until the root system appeared (about 20

cm), and the soil attached to the root system was collected, and

thoroughly mixed, which was rhizosphere soil. The collected

rhizosphere soil was immediately to the ice box, part of it was

air-dried and used for the determination of available nitrogen,

phosphorus and potassium content, and part of it was used for

the determination of microbial population, microbial physiological

indexes, microbial carbon source utilization and soil metabolites,

with three independent replicates for each sample.
2.2 Determination of soil available
nitrogen, phosphorus and potassium
content

The available nitrogen, phosphorus and potassium content of

tea tree rhizosphere soil was determined by Wang et al. (2024b)
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with three independent replicates for each sample. Briefly, soil

available nitrogen was determined by leaching with NaOH

solution, and leachate was titrated with hydrochloric acid and

then converted to content. Soil available phosphorus was

extracted by NaHCO3, the extract was added molybdenum-

antimony resistance for color development, and then determined

by colorimetric method, finally converted to content. Soil available

potassium was extracted using ammonium acetate, and the extract

was measured directly by flame photometer and then converted

to content.
2.3 Determination of physiological indexes
of soil microorganisms

Microbial biomass carbon, biomass nitrogen and respiration of

tea tree rhizosphere soil were determined with reference to

Schnecker et al. (2023) with three independent replicates of each

sample. Briefly, microbial biomass carbon and nitrogen were

determined by chloroform fumigation extraction, i.e., soil samples

were fumigated in chloroform for 24 h, extracted with 1 M KCl, and

then determined by a TOC/TN analyzer (TOC-l CPH/CPN,

Shimadzu, Kyoto, Japan). Where microbial biomass carbon is

calculated as (fumigated organic carbon - unfumigated organic

carbon)/0.38 and microbial biomass nitrogen is calculated as

(fumigated total nitrogen - unfumigated total nitrogen)/0.54. The

intensity of soil microbial respiration was measured by the alkali

absorption method in mg CO2/kg·h, i.e., it was assessed based on

the amount of CO2 released per kilogram of soil per hour.
2.4 Determination of soil bacteria, fungi
and actinomycetes number

Quantitative analysis of bacteria, fungi and actinomycetes in tea

tree rhizosphere soil was performed by qRT-PCR with three

independent replicates per sample, as described in Ye et al.

(2023). Briefly, 0.5 g of fresh soil was taken and soil DNA was

extracted using the Bio-Fast Soil Genomic DNA (BioFlux,

Hangzhou, China) extraction kit, and DNA was purified using

the gel recovery kit of TianGen Biotech Co., Ltd.The primers used

for bacterial quantification were F27 (5′-AGAGTTTGATCMT

GCCTCAG-3′) and R1492 (5′-TACHHYTACCTTGTTACG

ACTT-3′). The bacterial PCR program was set to 95°C pre-

denaturation for 4 min, 94°C for 1 min, 55°C for 1 min, 72°C for

1 min, and 35 cycles. The primers used for fungal quantification

were 5.8S (5′-CGCTGCGTTCTTCATCG-3′) and ITSIF (5′-
CTTGGTCATTTAGAGGAAGTAA-3′). The fungal PCR

program was set to 95°C pre-denaturation for 15 s, 94°C for 35 s,

53°C for 30 s, 72°C for 30 s with 35 cycles. The primers used for

actinomycetes quantification were act920f (5′-TACGGCCGCAA
GGCTA-3′) and act1200r (5′-TCRTCCCCACCTTCCTCCG-3′).
The actinomycetes PCR program was set to pre-denaturation at

95°C for 5 min, 95°C for 15 s, 65°C for 30 s, 72°C for 15 s, and

30 cycles.
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2.5 Extraction and determination of soil
metabolites

Extraction and derivatization of rhizosphere soil metabolites of

tea trees were performed (Fu et al., 2022). Fresh soil samples were

vacuum freeze-dried and ground to powder with three independent

replicates for each sample. 0.5 g of the sample was weighed, and 1

mL of extraction solution (methanol:isopropanol:water in the ratio

of 3:3:2, v/v) was added, and after shaking for 3 min at room

temperature, the sample was placed in an ice bath and

ultrasonicated for 20 min, and centrifuged for 3 min at 12,000 r/

min at 4°C, and the supernatant was collected. The supernatant was

added with 0.02 mL of internal standard (10 mg/mL), mixed well,

blown dry under nitrogen, added with 0.1 mL of methoxamine

pyridine solution (0.015 g/mL), oximilized at 37°C for 2 h, then

added with 0.1 mL of BSTFA (containing 1% TMCS), and the

reaction was carried out at 37°C for 30 min to obtain the

derivatization solution. The derivatization solution was diluted to

1 mL and passed through a 0.22 mm organic filter membrane for

GC-MS testing.

The GC-MS equipment used for the determination of soil

metabolites was an Agilent 8890 + 5977B gas chromatography-

mass spectrometry instrument (Agilent, Palo Alto, California,

USA), and the chromatographic column used was a DB-5MS (30

m × 0.25 mm × 0.25 mm, J&W Scientific, USA). The parameters of

GC-MS were set as follows: carrier gas was helium, injection volume

was 1 mL, front inlet mode was 5:1, flow rate was 1.2 mL/min; Oven

temperature ramp was held at 40°C for 1 min, raised to 100°C at a

rate of 20°C/min, raised to 300°C at a rate of 15°C/min, and held at

300°C for 5 min; Transfer line temperature was 280°C, ion source

temperature was 230°C, quad temperature was 150°C, and electron

energy was 70 eV. Qualitative and quantitative methods for soil

metabolites were performed through selecting 2 ~ 3 qualitative ions

and 1 quantitative ion for each compound during the

determination. and then compared with the NIST20 mass

spectrometry database. A compound is qualitative when the

selected ions, net of background, all appear in the mass spectrum

and the retention time is consistent with the reference value. On this

basis, the compound can be quantified by integrating and correcting

ions according to the chosen quantification ion (Yuan et al., 2022).
2.6 Determination of microbial carbon
source utilization

The BIOLOG ECO microplate has 96 wells containing 31

carbon sources, 3 wells per carbon source, i.e. 3 replicates, and 3

blank control wells. The 31 carbon sources can be categorized into

six groups, namely carbohydrate, carboxylic acid, phenolic acid,

fatty acid, amines and amino acid, respectively (Li et al., 2024). In

this study, the utilization of different carbon sources by rhizosphere

soil microorganisms of MD and PD was determined using BIOLOG

ECO microplate method with reference to Wang et al. (2023).

Briefly, 10 g of fresh rhizosphere soil was taken in a conical flask, 90

mL of sterile saline was added, sealed, shaken, and then placed in a
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shaker at 120 r/min for 10 min. 5 mL of supernatant was taken and

diluted 10-fold with sterile water and left to stand, then 5 mL of

supernatant was taken again and diluted 10-fold with sterile water

to obtain a dilution of 1:1000 for BIOLOG ECO microplate assay.

For the BIOLOG ECO microplate assay, 150mL of dilution was

added to each well, and a blank well with an equal volume of sterile

water was added as a control. The BIOLOG ECO microplate was

incubated in a constant temperature incubator at 28°C, protected

from light for 7 days, and then the absorbance was measured at 590

nm. The utilization of different carbon sources by rhizosphere soil

microorganisms was expressed as Average well color development

(AWCD) per pore. AWCD = [∑(C-R)]/31, where C is the

absorbance measured after 7 days of incubation in each well and

R is the absorbance of the control well.
2.7 Statistical analysis

The data obtained in this study were first performed using Excel

2020 for a preliminary statistical analysis of the raw data. Data

variances were analyzed using variance analysis (ANOVA) and

paired Student ‘s t-tests. The data were plotted using Rstudio

software (version 4.2.3), with box and violin plots produced using

the R package gghalves 0.1.4, principal component plots produced

using the R package ggbiplot 0.55, and bubble heat maps produced

using the R package ggplot2 3.5.1. The R package used for

orthogonal partial least squares discrimination analysis (OPLS-

DA) model construction for MD and PD is ropls and mixOmics,

the R package used for bubble feature maps is ggplot2 3.4.0, the R

package used for TOPSIS is dplyr 1.1.4, and vegan 2.6.4 for

redundancy analysis. The R package used for constructing partial

least squares structural squation modeling (PLS-SEM) equations for

the different indexes was plspm 0.4.9, and the R package used for

correlation-interaction network maps was linkET 0.0.7.1.
3 Results and discussion

3.1 Analysis of soil available nutrient
content, microbial number and
physiological indexes

Plant growth requires nutrient uptake from the soil. Therefore,

high or low soil nutrient content, especially available nutrient

content, directly or indirectly affects nutrient uptake and

accumulation by the plant root system, which influences plant

growth (Soares et al., 2019). In this study, available nutrient

content of rhizosphere soil of Dahongpao mother tree (MD) and

cutting Dahongpao (PD) and found (Figure 1A) that available

nitrogen, available phosphorus, and available potassium contents

of rhizosphere soil of MDwere significantly higher than those of PD

(p < 0.05). Soil available nutrient content is closely related to the

biotransformation capacity of soil to nutrients, and the higher the

transformation capacity, the more favorable the release of nutrients,

which in turn increases the available nutrient content (Macik et al.,
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2020). The transformation of soil nutrients requires the

participation of microorganisms, which can change the soil

environment, alter the biotransformation capacity of nutrients,

and affect plant growth (Zhong et al., 2020; Bai et al., 2021). In

this study, further analysis of rhizosphere soil microbial

physiological indexes of MD and PD revealed (Figure 1B) that

microbial biomass carbon content, microbial biomass nitrogen

content, and microbial respiration of MD rhizosphere soil were

178.66 mg/kg, 69.13 mg/kg, and 18.16 mg CO2/kg·h, respectively,

while those of PD were 142.10 mg/kg, 46.76 mg/kg, and 13.49 mg

CO2/kg·h, respectively, and MD was significantly larger than PD (p

< 0.05). Secondly, the analysis of bacterial, fungal and actinomycete
Frontiers in Plant Science 05
numbers showed (Figure 1C) that those of MD were all significantly

higher (p < 0.05) than PD, as evidenced by the fact that the bacterial,

fungal and actinomycete numbers in the rhizosphere soil of MD

were 16.29×109 cell/g·soil, 5.12×109 cell/g·soil and 6.40×109 cell/

g·soil, respectively, while those of PD were 10.32×109 cell/g·soil,

3.14×109 cell/g·soil and 3.21×109 cell/g·soil, respectively.

The increase of soil microbial biomass carbon and nitrogen

facilitates the mineralization of soil nutrients and improves the

biotransformation of soil nutrients (Ma et al., 2020), while

microbial respiration characterizes the number of microorganisms

in the soil, and the stronger microbial respiration is, the higher the

number of microorganisms is, and the more diverse the
FIGURE 1

Analysis of available nutrient content and microbial number of rhizosphere soil of tea trees. MD, Dahongpao mother tree; PD, Cutting Dahongpao;
(A) Analysis of available nutrient content; (B) Analysis of microbial physiological indexes; (C) Analysis of microbial number.
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microorganisms are (Chen et al., 2021). It can be seen that

compared with PD, the number of soil microorganisms and their

respiration intensity in the rhizosphere of MD were significantly

enhanced, which increased the microbial biomass carbon and

nitrogen of the soil, enhanced the mineralization capacity of soil

nutrients, and promoted soil nutrient biotransformation, which was

more conducive to the improvement of soil available nutrient

content, and then promoted the growth of tea trees.
3.2 Soil metabolite analysis

Soil metabolomics can effectively analyze low molecular weight

compounds in plant rhizosphere soils and thus assess soil texture

(Withers et al., 2020). And, soil metabolomics characterizes the

metabolic state of soil biomes and can be used to assess soil function

(Wu et al., 2022). Therefore, in this study, soil metabolomics

technique was used to analyze the rhizosphere soil metabolites of

MD and PD, and the results showed (Figure 2A) that the

rhizosphere soil metabolite content of MD was significantly

higher (p < 0.05) than that of PD. PCA analysis showed

(Figure 2B) that the soil metabolites of MD and PD were

significantly different, and the two principal components could

effectively differentiate MD from PD with a total contribution of

91.76%. Further analysis of rhizosphere soil metabolites in MD and

PD revealed (Figure 2C) that a total of 187 metabolites were

detected, which can be categorized into 18 groups (including

others), of which, 16 groups of metabolites were significantly
Frontiers in Plant Science 06
higher in MD than in PD, namelyterpenes, phenol, nitrogen

compounds, lipid, ketone, hydrocarbons, heterocyclic compound,

ester, aromatics, amino acid, amine, aldehyde, alcohol, acid and

others, whereas 2 groups of metabolite were significantly less in MD

than in PD, namely organic acid and carbohydrate. It can be seen

that there was a significant difference in rhizosphere soil metabolites

between MD and PD, with MD having significantly higher soil

metabolite content than PD. Soil metabolite content and types play

important roles in the regulation of soil microbial community

structure and function (Sikder and Vestergard, 2020). The

abundance and diversity of soil metabolites contribute to the

diversity of soil microbial communities, which in turn enriches

soil microbial functions, enhances soil nutrient biotransformation,

and promotes plant growth (Ni et al., 2021; Ortiz and Sansinenea,

2022). It can be seen that the total amount of metabolites and the

content of different metabolic types were higher in rhizosphere soil

of MD compared with PD, which is more conducive to promoting

the proliferation of different types of microorganisms, and more

conducive to increasing the richness and diversity of soil microbial

community, which in turn promotes the transformation of soil

nutrients and influences the growth of tea trees.
3.3 Screening and content analysis of soil
characteristic metabolites

The OPLS-DA model has an important role in screening key

metabolites among different samples, which can be used to screen
FIGURE 2

Analysis of metabolite content of rhizosphere soil of tea tree. MD, Dahongpao mother tree; PD, Cutting Dahongpao; (A) Total amount analysis of
MD and PD rhizosphere soil metabolites; (B) PCA analysis of MD and PD rhizosphere soil metabolites; (C) Content analysis of MD and PD
rhizosphere soil metabolites after classification.
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key differential metabolites by the metabolite’s variable importance

projection value (VIP) in distinguishing between different samples

(Jia et al., 2024a). However, the model needs to be evaluated after

construction, and only the model with significant levels of fit and

predictability can be used for screening and analysis (Rivera-Pérez

et al., 2022; Li et al., 2023b). Accordingly, based on the above
Frontiers in Plant Science 07
analysis, this study constructed an OPLS-DA model of MD and PD

with detected soil metabolites and their contents, and screened for

key soil metabolites that differentiated MD from PD. The result

showed (Figure 3A) that the model constructed by MD and PD was

tested with a goodness-of-fit R2Y value of 0.999 and a predictability

Q2 value of 0.988, both at significant levels (p < 0.05). The OPLS-
FIGURE 3

Screening of characteristic metabolites of tea tree rhizosphere soil. MD, Dahongpao mother tree; PD, Cutting Dahongpao; (A) Construction of
OPLS-DA model for MD and PD and screening for key differential metabolites; (B) Screening for characteristic metabolites distinguishing MD from
PD by bubble feature map; (C) Content analysis after categorization of characteristic metabolites; (D) TOPSIS analysis of the contribution of different
groups of metabolites in distinguishing MD from PD.
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DA score plot showed (Figure 3A) that MD and PD were effectively

differentiated, with a difference of 85.30% between groups and only

4.91% within groups. The VIP values of different metabolites in

distinguishing MD from PD were obtained by S-Plot plots, and a

total of 138 key metabolites with VIP greater than 1 were obtained

(Figure 3A). The 138 metabolites were further analyzed using

bubble feature maps, and 36 characteristic metabolites were

screened (Figure 3B). Characteristic metabolite categorization

analysis showed (Figure 3C) that the 36 characteristic metabolites

could be classified into 12 groups (including others), of which 11

groups of metabolites were significantly greater in MD than PD,

namely terpenes, phenol, lipid, heterocyclic compound, ester,

aromatics, amino acid, amine, alcohol, acid and others, while only

carbohydrate content in MD was significantly lower than PD.

TOPSIS was used to analyze the contribution of each of the 11

groups of metabolites in differentiating MD from PD, and the result

showed (Figure 3D) that only 7 groups of metabolites contributed

more than 10% in differentiating MD from PD, namely acid

(96.62%), carbohydrate (53.98%), amine (24.35%), phenol

(22.36%), heterocyclic compound (20.72%), alcohol (17.02%) and

lipid (16.41%). Tea tree has been reported to be an acidophilic plant

with low soil pH, which is suitable for the colonization of

acidophilic microorganisms (Yang et al., 2024). Both phenol and

alcohol can be converted to acids upon oxidation (De Nobili et al.,

2020). Moderate amounts of Amine stimulate nitrogen conversion

by soil microorganisms and further convert amine into plant-

available and available nitrogen (Paśmionka et al., 2021).

Furthermore, when the content of heterocyclic compound in soil

is high, it can promote the propagation of bacteria and fungi in soil,

increase the efficiency of carbon utilization by microorganisms,

enhance the conversion capacity of soil carbon, and promote the

growth of plants (Li et al., 2023a). Lipid serves as an important raw

material for microbial colonization, which reduces the depletion of

available phosphorus in the soil and promotes phosphorus uptake

by plants (Warren, 2020). And carbohydrate is an important raw

material for microbial reproduction and a major carbon source (Xie

et al., 2019). It can be seen that there were significant differences

between MD and PD in rhizosphere soil metabolite content,

especially characteristic metabolites. The carbohydrate content

was significantly higher in the rhizosphere soil of PD compared

to MD, which could lead to colonization of rhizosphere soil

microorganisms that primarily used carbohydrate as a carbon

source. The content of acid, amine, phenol, heterocyclic

compound, alcohol and lipid in the rhizosphere soil of MD were

significantly higher than that of PD, which could promote the

propagation of microorganisms that used different types of carbon

sources as raw materials, and was more conducive to increasing the

diversity and abundance of the soil microbial community, which

was in turn conducive to promoting the transformation of different

types of nutrients in the soil.
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3.4 Microbial carbon source utilization
analysis

During growth, plants can maintain their own growth by

releasing root secretions that regulate the type and amount of

rhizosphere soil metabolites in order to adapt to changes in the

environment, which in turn affects microbial colonization and alters

the structure of the soil microbial community and soil nutrient

content (Barra and Terenzi, 2021; Bi et al., 2022). In the present

study, significant changes in metabolites were found in rhizosphere

soil of MD and PD, which were hypothesized to possibly affect the

colonization of the corresponding microorganisms. Accordingly, in

this study, the BIOLOG microplate method was used to analyze the

number of rhizosphere soil microorganisms utilizing different types

of carbon sources in MD and PD, and the results showed (Figure 4A)

that the overall utilization of carbon sources by rhizosphere soil

microorganisms was significantly higher in MD than in PD, and for

the utilization of different types of carbon sources, the number of

microorganisms using carboxylic acid, phenolic acid, fatty acid,

amino acid and amines as carbon sources was significantly higher

in MD compared to PD, whereas the number of microorganisms

using carbohydrate as carbon source was significantly lower in MD.

PCA analysis with different carbon source utilization rates of

microorganisms found (Figure 4B) that principal component 1 and

principal component 2 could effectively differentiate MD from PD,

with 97.70% contribution from principal component 1 and 1.11%

from principal component 2, giving an overall contribution of

98.81%. And it was found that microorganisms with carboxylic

acid, phenolic acid, fatty acid, amino acid and amines as carbon

sources were significantly associated with MD, whereas

microorganisms with carbohydrates as carbon sources were

significantly associated with PD. TOPSIS was further used to

analyze the contribution of different microorganisms in

distinguishing MD from PD, and the results showed (Figure 4C)

that only five types of microorganisms that contributedmore than 1%

to distinguishing MD from PD were microorganisms that used

carbohydrate, carboxylic acid, amines, fatty acid and phenolic acid

as carbon source, respectively. Phenol can be oxidized to phenolic

acid (Rashmi and Negi, 2020), alcohol can be oxidized to carboxylic

acid (Pradhan et al., 2020), and lipid can be converted to fatty acid

(Dyall et al., 2022). And heterocyclic compound is conducive to

promoting soil microbial colonization and enhancing soil nutrient

biotransformation (Li et al., 2023a). It can be seen that the content of

acid, amine, phenol, heterocyclic compound, alcohol and lipid in soil

metabolites was significantly higher in MD than in PD, which in turn

was more favorable to promote microbial colonization with

carboxylic acid, amines, fatty acid and phenolic acid as carbon

sources, whereas PD was more favorable to promote microbial

colonization with carbohydrates as carbon sources. The number of

microorganisms utilizing different carbon sources in rhizosphere soil
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of MD was significantly higher than that of PD, and the microbial

diversity and abundance of soil was higher, which in turn was more

conducive to promoting soil nutrient transformation and tea

tree growth.
3.5 Interaction analysis

In this study, characteristic metabolites in rhizosphere soil of tea

trees, microorganisms utilizing different carbon sources were

further analyzed for interaction effects with soil available

nutrients and microbial physiological indexes. Redundancy

analysis showed (Figure 5A) that among soil characteristic

metabolites, acid, amine, phenol, heterocyclic compound, alcohol
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and lipid were significantly associated with MD, and soil

microorganisms with carboxylic acid, phenolic acid, fatty acid,

amino acid and amines as carbon sources were significantly

associated with MD. In contrast, both characteristic metabolites

and microorganisms utilizing different carbon sources were

correlated with soil available nutrient content and microbial

physiological indexes. Correlation interaction network analysis

showed (Figure 5B) that soil characteristic metabolites,

microorganisms utilizing different carbon sources, soil available

nutrients, and microbial physiological indexes associated with MD

were significantly and positively correlated. The PLS-SEM

equations of different indexes were further constructed, and the

results showed (Figure 5C) that rhizosphere soil characteristic

metabolites positively regulated microorganisms using different
FIGURE 4

Analysis of microbial carbon source utilization in rhizosphere soil of tea trees. MD, Dahongpao mother tree; PD, Cutting Dahongpao; (A) Quantitative
analysis of microorganisms utilizing different carbon sources; (B) PCA analysis of rhizosphere soils microorganisms utilizing different carbon sources
in MD and PD; (C) TOPSIS analysis of the contribution rate of microorganisms utilizing different carbon sources in distinguishing MD from PD.
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carbon sources in the soil (1.00**), positively regulated soil

microbial numbers and physiological indexes (0.98**), and thus

positively regulated soil available nutrient content (0.97**). It can be

seen that the higher number and content of characteristic

metabolites in rhizosphere soil of MD compared to PD was more

conducive to increasing the microorganisms using different carbon

sources in the soil, which in turn increased the diversity and

abundance of soil microorganisms, promoted soil nutrient

transformation, improved soil available nutrient content, and

promoted tea tree growth.
Frontiers in Plant Science 10
4 Conclusion

In this study, Dahongpao mother tree (MD) and cutting

Dahongpao (PD) were analyzed for rhizosphere soil available

nutrient content, microbial physiological indexes, microbial

carbon source utilization and soil metabolites. It was found

(Figure 6) that MD had significantly higher levels of acid, amine,

phenol, heterocyclic compound, alcohol and lipid in rhizosphere

soil metabolites than PD, which in turn was more conducive to

promoting rhizosphere microbial colonization using carboxylic
FIGURE 5

Interaction analysis of soil available nutrients, microorganisms and metabolites. MD, Dahongpao mother tree; PD, Cutting Dahongpao; (A)
redundancy analysis; (B) correlation-interaction network analysis; (C) PLS-SEM equation analysis.
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acid, amines, fatty acid and phenolic acid as carbon sources,

whereas PD was more conducive to promoting microbial

colonization using carbohydrates as carbon sources. Interaction

analysis showed that rhizosphere soil characteristic metabolites

positively regulated soil microorganisms using different carbon

sources, positively regulated soil microbial numbers and

physiological indexes, and thus positively regulated soil available

nutrient content. In conclusion, the higher content of characteristic

metabolites in the rhizosphere soil of MD compared with PD was

more conducive to stimulating the number of microorganisms
Frontiers in Plant Science 11
utilizing different carbon sources, which in turn increased the

diversity and abundance of soil microorganisms, and was more

conducive to facilitating the transformation of soil nutrients,

increasing the content of soil available nutrients, and promoting

the growth of tea trees. This study analyzes the effects of cuttings on

the rhizosphere soil microecosystem of tea trees from the

perspectives of soil metabolites and microorganisms, which is of

great guiding significance for the use of metabolites to regulate the

propagation of soil microorganisms, improve soil nutrient

transformation, and maintain the healthy growth of tea trees.
FIGURE 6

Mechanism analysis of tea rhizosphere soil metabolites regulating soil microbial community affecting soil nutrient cycling.
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Nybom, H., and Lācis, G. (2021). Recent large-scale genotyping and phenotyping of
plant genetic resources of vegetatively propagated crops. Plants. 10, 415. doi: 10.3390/
plants10020415

Ortiz, A., and Sansinenea, E. (2022). The role of beneficial microorganisms in soil
quality and plant health. Sustainability 14, 5358. doi: 10.3390/su14095358
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